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Small, controllable quantum systems, known as quantum probes, have been proposed to estimate various
parameters characterizing complex systems such as the environments of quantum systems. These probes,
prepared in some initial state, are allowed to interact with their environment, and subsequent measurements
reveal information about different quantities characterizing the environment, such as the system-environment
coupling strength, the cutoff frequency, and the temperature. These estimates have generally been made by
considering only the way that the probe undergoes decoherence. However, we show that information about the
environment is also imprinted on the probe via the probe and environment correlations that exist before the
probe state preparation. This information can then be used to improve our estimates for any environment. We
apply this general result to the particular case of a two-level system probe undergoing pure dephasing, due to a
harmonic-oscillator environment, to show that a drastic increase in the quantum Fisher information, and hence
the precision of our estimates, can indeed be obtained. We also consider applying periodic control pulses to
the probe to show that with a combination of the two—the effect of the control pulses as well as the initial
correlations—the quantum Fisher information can be increased by orders of magnitude.
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I. INTRODUCTION

Realistic quantum systems are not isolated; their inter-
actions with their surroundings generally need to be taken
into account [1,2]. Studying such open quantum systems has
been of great interest, driven by both fundamental aspects
such as the quantum measurement problem as well as the
practical implementation of futuristic quantum technologies.
In order to investigate the effect of the environment on a
quantum system, one needs to determine and characterize
various properties of the environment such as its temperature.
An effective way to tackle this complex problem is to use
quantum probes [3–20], especially in the context of ther-
mometry [3–5,7,15–17]. Quantum probes are small, simple,
and easily controllable quantum systems which, prepared in
a suitable initial state, are allowed to become correlated with
the environment and consequently undergo decoherence. Suit-
able measurements are subsequently performed on the probe
allowing us to infer the properties of the environment, with
quantum estimation theory supplying the tools to quantify the
precision of our estimates [21–30]. A key tool is the quantum
Fisher information which determines the ultimate precision
with which we estimate a given environment parameter. As
dictated by the quantum Cramer-Rao bound, ideally we would
like the quantum Fisher information to be as large as possible
in order to obtain the best possible estimates.

To date, estimates of the environment parameters have
been generally obtained by considering the decoherence of
the probe once the probe and the environment have been pre-
pared in a product state with the environment state being the
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thermal equilibrium state (recent work done in Refs. [18,19]
also includes dissipation). In other words, the correlations
that develop after the probe state preparation are used to
deduce the environment parameters. However, especially if
the probe-environment interaction strength is strong, the probe
and the environment will be correlated significantly before the
probe state preparation as well. The role of such initial corre-
lations in open quantum system dynamics has been widely
investigated [31–61]. Since these correlations are expected
to impact the ensuing dynamics of the probe, we can expect
the quantum Fisher information relevant to the estimation of
a given environment parameter to be modified as well. Our
central aim in this paper is to then consider a two-level system
probe interacting with an environment whose parameters we
want to estimate, taking into account the probe-environment
correlations both before and after the probe state preparation.
Hopefully, we can improve our estimates if the correlations
before the probe state preparation are taken into account.

We start our analysis by considering the general form of
the time evolution of a two-level system probe undergoing
only dephasing, provided that the probe is prepared in a pure
state initially, without assuming any particular form of the
environment. Ignoring relaxation effects due to the environ-
ment can be justified since relaxation timescales are typically
much longer than dephasing timescales. We then calculate the
quantum Fisher information for this general probe state and
show that the Fisher information is the sum of two positive
terms: one, the information obtained from the decoherence
rate (which can also be modified by the initial correlations),
and two, the information obtained from an effective level shift
of the quantum probe due to the initial correlations. In other
words, the Fisher information now contains contributions due
to the probe-environment correlations both before and after
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the probe state preparation. We then apply this general re-
sult to the particular case of a two-level system interacting
with a collection of harmonic oscillators. The effect of the
environment is encapsulated by the spectral density of the
environment, which contains the coupling strength of the
system and the environment, and the cutoff frequency which
determines the correlation time of the environment. We aim
to estimate the coupling strength and the cutoff frequency, as
well as the temperature of the environment. We show that
the effect of the initial correlations on the quantum Fisher
information for these estimates can be drastic, especially for
sub-Ohmic environments. Having determined the quantum
Fisher information, we then discuss the measurements that
can be used in practice in order to obtain these maximally
precise estimates. Finally, we aim to further improve the quan-
tum Fisher information by applying suitable control pulses
to the system [51,62–70]. These pulses modulate both the
decoherence rate as well as the effective level shift. By con-
sidering these fields to be of pulse form, and then optimizing
over the pulse interval as well as the interaction time of the
probe with the environment, we find that, compared to the
scenario where initial correlations are ignored and no pulses
are applied, orders of magnitude improvement in the quantum
Fisher information can be obtained.

