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Apparent quantum paradoxes as simple interference: Quantum violation of the pigeonhole principle
and exchange of properties between quantum particles
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It was recently argued that the pigeonhole principle, which states that if three pigeons are put into two
pigeonholes then at least one pigeonhole must contain more than one pigeon, is violated in quantum systems
[Proc. Natl. Acad. Sci. USA 113, 532 (2016)]. An experimental verification of this effect was recently reported
[Proc. Natl. Acad. Sci. USA 116, 1549 (2019)]. In another recent experimental work, it was argued that two
entities were observed to exchange properties without meeting each other [ Nat. Commun. 11, 3006 (2020)]. Here
we describe all these proposals and experiments as simple quantum interference effects where no such dramatic
conclusions appear. Besides demystifying some of the conclusions of the cited works, we also present physical
insights for some interesting behaviors present in these treatments. For instance, we associate the anomalous
particles behaviors in the quantum pigeonhole effect to a quantum interference of force.
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I. INTRODUCTION

Many quantum paradoxes were proposed with the concept
of weak values [1,2] recently, attributing strange properties
to a system between pre- and postselections. In the quantum
Cheshire cat effect [3,4], for instance, it is stated that a photon
could be separated from its polarization or a neutron from its
spin. Investigations of the past of a photon in an interferometer
[5,6] concluded that the photon had passed through places
where it could not have passed. In the quantum pigeonhole
effect [7–10] it is argued that it is possible to put three quan-
tum particles in two boxes without two particles being in
the same box. Finally, it has been recently argued that two
photons can exchange their polarization without meeting each
other [11,12] in an analogy with an exchange of grins between
quantum Cheshire cats.

One thing that is not always clearly stated in many of
the quantum paradoxes cited above is that their striking con-
clusions depend on a particular realistic interpretation of
quantum mechanics. If we adopt a more pragmatic nonreal-
istic view, no paradox arises in the proposed gedanken and
experimental configurations. In this sense, some of the above
paradoxes have been explained as simple interference effects
with no mention of paradoxical behaviors, including the quan-
tum Cheshire effect [13,14] and the past of a quantum particle
in an interferometer [15–17].

More generally, the interpretation of the weak values them-
selves has also been subject of debate. As mentioned, the
proponents of the weak value concept advocate for their re-
alistic interpretation in which the value accessed by means
of a pointer weakly interacting with the system of interest
(weak measurement) reveals some underlying property of the
system [1,3]. It is under this realistic interpretation of the weak
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values that the mentioned quantum paradoxes appear [3–12].
In this view, even the extraction of a weak value without
the use of a pointer, by counting detections, should reveal
the underlying property of the system [4,9,12]. On the other
side of the spectrum, there are those that discuss the weak
values as being connected to a perturbation on the pointer state
[18–20] in which the anomalous weak values (those lying
outside the eigenvalues range of the associated observable)
appear as a feature of quantum mechanics allowed by the
complex probability amplitude between state transitions and
interference effects. There is also the investigation of which
statistical information the weak values provide [21], and there
are those who attempt to define in which sense reality can be
ascribed to a property of a quantum system, which leads to
the ascription of reality in a specific sense to the weak values
[10,22].

Here we explain the quantum pigeonhole effect [7,9] and
the exchange of grins between quantum Cheshire cats [11,12]
as simple interference effects. In our description, the quantum
system that acts as a pointer in the weak measurement for-
malism is incorporated to an enlarged system such that the
division into system of interest and pointer is absent. And
since we avoid talking about weak values at all, we can also
address on equal footing cases in which the experiment does
not use weak measurements to extract weak values [9,12].
Under this view, the question of whether a realistic property is
revealed by the weak value is suspended because the weak
values are absent from the discussion. The main objective
is to demystify some of the conclusions of these works,
such as “quantum mechanics violates one of the fundamental
principles of nature: If you put three particles in two boxes,
necessarily two particles will end up in the same box” [7]
or “we report an experiment with manifoldly entangled pho-
tons that demonstrates a stronger object-property separation,
whereby an object can permanently drop a certain property
and acquire a property that it did not have from another
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object” [12]. No such conclusions appear in the descriptions
presented here. Nonetheless, it is important to recognize that,
even without such dramatic conclusions, the observed effects
are interesting in themselves. So a second objective of the
present paper is to give more physical insights to them. For
instance, we associate the particles anomalous behavior in the
quantum pigeonhole effect with the quantum interference of
force effect [23,24].

