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Non-Markovian effects in the spin-boson model at zero temperature
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We investigate memory effects in the spin-boson model using a recently proposed measure for non-Markovian
behavior based on the information exchange between an open system and its environment. Employing the
numerical exact multilayer multiconfiguration time-dependent Hartree approach, we simulate the dynamics of
the spin-boson model at zero temperature for a broad range of parameters. For a fast bath, i.e., in the scaling
limit, we find non-Markovian dynamics for a coherently decaying spin at weak system-bath coupling, whereas
memory effects are absent for stronger coupling in the regimes of incoherent decay and localization. If the
timescales of system and bath are comparable, a complex, nonmonotonic dependence of non-Markovianity on
the system-bath coupling strength is observed.
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I. INTRODUCTION

Open quantum systems are characterized by exchange of
particles, energy, or information with an environment and are
ubiquitous in physics and chemistry [1,2]. The coupling to
the environment induces decoherence and dissipation, caus-
ing the relaxation of the system to an equilibrium or steady
state. Besides these well-understood effects, the environment
can also act as a memory for the open system leading to
non-Markovian dynamics in the time evolution of the open
system. Memory effects are often associated with the presence
of a memory kernel in the Nakajima-Zwanzig equation for
the reduced density matrix of an open quantum system [3–6].
However, a rigorous and representation-independent charac-
terization and quantification of non-Markovianity in quantum
systems is a highly topical and controversial issue (see, e.g.,
the reviews [7–9]).

In recent years, various mathematical and physical con-
cepts have been developed in order to investigate quan-
tum non-Markovianity. For example, definitions of non-
Markovianity can be based on the divisibility properties of the
underlying dynamical map, or on the correlations of the open
system with an ancilla system [10–13]. Recently, a hierar-
chy of the different approaches to quantum non-Markovianity
[14] and a generalization of the classical theory to the quan-
tum regime based on quantum combs have been developed
[15,16]. Here we will employ the physically motivated idea
of using the flow of information between the open system
and its environment in order to characterize quantum non-
Markovianity [17,18]. The central quantity in this approach
is the trace distance between two quantum states of the open
system [19,20],

D(ρ1, ρ2) = 1
2 Tr|ρ1 − ρ2|, (1)

where the modulus of an operator A is given by |A| =
√

A†A.
This quantity can be interpreted as the distinguishability be-
tween the two states ρ1 and ρ2 [21]. Assuming that the initial
state factorizes between the open system and the environ-
ment, the time evolution of the open system is determined by
a family of completely positive and trace preserving (CPT)
maps �(t ). Any pair of initial states ρ1,2(0) then evolves into
ρ1,2(t ) = �(t )ρ1,2(0). The time-dependent trace distance is
defined as

D(t ) = D(ρ1(t ), ρ2(t )). (2)

Note that CPT maps are contractions for the trace distance,
i.e., D(t ) � D(0) [22]. The CPT property alone, however,
does not imply monotonicity of the trace distance as a function
of time. If D(t ) is a monotonically decreasing function of time
and, hence, the two states ρ1(t ) and ρ2(t ) become less and
less distinguishable, which can be interpreted as a continuous
loss of information from the system to the environment, the
dynamics is defined to be Markovian. Correspondingly, a
temporal increase of the trace distance can be interpreted as
a flow of information from the environment back to the open
system, which is a unique signature of memory effects and,
thus, of the non-Markovian character of the dynamics. On the
basis of this interpretation one can define a measure for the
degree of non-Markovianity of the dynamics as [17]

N =
∫

σ>0
dt σ (t ), (3)

where σ (t ) = d
dt D(t ) and the integral extends over all time

intervals in which σ (t ) > 0. By definition, this measure is
strictly zero if the trace distance decreases monotonically, i.e.,
if there is no information backflow from the environment to
the system, which corresponds to Markovian dynamics. Such
a behavior occurs, e.g., if the family of dynamical maps �(t )
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is CP-divisible [7]. The simplest and best known example
is given by a dynamical semigroup with a time-independent
generator in Lindblad form. We note that the trace distance
also decreases monotonically for P-divisible processes which
are thus Markovian in the above sense [12,23]. It is also noted
that by maximization over the initial state pair the measure
defined by Eq. (3) becomes a property of the dynamical map
alone. In this work, however, we focus on a particular process
defined by the dynamical map and the initial state pair.