This paper is organized as follows. Section II explains the
basic formalism that we will use throughout the paper. In
Sec. III, we apply this general formalism to the parameters
characterizing a harmonic-oscillator environment. We then
discuss in Sec. IV the measurements that practically need to
be performed in order to maximize the Fisher information.
In Sec. V, we aim to use suitable control pulses to optimize
the quantum Fisher information. Finally, we summarize our
findings in Sec. VI, with some technical details regarding the
solution of our model given in the Appendixes.

II. FORMALISM

Our objective is to estimate the various parameters, such as
the temperature and the cutoff frequency, characterizing the
environment of a quantum system. To this end, we use a two-
level system coupled to the environment. We use this two-
level system as a probe in the sense that, from the dynamics of
this probe, we can estimate the parameters characterizing the
environment. In general, the initial pure state of the probe is

ρ(0) =
(

cos2
(

θ0
2

)
1
2 sin θ0e−iφ0

1
2 sin θ0eiφ0 sin2

(
θ0
2

) )
, (1)

with θ0 and φ0 the usual angles on the Bloch sphere. As a
result of the probe’s interaction with the environment, the
state of the probe evolves. Assuming that the environment
causes predominantly decoherence of the probe state, the
state of the probe at a later time t can be written as [71]

ρ(t ) =
(

cos2
(

θ0
2

)
1
2 sin θ0e−i�(t )e−�(t )

1
2 sin θ0ei�(t )e−�(t ) sin2

(
θ0
2

) )
. (2)

Here �(t ) = ω0t + φ0 + χ (t ), where ω0 is the natural
frequency of the probe and χ (t ) is the effect of a possible
level shift induced by the environment. In studies performed
to date, generally only the information about the environment

encoded in the function �(t ) has been considered. However,
as we will show, information about the environment is also
captured by the function χ (t ), and using this additional
information can improve our estimates regarding the
environment parameters by orders of magnitude.

To quantify the precision with which a general environment
parameter x can be estimated, we use the quantum Fisher
information (QFI) given by [12]

HQ(x) =
2∑

n=1

(∂xρn)2

ρn
+ 2

∑
n �=m

(ρn − ρm)2

ρn + ρm
|〈εm|∂xεn〉|2, (3)

where |εn〉 is the nth eigenstate of our probe state, ρn is the
corresponding eigenvalue, and ∂x is just a shorthand nota-
tion for ∂

∂x . Note that the QFI at time t depends only on
the probe density matrix at time t and not on its history.
To find the QFI given the general state at time t for our
probe, we first find that the eigenvalues of ρ(t ) are given
by ρ1 = 1

2 [1 + F (t )] and ρ2 = 1
2 [1 − F (t )], with F (t ) =√

1 + sin2 θ0(e−2�(t ) − 1). The corresponding eigenstates are

|ε1(t )〉 = cos

(
θ

2

)
|0〉 + ei�(t ) sin

(
θ

2

)
|1〉, (4)

|ε2(t )〉 = sin

(
θ

2

)
|0〉 − ei�(t ) cos

(
θ

2

)
|1〉, (5)

where

sin θ = F (t )−1 sin θ0e−�(t ),

cos θ = F (t )−1 cos θ0,

and |0〉 and |1〉 are the usual eigenstates of σz with σz|n〉 =
(−1)n|n〉. We next find that

(∂xρ1)2 = (∂xρ2)2 = 1

4
[F (t )]−2 sin4 θ0e−4� (∂x�)2

and

|〈ε2(t )|∂xε1(t )〉|2 = 1

4
[(∂xθ )2 + sin2 θ0(∂x�)2],

with |〈ε2(t )|∂xε1(t )〉|2 = |〈ε1(t )|∂xε2(t )〉|2. Since tan θ =
(tan θ0)e−� , we also find that

∂xθ = − sin θ0 cos θ0[F (t )]−2e−�∂x�.