II. QUANTUM PIGEONHOLE EFFECT

Despite the fact that no mention of weak values is made
in the original paper on the quantum pigeonhole effect [7],
the basic concepts are there: pre- and postselections with a
weak interaction among the system and a pointer, whose effect
would give information about the intermediate system state.
For this reason we will first describe the paradox using the
weak value concept. The result is the same as in Ref. [7]
because the paradox is constructed to result in a null effect on
the pointer. If this effect was not zero, the weak value would
quantify it.

Consider that we have three quantum particles with two
possible orthogonal states |L〉 and |R〉 each, associated with
their presence in two different boxes. The system is prepared
in the preselected state,

|�〉 = |+〉1|+〉2|+〉3, with |+〉 = 1√
2

[|L〉 + |R〉], (1)

and postselected in the state,

|�〉 = |+i〉1|+i〉2|+i〉3, with |+i〉 = 1√
2

[|L〉 + i|R〉]. (2)

Consider that, between the pre- and the postselections above,
there is a weak interaction between the system and a
continuous-variable quantum system that acts as a pointer.
The interaction is represented by a term gAP in the Hamil-
tonian, where A is an operator for the system, P is an operator
for the pointer, and g is a small coupling constant. The effect
of this interaction with pre- and postselections is to produce
a displacement on the wave function of the pointer on the
variable conjugate to P by an amount proportional to the real
part of the weak value of A, defined as [1]

〈A〉w = 〈�|A|�〉
〈�|�〉 , (3)

as long as this displacement is much smaller than the width of
the wave function. The origin of the quantum paradoxes based
on weak values is to attribute a physical reality to these weak
values.

Consider the operator,

�same
i, j = �LL

i, j + �RR
i, j , with

�LL
i, j = |L〉i|L〉 j〈L|i〈L| j and �RR

i, j = |R〉i|R〉 j〈R|i〈R| j,

(4)

where i �= j. This operator is associated with the probability
of finding particles i and j in the same box. It can be readily
shown that for the pre- and postselected states of Eq. (1) and
(2), the weak values of �same

i, j for all pairs of particles, given
by Eq. (3), are zero. This result led the authors of Ref. [7]

FIG. 1. Scheme of Ref. [7] to verify the quantum pigeonhole
effect, consisting of a Mach-Zehnder interferometer with three elec-
trons propagating parallel to each other. BS1 and BS2 are beam
splitters, PS is a phase shifter, and D1 and D2 are detectors.

to conclude that “given the above pre- and postselection, we
have three particles in two boxes, yet no two particles can be
found in the same box—our quantum pigeonhole principle.”

The paradoxical conclusions of the quantum pigeonhole
effect were previously criticized based on logical and math-
ematical arguments [25]. Here we present physical arguments
that give a clear picture of the problem, describing it from
a quantum interference perspective where no such paradox
arises.

In Ref. [7] the scheme depicted in Fig. 1 is proposed to
demonstrate the quantum pigeonhole effect. Three electrons
are sent at the same time through a Mach-Zehnder interferom-
eter, propagating parallel to each other. Each electron evolves
to state |+〉 of Eq. (1) after its interaction with the beam
splitter BS1, where |L〉 and |R〉 label the different paths in
the interferometer. The phases of the interferometer are set
such that a state |+i〉 of Eq. (2) has constructive interference
to exit in the direction of detector D1, i.e., a detection by D1

postselect state |+i〉. It is assumed that in the propagation
through the interferometer two electrons do not interact if
they propagate in opposite paths, whereas if they propagate
in the same path they suffer a weak repulsion with a final
change in the relative momentum between them much smaller
than the initial relative momentum uncertainty. In this sense,
the relative momentum between electrons i and j act as a
pointer for the weak measurement of the operator �same

i, j from
Eq. (4) for the pre- and postselected states of Eqs. (1) and
(2). Since the weak value of �same

i, j is zero in this situation by
selecting the situations where electrons i and j exit in the di-
rection of detector D1, no change in their relative momentum
is noted since this momentum change is proportional to the
weak value. In Ref. [7] it is concluded that “the beams are
completely undeflected and undisturbed (up to second-order
perturbations), indicating that indeed there was no interaction
whatsoever between the electrons.” As we argue in the fol-
lowing, this conclusion does not apply in an interferometric
analysis.