II. MODEL

In this paper we employ the above discussed measure
for non-Markovianity to investigate memory effects in the
spin-boson model at zero temperature. To the best of our
knowledge, this is the first systematic, nonperturbative (nu-
merically exact) study of non-Markovianity in a nonintegrable
model in the deep quantum regime at zero temperature [24].
Previous studies of non-Markovianity in the spin-boson model
used perturbative approaches or focused on special parameter
regimes such as higher temperature [25–29]. We also mention
a path-integral study of non-Markovianity in a related model
[30], albeit for finite temperature, and a very recent, similar
investigation in the integrable model of quantum Brownian
motion [31].

The spin-boson model, which involves a two-level system
(or spin) interacting linearly with a bath of harmonic oscilla-
tors, is a paradigmatic model to describe dissipative quantum
dynamics [1,32]. Despite its simple form, it has applications
to a variety of different processes and phenomena, including
electron transfer [33] and macroscopic quantum coherence
[34]. On the other hand, the spin-boson model is also inter-
esting from a more fundamental point of view as it shows
a transition from coherent dynamics to incoherent decay as
well as a quantum phase transition [35–37]. Here we focus
on the unbiased spin-boson model. Employing mass-weighted
coordinates, the Hamiltonian reads

H = �σx + 1

2

∑
n

(
p2

n + ω2
nq2

n

) + σz

∑
n

cnqn, (4)

where σx and σz are the Pauli matrices, � denotes the coupling
between the two spin states, and ωn, qn, and pn represent the
frequency, position, and momentum of the bath oscillators,
respectively. The properties of the bath which influence the
spin are summarized by the spectral density [1,32]

J (ω) = π

2

∑
n

c2
n

ωn
δ(ω − ωn). (5)

Here we consider a spectral density of Ohmic form with an
exponential cutoff [1,32]

J (ω) = π

2
αωe− ω

ωc , (6)

where α defines the coupling strength and ωc denotes the
characteristic frequency of the bath.

In the scaling limit (ωc/� → ∞), the dynamics of the spin
can be grouped into three qualitatively different regimes, com-
prising coherent decay for weak system-environment coupling
(α < 0.5), incoherent decay (intermediate coupling, 0.5 <

α < 1), and localization (strong coupling α > 1). It is also

known that for finite ωc/� both critical couplings α shifts to
larger values [24,37–39].

III. NUMERICAL METHOD

To simulate the dynamics of the spin-boson model, we
use the multilayer multiconfiguration time-dependent Hartree
approach (ML-MCTDH) [40–43] which allows us to propa-
gate the wave function of the joint system in a numerically
exact way. The ML-MCTDH approach represents a rigorous
variational basis-set method, which uses a multiconfiguration
expansion of the wave function, employing time-dependent
basis functions and a hierarchical multilayer representation.
Within this framework the wave function is expanded in terms
of time-dependent configurations,

|
(t )〉 =
∑

J

AJ(t )
N∏

n=1

|φn
jn (t )〉 , (7)

where J is a N-dimensional multi-index. Each configuration
is a Hartree product of “single-particle” functions (SPFs)
|φn

jn (t )〉, where N denotes the total number of single-particle
(SP) degrees of freedom and n is the index of a particu-
lar SP group. Similar to the wave function, each SPF can
be represented as a sum of time-dependent configurations.
Continuing this expansion, the total wave function |
(t )〉 is
represented recursively in many layers, which corresponds to
a hierarchical tensor decomposition in the form of a tensor tree
network. Following the Dirac-Frenkel variational principle
[44], the equations of motion are obtained from a variation
of the wave function |
(t )〉 with respect to the expansion
coefficients of each layer [45]. A more detailed explanation
of the ML-MCTDH method, including the expansion of the
SPFs, and the equations of motion is presented in Appendix
A. The ML-MCTDH approach allows for the simulation of
large but finite quantum systems. Thus, we represent the con-
tinuous bath by a finite number of modes. In this work we
use an equidistant distribution but other choices are possi-
ble [38,46]. To ensure convergence to the continuum limit
over the timescale considered, we employ several hundreds of
modes. For a detailed discussion of the numerical treatment of
a continuous bath see Ref. [38].