Putting all these results together, we are led to, after some
algebraic manipulations,

HQ(x) = sin2 θ0

e2� − 1

(
∂�

∂x

)2

+ sin2 θ0e−2�

(
∂χ

∂x

)2

, (6)

where we have used the fact that in �(t ), only χ (t ) can
possibly depend on x. We emphasize that this is a totally gen-
eral result for a two-level probe interacting with an arbitrary
environment, irrespective of the probe-environment coupling.
The only restriction is that we are restricting ourselves to pure
dephasing.

From the form of Eq. (6), we first conclude that, indepen-
dent of the interaction time of the probe with the environment,
the maximum Fisher information is obtained for θ0 = π/2, as
the contribution due to the decoherence factor �(t ) as well as
the level shift χ (t ) is maximized in this case. Consequently,
we set θ0 = π/2 when we next apply our general formalism
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to the case of using a two-level probe to estimate the envi-
ronment parameters for a harmonic-oscillator environment.
Before doing so, let us note that we can also easily generalize
our formalism to the scenario where the initial probe state is
not pure (see the Appendixes).

III. APPLICATION FOR HARMONIC-OSCILLATOR
ENVIRONMENT

So far we have found the quantum Fisher information
by considering an arbitrary environment. We now look at a
particular environment. We consider a two-level system inter-
acting with a bosonic environment. The system-environment
Hamiltonian can be written as (we take h̄ = 1 throughout) [2]

H = ω0

2
σz +

∑
k

ωkb†
kbk +

∑
k

σz(gkb†
k + g∗

kbk ). (7)

Here σz is the standard Pauli spin matrix, ω0 is the energy
splitting of the two-level system, ωk is the frequency of the
kth mode of the environment, bk and b†

k are the standard low-
ering and raising operators, and gk is the interaction strength
between the kth mode and the two-level system. The effect of
the environment on the system is encapsulated by the spectral
density of the environment J (ω). In this work, we assume that
the spectral density is of the form [12]

J (ω) = G
ωs

ωs−1
c

e− ω
ωc , (8)

where ωc is the cutoff frequency, G is the strength of the
environment, and s is the Ohmicity parameter. Besides the
parameters appearing in the spectral density J (ω), that is, the
cutoff frequency ωc and the coupling strength G, we would
also look to estimate the temperature T of the environment
using our general formalism. Before moving on, let us note
for the sake of clarity of the future discussion that s < 1
represents sub-Ohmic, s > 1 super-Ohmic, and s = 1 Ohmic
spectral density.

A. Estimating parameters when initial correlations are ignored

The usual assumption in finding the dynamics of the
two-level system probe is to assume that the probe state is
independent of the environment [2]. In other words, the total
initial system-environment state is taken to be ρtot = ρ(0) ⊗
ρB, where ρ(0) is the initial probe state, and ρB = e−βHB/ZB,
with ZB = Tr[e−βHB ], is the environment thermal equilibrium
state. Here β = 1

kBT is the inverse temperature (we will set
kB = 1 throughout). With θ0 = π/2 and φ0 = 0, we find that
the probe state at a later time t is given by [2]

ρ(t ) = 1

2

(
1 e−�uc e−iω0t

eiω0t e−�uc 1

)
,

where the decoherence factor (the “uc” denotes that this is for
the uncorrelated initial system-environment state) is given by

�uc =
∫ ∞

0
G[1 − cos(ωt )]

ωs−2

ωs−1
c

e− ω
ωc coth

(
ω

2T

)
dω. (9)

Notice that χ = 0 in this case. Consequently, only the first
term in Eq. (6) contributes to the quantum Fisher information.
Let us then look at the density matrix of the probe when initial

correlations are taken into account to see how the quantum
Fisher information changes.