It was recently discussed how the superposition of a posi-
tive force with a null force on a quantum particle may result
in a negative momentum transfer for the particle in an effect
named quantum interference of force [23]. This effect may re-
sult in an effective attraction between electrons that propagate
through an interferometer when the appropriate postselec-
tion is made [24]. So the interference of force may result
in attraction or repulsion between electrons. In the following
we discuss that the undisturbed electrons wave functions ob-
tained in the quantum pigeonhole effect is not the result of an
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absence of interaction between the electrons but the result of
a particular combination of no interaction with repulsion.

Let us describe not only the electrons paths in the inter-
ferometer of Fig. 1, but also their momentum wave function.
Initially we have a separate state with a wave function
�1(p1)�2(p2)�3(p3), where pi represents the momentum of
electron i. To simplify the notation, we consider that the undis-
turbed electron beams always propagate in the z direction
such that the coordinate system is changed with the beams
reflections. With this extended representation, the system state
just after BS1 in Fig. 1 can be written as

|�0〉 ∝ [|LLL〉 + |LLR〉 + |LRL〉 + |LRR〉 + |RLL〉
+ |RLR〉 + |RRL〉 + |RRR〉]�1(p1)�2(p2)�3(p3).

(5)

If we consider the state just before BS2, due to the repulsion
between electrons that propagate in the same path the system
state evolves to

|�1〉 ∝ [|LLL〉 + |RRR〉]�1(p1 + δ12 + δ13)

×�2(p2 − δ12 + δ23)�3(p3 − δ13 − δ23)

+ [|LLR〉 + |RRL〉]�1(p1 + δ12)�2(p2 − δ12)�3(p3)

+ [|LRL〉 + |RLR〉]�1(p1 + δ13)�2(p2)�3(p3 − δ13)

+ [|LRR〉 + |RLL〉]�1(p1)�2(p2 + δ23)�3(p3 − δ23),

(6)

where ±δi j are small momentum displacements (perpendic-
ular to the electron-beam propagation direction) in the wave
function of electrons i and j when they propagate in the same
path. Postselecting on the state of Eq. (2), which means to
select the situations where all electrons exit the interferometer
in the direction of D1 in Fig. 1, we obtain the following wave
function for the electrons momenta:

�PS ∝ [1 − i]�1(p1 + δ12 + δ13)�2(p2 − δ12 + δ23)

×�3(p3 − δ13 − δ23)

+ [−1 + i]�1(p1 + δ12)�2(p2 − δ12)�3(p3)

+ [−1 + i]�1(p1 + δ13)�2(p2)�3(p3 − δ13)

+ [−1 + i]�1(p1)�2(p2 + δ23)�3(p3 − δ23). (7)

Using the expansion �(r + δ) ≈ �(r) + δ · [∇�(r)] in Eq.
(7) and disregarding terms with products |δi j ||δkl | we obtain
�PS ∝ �1(p1)�2(p2)�3(p3), the same initial wave function.
The authors of Ref. [7] associated the absence of a change
in the particles wave function with an absence of interac-
tion between the electrons in the interferometer, which would
demonstrate that no two electrons have propagated through
the same path. But as evidenced in Eq. (7), this wave function
is obtained by the coherent combination of different perturbed
wave functions, so it is not possible to conclude that there
was no interaction between the electrons inside the inter-
ferometer. All terms in Eq. (7) have at least one repulsion
effect since, at least, two electrons must propagate through
the same interferometer arm. It is intuitively expected that
the combination of repulsion with no interaction for a pair of
particles should result in an effective repulsion. But as shown
in Ref. [24], a coherent combination of repulsion with no

FIG. 2. Experimental scheme of Ref. [9] to show the quantum
pigeonhole effect. Three photons come from the left in the indicated
paths. PBS is a polarizing beam splitter, and Di are detectors with
polarizers (pol.).

interaction between two quantum particles may result in an
effective attraction due to an interference effect. Here we are
dealing with a similar counterintuitive situation where the co-
herent combination of repulsion with no interaction results in
a zero effective force. This null effective force can be verified
by measuring the average relative momenta of an ensemble of
pre- and postselected particles, which, according the obtained
postselected wave function, should be unperturbed in relation
to the initial system state.