IV. RESULTS

Using the ML-MCTDH approach, we investigate non-
Markovian behavior in the spin-boson model. We focus on
the low temperature regime, where non-Markovian effects are
expected to be particularly pronounced [25]. To evaluate the
time-dependent trace distance defined in Eq. (2), we simulate
the dynamics for two different initial states of the spin. The
reduced state of the spin is uniquely described by the Bloch
vector a(t ) = ( 〈σx〉 (t ), 〈σy〉 (t ), 〈σz〉 (t ))T , where 〈σi〉 (t ) =
〈ψ (t )|σi|ψ (t )〉. Employing this representation, Eq. (2) can be
expressed as

D(t ) = 1
2 |a1(t ) − a2(t )|, (8)

where a1(2)(t ) is the time-dependent Bloch vector correspond-
ing to the first (second) initial state, respectively, and |a1 − a2|
denotes the Euclidean distance. It can be shown [47] that
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FIG. 1. Expectation value of σx and σz in the three different dy-
namical regimes of the spin-boson model for ωc = 40�. For α = 0.1
the first five non-Markovian intervals are marked by dashed lines.

initial system states leading to a maximal non-Markovianity
N must have the maximal initial trace distance D(0) = 1
and, hence, must have orthogonal supports. For the present
case of a two-state system (spin) this implies that the initial
states must be a pair of pure orthogonal states (antipodal
points on the Bloch sphere). Throughout this work we fix
the initial states to the two eigenstates of σz, ρ1(0) = |↑〉 〈↑|
and ρ2(0) = |↓〉 〈↓|, which are often used in studies of the
spin-boson model. The harmonic oscillators are initially all in
the ground state and there is no correlation between the spin
and the environment.

For the chosen initial states, the time evolution of a2 can
be related to that of a1 (see Appendix B). Using this and
the relation 〈σy〉 (t ) = 1

2�
∂t 〈σz〉 (t ), the trace distance can be

written in terms of 〈σz〉1 and its derivative as

D(t ) =
√

[〈σz〉1 (t )]2 +
[

1

2�
∂t 〈σz〉1 (t )

]2

. (9)

As a consequence of this equation, it follows that
∂t 〈σz〉1 (ts) = 0 implies ∂tD(ts) = 0, i.e., if 〈σz〉1 has a station-
ary point at ts , the trace distance also has a stationary point at
ts. Note that the converse it not true.

For later analysis we note that in the weak coupling and
large ωc limit, an approximate analytic solution [1] for 〈σz〉
can be used to derive the following equation for the trace
distance:

D(t ) = e−γ t
√

1
2 [1 + η] + β sin(2�̃t ) + 1

2 [1 − η] cos(2�̃t ).

(10)

Here γ , �̃, β, and η are constants which depend on the
coupling strength α and on the characteristic bath frequency
ωc. The explicit expressions are given in Appendix C.

We begin our discussion of non-Markovian effects in
the scaling regime, i.e., ωc 	 �. As a starting point we
recapitulate the dynamics of the spin and discuss the corre-
sponding dynamics of the trace distance [1,32,38]. Figure 1
shows the dynamics of the spin for different values of the

FIG. 2. Dynamics of the trace distance for different values of α

and ωc = 40�.

coupling strength α for ωc = 40�, demonstrating the three
qualitatively different dynamical regimes. Since 〈σy〉 (t ) =

1
2�

∂t 〈σz〉 (t ) holds, we only present the dynamics of 〈σx〉 and
〈σz〉.

In the weak coupling regime (α < 0.5) the spin decays
coherently to its stationary value. For increasing coupling
strength, the oscillation frequency of 〈σz〉 decreases. The
intermediate regime (0.5 < α < 1) is characterized by a
monotonic or incoherent decay of the spin. Upon increas-
ing the coupling strength further, the decay slows down and
eventually the spin localizes for coupling strengths larger than
α = 1. In all three regimes 〈σx〉 relaxes monotonously to its
equilibrium value. For a more comprehensive discussion of
the dynamics of the spin-boson model at zero temperature,
see, e.g., Refs. [38,39].

Next we analyze the trace distance, which is the central
object to quantify memory effects. Figure 2 shows the time-
dependent trace distance for different values of the coupling
strength α and ωc = 40�. The behavior of the trace distance
can be grouped into three different regimes, similar to the
dynamics of the spin itself.

For weak coupling (α � 0.5), the trace distance exhibits
an overall decay to zero with periodic modulations including
temporal increases, which indicate the presence of memory
effects. For intermediate coupling in the incoherent regime of
spin dynamics (0.5 � α � 1), the trace distance decays mono-
tonically. The decay slows down upon increasing coupling
strength. In both regimes, the overall decay reflects a relax-
ation of the spin to an equilibrium state, where the equilibrium
state is independent on the initial state.