B. Effect of initial system-environment correlations
on the quantum Fisher information

Instead of considering the initial system environment state
to be the product state ρ(0) ⊗ ρB, we now consider a more
realistic preparation of the initial probe state. We assume
that the probe is in contact with the environment for a suf-
ficiently long time such that equilibrium is reached. The
total system-environment state is then e−βH/Z0, where H
is the total probe-environment Hamiltonian, β is the in-
verse temperature for the total equilibrium state, and Z0 =
TrS,B[e−βH ]. This system-environment state takes into account
any system-environment correlations. A projective measure-
ment is then performed on the system at time t = 0 to
prepare the desired probe state |ψ〉 with θ0 = π/2 and φ0 =
0. The system-environment state just after this measure-
ment is then ρtot(0) = |ψ〉〈ψ | ⊗ 〈ψ |e−βH |ψ〉/Z , where Z =
TrB[〈ψ |e−βH |ψ〉]. Even though this is a product state, the
environment state is now different due to the previous cor-
relations between the system and the environment. It should
also be noted that this is a probabilistic state preparation
process; with probability TrS,B[|ψ〉〈ψ |e−βH ]/Z0 the desired
system state |ψ〉 is prepared. At the low temperatures that
we consider, this preparation probability is equal to 1

2 , which
also means that with probability 1

2 the state orthogonal to |ψ〉
is prepared. For both these initial states, the QFI is the same
since θ0 is the same [see Eq. (6)]. Taking the initial state to be
|ψ〉, the normalized state of the probe at time t is [49,51,71]

ρ(t ) = 1

2

(
1 e−�e−iχ (t )e−iω0t

e−�eiχ (t )eiω0t 1

)
, (10)

where

�(t ) = �uc(t ) + �corr(t ),

�corr(t ) = −1

2
ln

[
1 − sin2[φ(t )]

cosh2(ω0/2T )

]
,

tan[χ (t )] = tanh(ω0/2T ) tan[φ(t )],

and

φ(t ) =
∫ ∞

0

J (ω)

ω2
sin(ωt )dω.

For completeness, we have sketched how to derive this result
in the Appendixes. Note that �uc(t ) is the same decoher-
ence factor we had previously without taking into account
system-environment correlations, �corr(t ) is the correction to
the decoherence factor due to the initial correlations, and φ(t )
captures the effect of the time-dependent level shift induced
due to the initial correlations. At zero temperature, this level
shift is of particularly simple form, namely that χ (t ) = φ(t ).
Moreover, �corr(t ) = 0 at zero temperature. To be clear, we
should also point out that the dynamical factors �(t ) and χ (t )
are the same for both postmeasurement states (the state |ψ〉
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and the state orthogonal to it) at low temperatures. The im-
portant point to note is that now the information regarding the
environment parameters is encoded in both the decoherence
factor as well as the level shift. Consequently, now both terms
in Eq. (6) contribute, and, since both terms are guaranteed to
be positive, we can expect that the quantum Fisher informa-
tion will now increase. Before moving on to investigate this
increase for the estimation of different environment parame-
ters, let us note that approximately the same probe state ρ(t )
is obtained if, starting from the joint probe-environment equi-
librium state, a unitary operation on the probe is performed to
prepare the initial probe state at low temperatures [49,51,71].
Our results are then not just restricted to the case where a
projective measurement is used to prepare the initial probe
state. Moreover, if the initial probe state is prepared via a
unitary operation at temperatures that are not very low, the
initial probe state is mixed and a modified formalism (see
the Appendixes) can be used instead to compute the quantum
Fisher information.

C. Estimating the cutoff frequency ωc

While estimating ωc, we assume T = 0 to simplify our
results. Application of Eq. (6) requires us to find ∂�

∂ωc
and ∂χ

∂ωc
.

For our model, both of these can be found analytically. We
find that

∂�

∂ωc
= Gt sin [s tan−1(ωct )]

(1 + ω2
ct2)s/2 �̄[s].

Here �̄[x] denotes the usual gamma function. Since for low
temperature χ (t ) = φ(t ), we also find that

∂χ

∂ωc
= Gt[(1 + iωct )s + (1 − iωct )s]

2(1 + ω2
ct2)s �̄[s].