In an experimental implementation of the quantum pigeon-
hole effect [9], Chen et al. use photons as the quantum pigeons
and their polarization as the pigeonholes. The pre- and postse-
lected states from Eqs. (1) and (2) as well as the operator from
Eq. (4) that would tell if two pigeons are in the same pigeon-
hole are the same with the substitutions |L〉 → |H〉 and |R〉 →
|V 〉, where |H〉 is associated with a horizontal polarization for
the photon and |V 〉 with a vertical polarization. In the experi-
ments they want to show that the matrix element 〈�|�same

12 |�〉
is zero. To do so, they perform the experiment depicted in
Fig. 2. Three photons (1–3) are prepared in the polarization
state (|H〉 + |V 〉)/

√
2, and three detectors (Da–Dc) project

the polarization state in (|H〉 + i|V 〉)/
√

2. Photon 3 is sent
directly to Dc, being detected with probability 1/2. Photons
1 and 2 are sent each to different input ports of a polarizing
beam splitter (PBS), which transmits horizontally polarized
photons and reflects vertically polarized ones, whereas one
output port directs the photons to Da, and the other directs
to Db. So its use with the selection of the situations where
one photon leaves the PBS in the mode towards Da and the
other towards Db in Fig. 2 is associated with the action of
the projection operator defined in Eq. (4). They observe zero
triple coincidences in this situation, demonstrating that indeed
〈�|�same

12 |�〉 = 0. By symmetry, the exchange of the roles of
the photons in the experiment leads to the same result.

The experimental results of Ref. [9] mentioned in the
preceding paragraph can be simply understood in terms of
interference. After the interaction with the PBS, the state of
photons 1 and 2 is

1
2 [|Ha, Hb〉 + |Va,Vb〉 + |Ha,Va〉 + |Hb,Vb〉]. (8)

Detectors Da and Db project this state on

1
2 [|Ha, Hb〉 − |Va,Vb〉 + i|Ha,Vb〉 + i|Va, Hb〉], (9)

resulting in a zero probability of coincidence detections.
This can be simply understood in terms of Hong-Ou-Mandel
interference [26] with a PBS followed by polarization mea-
surements. The probability amplitude of the two photons

012212-3



RAUL CORRÊA AND PABLO L. SALDANHA PHYSICAL REVIEW A 104, 012212 (2021)

FIG. 3. Scheme of the exchange of grins between quantum
Cheshire cats experiment [12]. Photon pairs are prepared in the initial
state of Eq. (10). BSs and pol. make a coincidence count by detectors
D1 and D2 to postselect the state of Eq. (11). Optical filters that may
or may not depend on polarization can be inserted in the regions
indicated by the traced rectangles to associate the weak values of
Eq. (12) with the change in the coincidence counts, according to
Eq. (13).

being reflected interferes destructively with the probability
amplitude of them being transmitted in this situation.

Chen et al. also consider a more elaborate interferometer in
their work, that effectively interfere the three photons [9]. But
this is used to discuss the fact that the quantum pigeonhole
effect would be valid only in the weak interaction regime, so
we do not treat these other results here.

As shown here, the theoretical proposal [7] and the exper-
imental implementation [9] of the quantum pigeonhole effect
can be understood as simple interference effects. There is
no need to say that the pigeonhole principle is violated in
quantum systems.

III. EXCHANGE OF GRINS BETWEEN QUANTUM
CHESHIRE CATS

We now proceed to interpret the exchange of grins between
quantum Cheshire cats experiment [12], based on the theoret-
ical proposal [11], from a quantum interference point of view.
In these works, the Cheshire cats are photons, and their grins
are the photon polarizations.