In the following we discuss this non-Markovian regime in
more detail. For a coherently decaying spin, 〈σz〉 (t ) exhibits
local minima and maxima and, thus, the trace distance D(t )
has stationary points. Employing Eq. (10), it can be shown
that these stationary points are all local maxima and, therefore,
the non-Markovian intervals end at the extremal points of
〈σz〉. This is demonstrated in Fig. 1 for α = 0.1. We find this
behavior for all couplings α < 0.5, as long as ωc 	 �.

As the coupling strength approaches the coherent-to-
incoherent transition (α = 0.5), the renormalized frequency
�̃ vanishes, leading to a monotonically decaying spin.
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FIG. 3. Non-Markovianity N as a function of the coupling
strength α for different characteristic frequencies ωc. The symbols
represent the data, the lines are a guide to the eye. The inset shows
the first increase of the trace distance for different values of ωc for
α = 0.1.

Additionally, the increases in the trace distance become
weaker as α → 0.5. Thus, the non-Markovian intervals shift
to infinite time and memory effects disappear as the dynamics
changes from coherent to incoherent decay.

In order to quantify the non-Markovianity as a function
of the coupling strength α, we use the cumulative measure
N defined in Eq. (3). First note that without system-bath
coupling (i.e., α = 0), D(t ) = 1 holds for all times and, thus,
N = 0, as expected for a unitary time evolution. Figure 3
shows N as a function of the coupling strength α for different
values of ωc.

Because the trace distance exhibits memory effects in the
regime of coherent decay, i.e., for α < 0.5, the measure of
non-Markovianity N is nonzero. In this regime the cumulative
information backflow decreases monotonically as a function
of the coupling strength. For α < 0.1, the decay is too slow
to obtain N directly from numerical simulations. Employ-
ing Eq. (10), which is valid in this weak-coupling regime,
we find lim

α→0
N = N0 > 0 for fixed ωc and, thus, the non-

Markovianity is not analytic at α = 0. The physical reason
for this is that the relaxation time diverges as α → 0, and
thus, memory effects are present at all times in this limit.
The detailed derivation is provided in Appendix D, which also
provides a discussion of the validity of perturbative methods
such as the time-convolutionless master equation [25] to de-
scribe non-Markovian effects in the weak coupling regime
(see Appendix E). For a monotonically decaying spin, i.e.,
for α � 0.5, the trace distance also decays monotonically, and
consequently, the non-Markovianity N vanishes.

We finish the discussion of the dynamics in the scaling
regime with the influence of the time scale of the bath,
determined by the characteristic frequency ωc, on the non-
Markovian behavior of the spin, illustrated in Fig. 3. For
fixed α, the memory effects are more pronounced for larger
characteristic bath frequencies as can be seen in the inset of
Fig. 3. Consequently, the non-Markovianity N increases upon
increasing the characteristic bath frequency. For all ωc � 5�,

FIG. 4. Dynamics of the trace distance (left) and σz (right) for
ωc = � in the weak coupling regime. For better visualization, only
results for short times are shown. The non-Markovian intervals of σz

are marked by dashed lines.

we find a similar behavior of N , i.e., N is nonzero only
for α � 0.5. Note that for ωc = 5� the non-Markovianity is
almost zero (N < 0.01) for all couplings α (data not shown).

In the following we discuss non-Markovian effects out-
side the scaling limit, focusing on the particularly interesting
crossover regime ωc ≈ �, where the timescales of spin and
bath are similar. For weak coupling α, depicted in Fig. 4
for the case ωc = �, the overall dynamics are very similar
to the scaling regime, i.e., the spin shows damped, coherent
oscillations and the trace distance decays to zero with periodic
modulations. The memory effects, however, exhibit a quali-
tatively different behavior. Unlike in the scaling regime, the
non-Markovian intervals begin at the extremal points of 〈σz〉,
indicating that D has local minima at the extremal points of
〈σz〉.

Further differences to the scaling regime are observed for
stronger coupling α depicted in Fig. 5. The dynamics in this
regime depends sensitively on ωc and, therefore, we show re-
sults for different values of ωc. Different to the scaling regime,
the dynamics of the spin is partially coherent for α � 0.5 (see
also Refs. [24,38]), with an initial decay which does not slow
down as the coupling strength is increased.