With these expressions in hand, we can evaluate the
quantum Fisher information. However, the quantum Fisher
information so evaluated will be a function of the interaction
time t between the probe and the environment. To find the
maximum possible Fisher information, we need to maximize
over the interaction time to find the optimal time of interaction
topt. It is this maximum value of the Fisher information that we
consider to illustrate the effect of the initial correlations on
our estimate of the cutoff frequency. In Fig. 1, we have shown
this optimized quantum Fisher information as a function of
the cutoff frequency in the weak system-environment cou-
pling regime for a sub-Ohmic environment with s = 0.5. The
solid, black curve, which takes into account the initial probe-
environment correlations, and the dashed, red curve, which is
obtained by not considering the initial correlations, are close
to each other, thereby signifying that the role played by the
initial correlations in this case is small. This is expected, since
in this weak coupling regime the role played by the initial
correlations is expected to be small. Moreover, the quantum
Fisher information is seen to decrease as the cutoff frequency
increases; this is simply a manifestation of the fact that, as the
cutoff frequency increases, more modes of the environment
contribute to the decoherence of the probe. As the coupling
strength is increased (see Fig. 2), it is clear that much better
estimates of the cutoff frequency can be obtained if the initial
correlations are taken into account. We have also investigated

FIG. 1. Optimized quantum Fisher information as a function of
the cutoff frequency. The solid line refers to the Fisher information
we get when taking into account the initial system-environment
correlations, while the dashed line is the Fisher information without
including the initial system-environment correlations. Throughout,
we are working in dimensionless units with h̄ = 1 and we have set
ω0 = 1. Here, s = 0.5, G = 0.01 at T = 0.

the effect of the initial correlations as the Ohmicity parameter
s is varied. As illustrated in Fig. 3, the biggest advantage of the
initial correlations is obtained for sub-Ohmic environments,
where an improvement of more than an order of magnitude
can be obtained; for Ohmic and super-Ohmic environments,
the increase in Fisher information is more modest. This is
expected since initial correlations are expected to play a larger
role with sub-Ohmic environments with their longer memory
time.

D. Estimating the coupling strength G

Having estimated the cutoff frequency, we now estimate
the system-environment coupling strength parameter G. To
evaluate the quantum Fisher information now, we need ∂�

∂G and
∂χ

∂G . We now find that, assuming T = 0,

∂�

∂G
=

{(
1 − 1

2

[
1

(1+iωct )s−1 + 1
(1−iωct )s−1

])
�̄[s − 1], s �= 1,

1
2 ln[1 + (ωct )2], s = 1

and

∂χ

∂G
=

{ 1
2i

[
1

(1−iωct )s−1 − 1
(1+iωct )s−1

]
�̄[s − 1], s �= 1,

tan−1(ωct ), s = 1.

These expressions are used in Eq. (6), and the optimized
Fisher information is then investigated as a function of the
coupling strength for different Ohmicity parameters, with and

FIG. 2. Same as Fig. 1, except that now G = 1.
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FIG. 3. Optimal value of the quantum Fisher information when
estimating ωc. The solid, black curve shows the Fisher information
for s = 0.1 when initial correlations are taken into account, while the
black diamonds show the Fisher information for the same value of
s but ignoring the initial correlations. The dashed, red curve shows
the Fisher information for s = 1 and taking into account the initial
correlations, while the red squares do not include the initial corre-
lations. Finally, the dot-dashed blue curve illustrates the behavior of
the Fisher information for s = 2 with initial correlations included,
and the blue circles ignore the initial correlations. Here we have used
G = 1 and T = 0.

without initial correlations. The results are shown in Fig. 4.
It is clear that, once again, for sub-Ohmic environments at
least, we obtain a drastic improvement of around two orders
of magnitude in the quantum Fisher information, and hence
our estimate regarding the coupling strength, if the initial
correlations are accounted for. With Ohmic and super-Ohmic
environments, the improvement, while undoubtedly present,
is less impressive.

E. Estimating the temperature T

There are considerable differences with the two previous
scenarios when we try to estimate the temperature. Since we

FIG. 4. Optimal value of the quantum Fisher information when
estimating the coupling strength G. The solid, black curve shows
the Fisher information for s = 0.1, taking into account the initial
correlations, while the black diamonds illustrate the behavior of the
Fisher information for the same s but without taking into account
the initial correlations. The red-dashed curve shows the Fisher infor-
mation for s = 1 and with initial correlations, while the red squares
do not include the initial correlations. Similarly, the dot-dashed, blue
curve corresponds to s = 3 with initial correlations accounted for and
the blue circles do not take into account the initial correlations. As
before, we are using dimensionless units with h̄ = 1 and we have set
ω0 = 1. We have used ωc = 5 and T = 0.