A simplified experimental scheme is illustrated in Fig. 3
(see Ref. [12] for the details). Photon pairs of the same fre-
quency are produced by parametric down-conversion in the
following entangled state:

|�〉 = 1
2 {−[|↑A↑B〉 − |↓A↓B〉]|uAdB〉
+ [|↑A↑B〉 + |↓A↓B〉]|dAuB〉}, (10)

where |ui〉 and |di〉 are the path states indicated in Fig. 3
and |↑i〉 and |↓i〉 represent horizontal and vertical polarization
states, respectively, for photons labeled A and B. Polarizers in
the detectors project on the polarization state (|↑〉 + |↓〉)/

√
2.

Considering that the path to detector D1 projects on path state
(|uA〉 + |uB〉)/

√
2 and the path to detector D2 projects on path

state (−|dA〉 + |dB〉)/
√

2, a double photon detection by D1

and D2 corresponds to a postselection of the state,

|�〉 = 1
4 [(|↑A〉 + |↓A〉)(|↑B〉 + |↓B〉)]

⊗[(|uA〉 + |uB〉)(−|dA〉 + |dB〉)]. (11)

The probability of a coincidence detection by detectors D1 and
D2 in this situation is then given by |〈�|�〉|2 = 1/16.

The paradox arises when computing the weak values for
the observables �ν

μ and σ ν
z ⊗ �ν

μ with μ = {u, d} and ν =

{A, B}, �ν
u = |uν〉〈uν |, �ν

d = |dν〉〈dν |, and σ ν
z = |↑ν〉〈↑ν | −

|↓ν〉〈↓ν |. The operator �ν
μ has eigenvalues 1 and 0. An eigen-

value 1 (0) indicates the presence (absence) of photon ν in
path μν . The operator σ ν

z ⊗ �ν
μ has eigenvalues 0 and ±1. An

eigenvalue +1 (−1) indicates the presence of photon ν in path
μν with a polarization H (V ). An eigenvalue 0 indicates the
absence of photon ν in path μν . For the pre- and postselected
states of Eqs. (10) and (11), the weak value for these operators
can be computed using Eq. (3) and are found to be

〈
�A

u

〉
w

= 0,
〈
σz ⊗ �A

u

〉
w

= 1,〈
�A

d

〉
w

= 1,
〈
σz ⊗ �A

d

〉
w

= 0,〈
�B

u

〉
w

= 1,
〈
σz ⊗ �B

u

〉
w

= 0,〈
�B

d

〉
w

= 0,
〈
σz ⊗ �B

d

〉
w

= 1.

(12)

The authors of Ref. [12] interpret the first two lines of the
above equations as an indication that photon A is in path d ,
whereas its polarization is in path u. The last two lines would
indicate that photon B is in path u, whereas its polarization
is in path d . On top of that, the superposition of the u (d )
paths for the detection would mean that photon B (A) is
detected with photon A’s (B’s) polarization. Based on that,
they conclude that “each of the two quantum Cheshire cats
deterministically swaps grin with its counterparts” [12]. But
note that this conclusion is based on a realistic interpretation
of the weak values, associating an objective reality with the
properties of quantum particles in superposition states, which
is a very controversial assumption.

To extract the weak values in the experiment of Ref. [12],
optical filters are positioned in specific points of the setup, and
their influence on the detection statistics is analyzed. These
filters, modeled as a nonunitary evolution exp(−Ot ) for an
observable O, have the effect of decreasing the amplitude of
certain components of the system’s state, and they may or may
not be polarization sensitive. The probability for preparing a
system in state |�〉, the filter acting for a small time-interval
t , and performing a postselection in state |�〉, is

P(O, t ) = |〈�| exp(−Ot )|�〉| ≈ |〈�|1 − Ot |�〉|2

≈
∣∣∣∣〈�|�〉

[
1 − t

〈�|O|�〉
〈�|�〉

]∣∣∣∣
2

≈ |〈�|�〉|2[1 − 2t Re〈O〉w], (13)

where Eq. (3) was used. So the real part of the weak value
is proportional to the first-order derivative of P(O, t ) with
respect to the parameter t when terms of order t2 and higher
can be neglected [2,12].