In addition, we find a qualitatively different non-
Markovian behavior in the crossover regime ωc ≈ �. To
demonstrate this, consider the first local minimum and max-
imum of 〈σz〉 for the case ωc = 2� in Fig. 5 (similar for
ωc = 3�). In the weak to moderate coupling regime (up to
α ≈ 0.7), the stationary points of D associated with the two
local extrema of 〈σz〉 are both local minima and, thus, both
non-Markovian intervals begin at the local extrema. As the
coupling strength is increased, the non-Markovian interval
associated with the local maximum of 〈σz〉 first shrinks to
zero and then extends to the left (i.e., to shorter times) with
fixed end point at the local maximum of 〈σz〉. Eventually
the two distinct intervals merge to a single non-Markovian
interval extending from the local minimum to the local max-
imum. Upon further increasing the coupling strength, the
initial decay becomes weaker and the following increase in
the trace distance becomes smaller. This transition in the non-
Markovian behavior results in a nonmonotonic dependence
of the memory effects on the coupling strength α caused by
this pair of extrema of 〈σz〉, i.e., memory effects first increase
with α up to the point at which the two intervals merge and
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FIG. 5. Dynamics of the trace distance (left) and σz (right) for
different characteristic frequencies ωc in the moderate and strong
coupling regime. The non-Markovian intervals are marked with
dashed lines. For better visualization not all non-Markovian intervals
are marked.

then decrease again. Similar transitions in the non-Markovian
behavior are observed for later local extrema of 〈σz〉, albeit for
weaker coupling α. For smaller ωc, represented in Fig. 5 by
the case ωc = �, the first two non-Markovian intervals do not
show such a transition and, therefore, memory effects increase
monotonically with the coupling strength.

This dependence of memory effects on the coupling
strength α is reflected in the cumulative measure for non-
Markovianity N depicted in Fig. 6. For weak coupling
α, N is very small for ωc ∈ [2�, 5�], whereas it assumes

FIG. 6. Non-Markovianity N as a function of the coupling
strength α for different characteristic frequencies ωc.

significant values for ωc = �. This is consistent with pre-
vious investigations of memory effects in the spin-boson
model employing perturbative master equations, which pre-
dict Markovian dynamics if the effective spectral density
of the environment is flat around the transition frequency
of the spin [25], i.e., for ωc = 2�. In the moderate and
strong coupling regime, the transitions in the non-Markovian
behavior discussed above give rise to different features in
the non-Markovianity measure. For ωc = 2� and ωc = 3�,
the transition of the first local minimum and maximum of
〈σz〉 lead to a pronounced maximum of N . Additionally, we
find structures at α ≈ 0.71 and α ≈ 0.52 for ωc = 2� and
ωc = 3�, respectively, which coincide with the transition of
non-Markovian behavior of the second local minimum and
maximum of 〈σz〉. For ωc = �, only the third oscillation
of 〈σz〉 exhibits a transition at α ≈ 1.4, leading to a weak
shoulder in the non-Markovianity N . Otherwise N increases
monotonically over the shown range of coupling strengths.

V. CONCLUSION

In summary we have employed the numerically exact ML-
MCTDH approach to investigate non-Markovian effects in the
spin-boson model at zero temperature. The results obtained
for a broad range of parameters reveal a rich dynamical be-
havior. While in the scaling limit of a fast bath, the dynamics
shows a transition from non-Markovian to Markovian as the
decay of the spin changes from coherent to incoherent, the
crossover regime without separation of timescales between
spin and bath exhibits a complex, nonmonotonic dependence
of non-Markovianity on the coupling strength. The question
of how these findings can be generalized to more complex
systems and an interacting bath as well as the dependence
of non-Markovian effects on the initial state of the spin are
interesting topics for future work.
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APPENDIX A: DETAILS ABOUT THE
NUMERICAL METHOD

The multilayer multiconfiguration time-dependent Hartree
approach (ML-MCTDH) [40–43] is a well-established, ac-
curate (numerically exact) method to simulate the dynamics
of quantum systems with many degrees of freedom. It rep-
resents a rigorous variational basis-set method, which uses a
multiconfiguration expansion of the wave function, employing
time-dependent basis functions and a hierarchical multilayer
representation. In the following we discuss the method in
more detail and present some numerical aspects relevant for
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(a) |Ψ(t) =
J

AJ(t)

N

n=1

|φn
jn

(t) ,

|φn
j (t) =

I

Bn,j
I (t)

Q(n)

q=1

|ν(n,q)
iq

(t) ,

(b)

FIG. 7. (a) Expansion of the wave function |
〉 and the first layer
single-particle functions |φn

j 〉 used in the ML-MCTDH approach.
(b) Tensor tree representation of the expansion. The time dependency
is omitted for better visualization.

our calculations. For a more comprehensive discussion, see,
e.g., [40,43].