FIG. 5. Behavior of the maximum quantum Fisher information
versus the temperature T for a sub-Ohmic environment (s = 0.1)
taking into account the initial correlations (solid, black curve) and
without initial correlations (black diamonds). The dashed, red curve
shows the Fisher information for an Ohmic environment, including
the initial correlations, while the red squares do not include the initial
correlations. As always, we have set h̄ = 1 with ω0 = 1. Also, G = 1
and ωc = 5.

can no longer take T = 0, not only does �uc have a hyperbolic
tangent factor, but now �corr is also no longer equal to zero.
Moreover, χ (t ) is no longer simply equal to φ(t ). This means
we have to use the full expressions given below Eq. (10). We
now find that

∂�uc

∂T
=

∫ ∞

0

G[1 − cos(ωt )]

2T 2

ωs−1

ωs−1
c

e− ω
ωc cosh2

(
ω

2T

)
dω

and
∂�corr

∂T
= ω2

0

2

[
tanh

(
ω0
2T

)
sin2[φ(t )]

T 2
{

cosh2
(

ω0
2T

) − sin2[φ(t )]
}]

.

Also,

∂χ

∂T
= − ω2

0 tan[φ(t )]
[
1 − tanh2

(
ω0
2T

)]
2
{
1 + tanh

(
ω0
2T

)
tan[φ(t )]

}2
T 2

,

with

φ(t ) =
{ G

2i

[
1

(1−iωct )s−1 − 1
(1+iωct )s−1

]
�̄[s − 1], s �= 1,

G tan−1(ωct ), s = 1.

We evaluate the quantum Fisher information using these ex-
pressions and then, as before, optimize it over the time taken
for the probe and the environment to interact. The maximum
Fisher information as a function of the temperature to be
estimated is shown in Fig. 5. It is clear that, once again, the
initial correlations can substantially help us in improving our
estimates, and, as before, the advantage is most prominent for
sub-Ohmic environments.

IV. OPTIMAL MEASUREMENT

Until now, we have been discussing the quantum Fisher
information, which, given the probe state, dictates how well
we can estimate a given parameter if the most optimal mea-
surement is performed on the probe. Having found that the
quantum Fisher information is substantially enhanced due to
the initial correlations, we now turn to finding the optimal
measurement that needs to be performed on the probe state.
In estimation theory, if the probe gives us measurement result
y when we are trying to estimate the unknown measurement
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FIG. 6. Fisher information Fc(ωc ), optimized over the interaction
time t , obtained for a range of φ̂ from 0 to 2π when estimating ωc.
Here, we have G = 1, T = 0, and s = 0.1.

x, the measurement can be characterized by the likelihood
function P(y|x). Our aim is to then minimize the mean-
square error in our estimate. This is minimized by maximizing
the Fisher information, since the Cramer-Rao bound says
that

err(x) � 1

Fc(x)
, (11)

where Fc(x) is the Fisher information defined as

Fc(x) =
∫ (

∂2 ln[P(y|x)]

∂x2

)
P(y|x)dy. (12)

The Fisher information given in Eq. (12) obviously depends
on the measurements that we perform on the probe. The quan-
tum Fisher information is the maximum Fc(x) over all possible
measurements; therefore, for the optimal measurement, HQ(x)
and Fc(x) will coincide. We can use this to infer the measure-
ments that need to be performed on the probe. Since our probe
state, for the optimal quantum Fisher information, lies in the
equatorial plane of the Bloch sphere, our first guess is that
the optimum measurements are projective measurements with
the projectors given by

P̂1 = |�1〉〈�1|, P̂2 = |�2〉〈�2|,
with

|�1,2〉 = 1√
2
|0〉 ± eiφ̂

√
2
|1〉. (13)

Using these projectors and the probe state given by Eq. (10)
(where φ0 = 0), we find that

Fc(x)=
[

cos(ω0t + χ − φ̂)
(

∂�
∂x

) + sin(ω0t + χ − φ̂)
(

∂χ

∂x

)]2

e2� − cos2(ω0t + χ − φ̂)
.