To experimentally obtain the weak values for �ν
μ, optical

filters that reduce the light amplitude by a known amount are
positioned in each path indicated in Fig. 3 and the change in
the probability of postselection is compared to Eq. (13) [12].
Optical filters that reduce the vertical polarization component
of light by a known amount are also positioned in each path
indicated in Fig. 3. The change in the probability of postse-
lection of Eq. (13) can then be associated with the weak value
of the operator |↓ν〉〈↓ν | ⊗ �ν

μ. The weak value of σ ν
z ⊗ �ν

μ is
then obtained from these measurements due to the following
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relation:

σ ν
z ⊗ �ν

μ = �ν
μ − 2|↓ν〉〈↓ν | ⊗ �ν

μ, (14)

with an equivalent expression relating the weak values of
these quantities.

The experimental results can be simply understood in terms
of two-photon interference. Consider the measurement of the
weak value of �A

u . Inserting an optical filter in path uA sub-
tracts the initial quantum state of Eq. (10) by an amount,

t�A
u |�〉 = − t

2
[|↑A↑B〉 − |↓A↓B〉]|uAdB〉. (15)

The scalar product of the above reduction with the postse-
lected state of Eq. (11) results in 〈�|t�A

u |�〉 = 0. This scalar
product is proportional to the numerator of the weak value of
�A

u given by Eq. (13) (the denominator is given by 〈�|�〉 =
−1/4), and for this reason we have 〈�A

u 〉w = 0 as indicated in
Eq. (12). So, according to Eq. (13), the inclusion of this optical
filter does not change the detection coincidence counts by
detectors D1 and D2. The reason is simple: We are removing
a portion of the initial state which is not postselected anyway.

Consider now that we insert a polarization-dependent opti-
cal filter in path uA that subtracts the initial quantum state of
Eq. (10) by an amount,

t (|↓A〉〈↓A| ⊗ �A
u )|�〉 = t

2
|↓A↓B〉|uAdB〉. (16)

The scalar product of the above reduction with the postse-
lected state of Eq. (11) results in 〈�|(t |↓A〉〈↓A| ⊗ �A

u )|�〉 =
t/8 such that we have 〈(|↓A〉〈↓A| ⊗ �A

u )〉w = 1/2 and, ac-
cording to Eq. (14), 〈σz ⊗ �A

u 〉w = 1 as indicated in Eq. (12).
So, according to Eq. (13), the inclusion of this polarization-
dependent optical filter does change the coincidence counts by
detectors D1 and D2. This happens because we are removing a
portion of the initial state which is postselected by this double
detection.

Similar reasoning applies to all weak values indicated in
Eq. (12). In this way, the experimental results from Ref. [12]
can be interpreted as simple two-photon interference. There is
no need to say that the photons have exchanged their spins in
the interferometer.

IV. DISCUSSION AND CONCLUSION

As mentioned before, in the experiments that implemented
the quantum pigeonhole effect [9] and the exchange of grins
between Cheshire cats [12] there were no genuine weak mea-
surement procedures with the weak interaction of the pertinent
systems degrees of freedom with pointers, whose shifts would
reveal the weak values of the analyzed quantities. Instead,
other interferometric procedures were performed to extract the
weak values, that were explained here as simple interference
effects. It is important to stress that, even if genuine weak
measurements related to these paradoxes are performed, it
would still be possible to explain the experimental results
as interference effects as we did in the case of the original
proposal of the quantum pigeonhole effect [7] in Sec. II. It is
always possible to interpret the experimental results of weak
measurements as interference phenomena affecting the point-
ers’ states without attributing reality to the weak values as
performed here and in previous works that demystified other
paradoxes based on weak values [13–17].

To conclude, we have shown that the quantum pigeonhole
effect and the exchange of grins between quantum Cheshire
cats can be explained as the result of simple quantum interfer-
ence. The dramatic conclusions that the pigeonhole principle
is violated in quantum systems or that two particles can ex-
change properties without meeting each other only appear if
we adopt a realistic view of the weak values. One can then
choose among giving a realistic interpretation to the weak
values, generating a large number of paradoxes [3–12], or see-
ing the weak values as quantities without an objective reality,
avoiding such paradoxical behaviors. We prefer the second
option. Our paper also gives physical insights for the origin
of strange behaviors of quantum systems in these situations,
for instance, associating the quantum pigeonhole effect with a
quantum interference of force [23,24].
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