Within the ML-MCTDH approach the time-dependent
wave function is recursively expanded as depicted in Fig. 7.
Here AJ(t ), Bn, j

I (t ), and so on are the expansion coeffi-
cients for the first, second, etc., layers, respectively; |φn

jn (t )〉,
|ν (n,q)

iq
(t )〉, etc., are the single particle functions (SPFs) for the

first, second, etc. layers. In Eq. (A1), N denotes the number of
single particle (SP) groups in the first layer and Q(n) denote
the number of level two (L2) SP groups in the nth level one
(L1) SP group. Such a recursive expansion can be carried
out to an arbitrary number of layers. Finally, the multilayer
hierarchy is terminated at a particular level by expanding the
SPFs in the deepest layer in terms of time-independent basis
functions/configurations, each of which may contain several
physical degrees of freedom. The recursive expansion of the
wave function |
(t )〉 over many layers in the ML-MCTDH
framework is a representation which corresponds to a hier-
archical tensor decomposition in the form of a tensor tree
network, shown in Fig. 7.

Following the Dirac-Frenkel variational principle [44], the
equations of motion are obtained from a variation of the wave
function |
(t )〉 with respect to the expansion coefficients of
each layer [40,43], resulting in

i
∂

∂t
|
(t )〉L1 coefficients = Ĥ (t ) |
(t )〉 , (A2a)

i
∂

∂t
|φ(n)(t )〉

L2 coefficients

= [
1 − P̂(n)][ρ̂ (n)(t )

]−1 〈Ĥ〉(n)
(t ) |φ(n)(t )〉 , (A2b)

i
∂

∂t
|ν (n,q)(t )〉L3 coefficients

= [
1 − P̂(n,q)

L2

][
�̂

(n,q)
L2 (t )

]−1 〈Ĥ〉(n,q)
L2 (t ) |ν (n,q)(t )〉 ,

· · · , (A2c)

where the SPFs for each group are summarized in a symbolic
vector as |φ(n)(t )〉 = {|φ(n)

1 (t )〉 , |φ(n)
2 (t )〉 , . . . }T and analo-

gously for the other SP groups. The time derivatives on
the left-hand side are only performed with respect to the
expansion coefficients of a particular layer (denoted by the
respective subscript). Ĥ (t ) represents the Hamiltonian matrix
in terms of the first layer configurations, i.e.,

(
Ĥ (t )

)
JL =

( N∏
n=1

〈φn
jn (t )|

)
Ĥ

( N∏
n=1

|φn
ln (t )〉

)
. (A3)

In Eq. (A2) ρ̂ (n)(t ) and �̂
(n,q)
L2 (t ) are reduced density matri-

ces for the first and second layers, respectively. The objects
〈Ĥ〉(n)

(t ) and 〈Ĥ〉(n,q)
L2 (t ) are mean-field operators for the first

and second layer, respectively, and P̂(n) and P̂(n,q)
L2 are SP-space

projection operators for different layers. For the definition of
these quantities we refer the reader to Ref. [43].

In this work we employ an implementation of the ML-
MCTDH theory with up to four dynamical layers plus one
static layer. To ensure that convergence is achieved, for each
physical parameter a series of careful convergence tests were
performed with respect to all the variational parameters such
as the number of bath modes, primitive basis functions, and
SPFs in each layer. In our calculations we employ 100–500
bath modes to faithfully represent the continuous distribution
of bath modes over the timescale considered. For smaller
characteristic bath frequencies ωc, fewer modes (∼150) are
required. The basis functions for each mode range from three
(for high-frequency modes) to a few hundred (for low fre-
quency modes). The number of SPFs in the highest layer
ranges from 20 to 30, and in the lowest layer from 5 to 15,
where the number of SPFs required for convergence increases
with the coupling strength. The configuration space for each
layer is typically a few hundred thousand.

APPENDIX B: MAPPING OF THE TIME EVOLUTION
OF THE TWO DIFFERENT INITIAL STATES

The time-dependent trace distance for any pair of initial
states of the spin can be calculated using

D(t ) = 1

2

√ ∑
i={x,y,z}

[〈σi〉1 (t ) − 〈σi〉2 (t )]2, (B1)

where σx,y,z denote the three Pauli matrices, and the index
refers to the first and second initial state of the spin ρ1 and
ρ2, respectively. The time-dependent expectation values in
Eq. (B1) can be related to each other, which we will employ
in the following. For the special choice of ρ1 = |↑〉 〈↑| and
ρ2 = |↓〉 〈↓|, in particular, the expectation values 〈σi〉1 can
be directly related to the expectation values 〈σi〉2. In order to
show this, we assume that the initial state of the joint system
factorizes between the spin and the environment, and thus, can
be written as

�1(0) = |↑〉 〈↑| ⊗ ρB(0), (B2)

�2(0) = |↓〉 〈↓| ⊗ ρB(0), (B3)

where ρB(0) is the initial state of the environment. For-
mally, the time-dependent expectation values of the spin are

012213-6



NON-MARKOVIAN EFFECTS IN THE SPIN-BOSON MODEL … PHYSICAL REVIEW A 104, 012213 (2021)

defined as

〈σi〉n = tr{σie
−iHt�n(0)eiHt }, (B4)

where n ∈ {1, 2}, and H denotes the Hamiltonian of the full
system given by

H = �σx + HB + σz

∑
n

cnqn. (B5)

Since σ 2
x = 1 and σ †

x = σx holds, the transformation Õ =
σxOσx is unitary. Expectation values are invariant under uni-
tary transformations, and thus, Eq. (B4) can be transformed
to

〈σi〉1/2 = tr{σxσiσxσxe−iHtσxσxρ1/2(0)σxσxeiHtσx}
= tr{σ̃ie

−iH̃t ρ̃1/2(0)eiH̃t }. (B6)

This transformation only acts on the Hilbert space of the spin,
and thus, transforms only the spin operators. The transformed
operators and initial state read

σ †
x σxσx = σx, (B7)

σ †
x σyσx = −σy, (B8)

σ †
x σzσx = −σz, (B9)

σxρ1(0)σx = ρ2(0). (B10)

Inserting this into Eq. (B5) yields the transformed Hamilto-
nian

H̃ = σ †
x Hσx = �σx + HB + σz

∑
n

(−cn)qn. (B11)

The transformation only changes the sign of the couplings cn.
The properties of the environment which influences the

dynamics of the spin are fully characterized by the spectral
density [1,32], which is defined as

J (ω) = π

2

∑
n

c2
n

ωn
δ(ω − ωn). (B12)

Since the spectral density depends on the squared couplings,
the two Hamiltonians H and H̃ give rise to the same spectral
density. Consequently, the reduced spin dynamics induced by
H and H̃ are equal. Using this and Eq. (B10) we conclude that

〈σx〉2 (t ) = 〈σx〉1 (t ), (B13)

〈σy〉2 (t ) = −〈σy〉1 (t ), (B14)

〈σz〉2 (t ) = −〈σz〉1 (t ). (B15)

Employing this result, Eq. (B1) can be expressed as

D(t ) =
√

〈σz〉2
1 + 〈σy〉2

1. (B16)

Here and in the following we suppress the time dependence
of the expectation values. Finally, we employ that for the
unbiased spin-boson model 〈σy〉 = 1

2�
∂t 〈σz〉 holds. With this

we arrive at the final equation for the trace distance

D(t ) =
√

〈σz〉2
1 + 1

(2�)2
[∂t 〈σz〉1]2, (B17)

from which one can calculate the derivative of the trace dis-
tance as

∂tD(t ) =
[∂t 〈σz〉1]

[ 〈σz〉1 + 1
(2�)2 ∂

2
t 〈σz〉1

]
D(t )

. (B18)

From this equation it directly follows that ∂t 〈σz〉 = 0 implies
∂tD = 0.

APPENDIX C: TRACE DISTANCE IN THE WEAK
COUPLING REGIME

In the weak coupling and large ωc limit, an approximate
analytic solution [1] for 〈σz〉 (t ) can be derived using a path
integral approach. The time evolution of 〈σz〉 within this ap-
proach is given by

〈σz〉 (t ) = e−γ t

[
cos(�̃t ) + γ

�̃
sin(�̃t )

]
, (C1)

where the renormalized frequency �̃ and the damping γ de-
pend on the characteristic bath frequency ωc and the coupling
strength α and are given by [1]

�̃ = [�(1 − 2α) cos(πα)]
1

2(1−α)

(
2�

ωc

) α
1−α

2�, (C2)

γ = π

2
α�̃e− �̃

ωc . (C3)

Using this result and Eq. (B17) an equation for the trace
distance can be derived as

D(t ) = e−γ t
√

1
2 [1 + η] + β sin(2�̃t ) + 1

2 [1 − η] cos(2�̃t ),

(C4)

where we defined the following constants:

β = γ

�̃
, (C5)

η = β2 + �̃

2�
(1 + β )2. (C6)

APPENDIX D: NONANALYTICITY OF THE
NON-MARKOVIANITY

Equation (C4) can be used to further analyze the behavior
of the non-Markovianity N in the weak coupling limit. First
note that for α = 0 the time evolution is unitary, and thus,
N = 0. To derive the behavior in the limit α → 0, we note
that Eq. (C4) obeys

D
(

t + π

�̃

)
= e

−πγ

�̃ D(t ). (D1)

Since this holds for all times t , the same holds for the deriva-
tive of the trace distance σ (t ) = ∂tD(t ). Assuming that the
non-Markovianity N is finite, which is true for all parameters
considered here, the defining integral of N can be partitioned
as

N =
∞∑

n=0

∫ π/�̃

0
σ > 0

dt σ

(
n

π

�̃
+ t

)
. (D2)
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Employing property (D1) this can be written as

N =
∞∑

n=0

e−nπ
γ

�̃

∫ π/�̃

0
σ > 0

dt σ (t ), (D3)

where the integral measures the information back flow during
the first period of the time evolution. Let I ⊂ [t, t + π

�̃
] denote

the times at which σ (t ) > 0. For simplicity we assume that I
consists of a single, connected interval. This is true for the
analytic solution given by Eq. (C4). In the following we de-
note with tmin and tmax the lower and upper end of the interval
I , respectively. From the fundamental theorem of calculus it
then follows that

N =
∞∑

n=0

e−nπ
γ

�̃ [D(tmax) − D(tmin)]. (D4)

Since π
γ

�̃
> 0 the geometric series can be resumed resulting

in

N = D(tmax) − D(tmin)

1 − e−π
γ

�̃

. (D5)

The nominator in Eq. (D5) accounts for memory effects occur-
ring in the first period, whereas the denominator accounts for
the remaining, periodically occurring, information back flows.
The limit of the non-Markovianity as α → 0 can be obtained
by considering the leading order behavior of the nominator
and denominator, which read

D(tmax) − D(tmin) ∼ −α

[
ln

(
2�
ωc

)
+ γEM + π2

4 e− 2�
ωc

]
, (D6)

1 − e−π
γ

�̃ ∼ α
π2

2
e− 2�

ωc . (D7)

Since both terms are linear in α as α → 0, we conclude that

N ∼ − 2

π2
e

2�
ωc

[
ln

(
2�

ωc

)
+ γEMC + π2

4
e− 2�

ωc

]
, (D8)

where γEMC denotes the Euler-Mascheroni constant. This
shows that limα→0+ N > 0, and thus, N is not analytic at
α = 0.

APPENDIX E: PERTURBATIVE TREATMENT
OF THE DYNAMICS

Our numerically exact results allow for the validation of
perturbative approaches and demonstrate certain limitations.
Here we compare the numerically exact results with the ana-
lytic solution given by Eqs. (C1) and (C4) and results obtained
with the time-convolutionless (TCL2) master equation ap-
proach [48,49]. The latter was previously used in Ref. [25]

FIG. 8. Comparison between the numerically exact results (solid
lines), the TCL2 master equation approach (dashed-dotted lines), and
the analytical Eq. (C4) (dashed lines), for α = 0.1 [blue (dark gray)
curves] and α = 0.3 [red (light gray) curves] for ωc = 20�.

to investigate memory effects in the spin-boson model. In
Fig. 8 the comparison of 〈σz〉 as well as the trace distance is
shown for α = 0.1 and α = 0.3 for ωc = 20�. For α = 0.1
the TCL2 master equation approach, as well as the analytical
equation, give qualitatively correct results for 〈σz〉 and D.
For the non-Markovianity we find N ≈ 0.094 from the TCL2
master equation approach and N ≈ 0.095 from the analytic
solution. Both are close to the numerically exact value of
N ≈ 0.088. Note that for α = 0.1 we find this small over-
estimation of N within the two approximative approaches for
all investigated values of ωc > 10�.

As the coupling strength increases, the approximations
become less accurate and eventually break down. This is
exemplified for α = 0.3 in Fig. 8. The analytical solution
still gives qualitatively good results, although the devia-
tions from the numerically exact solution increases. For
the non-Markovianity, it predicts N ≈ 0.079 compared to
N ≈ 0.041 from the numerically exact simulations. The
TCL2 approach, on the other hand, predicts unphysical re-
sults for longer times, in particular 〈σz〉 and D exceed one.
This indicates that perturbation theory, as it is employed
in the TCL2 method, is no longer valid for this value of
the coupling strength. The analytical approach, on the one
hand, uses renormalized perturbation theory, employing a re-
summation of all terms linear in the coupling strength of a
path integral solution [1], and thus has a broader range of
validity.
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