(14)
This Fisher information depends on the parameter we are
estimating x, the angle φ̂, and the interaction time t . If φ0 �= 0
for the initial state, we obtain a similar expression but with
χ (t ) replaced by χ (t ) + φ0. Suppose now that we estimate the
cutoff frequency ωc. We can maximize the Fisher information
Fc(ωc) over time to find the optimal interaction time. With
this interaction time, we can consider the behavior of Fc(ωc)
as a function of ωc and the angle φ̂. Results are illustrated
in Fig. 6, which clearly shows the dependence of Fc(ωc)

FIG. 7. Comparison of Fc(ωc ), optimized over the interaction
time t , and the quantum Fisher information for the estimation of
ωc. The solid line represents Fc(ωc ), while the circles represent the
quantum Fisher information. Here, we have used G = 1, T = 0, and
s = 0.1. The inset shows the same comparison as the main graph,
except that we are now estimating the coupling strength G and
ωc = 5.

on φ̂. Our goal then is to maximize the Fisher information
with respect to the angle φ̂. Observing Eq. (14), it is clear that
if χ = 0, then φ̂ = ω0t is the optimal value of φ̂, and Fc(x)
reduces to the quantum Fisher information without taking into
account the initial correlations. However, if χ �= 0, a simple,
albeit tedious, optimization leads us to the conclusion that

φ̂ = ω0t + χ − tan−1

[(
∂χ

∂x

)
(e2� − 1)(
∂�
∂x

)
e2�

]
(15)

is the angle φ̂ that gives us the maximum Fisher information
Fc(x). Using this value of φ̂ in Fc(x) [see Eq. (14)], we find
that Fc(x) so found reduces to the quantum Fisher information
given in Eq. (6). Very importantly, as is clear from Eq. (15),
the optimum measurements that need to be performed depend
on the initial correlations. We have numerically checked these
analytical results for the optimal measurements in Figs. 7
and 8, which show a comparison between the classical Fisher
information with φ̂ given by Eq. (15) and the quantum Fisher
information for the estimation of the cutoff frequency ωc, the
coupling strength G, and the temperature T . Since the solid
lines and the circles overlap, our measurements are indeed
optimal.

FIG. 8. Same as Fig. 7, except that we are now estimating the
temperature T , and ωc = 5.
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V. USING CONTROL PULSES TO FURTHER IMPROVE
THE QUANTUM FISHER INFORMATION

As we have seen, the interaction of the probe with its en-
vironment allows us to estimate the environment parameters.
To further improve our estimates, we can think of applying
suitable control fields to the probe while it is interacting with
the environment [9,72]. Such control fields can effectively
modulate the interaction of the probe with the environment,
thereby possibly allowing the probe to collect more infor-
mation about the environment before the probe completely
decoheres. For our simple two-level system undergoing
decoherence due to a harmonic-oscillator environment, we
will consider the periodic application of π pulses to the probe.
These π pulses effectively keep on switching the sign of the
probe-environment interaction Hamiltonian. To take this into
account mathematically, it is useful to introduce the function

γ (s, n) =
n∑

j=0

(−1) j�(s − t j )�(t j+1 − s), (16)

where n is the number of pulses, s ∈ [0, t], t j = jt
n+1 , and �(x)

is defined as

�(x) =
{+1, x > 0,

−1, x < 0.

The modulated system-environment Hamiltonian can be writ-
ten as

H=ω0

2
γ (s, n)σz +

∑
k

ωkb†
kbk +

∑
k

γ (s, n)σz(gkb†
k + g∗

kbk ).

(17)
This modified Hamiltonian leads to a different decoherence

factor. It is true that the applied pulses change the probe
Hamiltonian. However, this does not change the QFI since
the probe Hamiltonian does not depend on the environment
parameters. If one goes through the derivation presented in
Sec. II again with the modulated system-environment Hamil-
tonian, we again obtain Eq. (6), except with a modified
decoherence rate � and a modified level shift χ . The deco-
herence rate is now

�uc(t ) =
∫ ∞

0
J (ω)Fn(ω, t )dω, (18)

where

Fn(ω, t ) = tan2

(
ωt

2n + 2

)(
1 + (−1)n cos(ωt )

ω2

)
.

Also, we now find that

φ(t ) = 1

2

∫ ∞

0
Gωs−2ω1−s

c e− ω
ωc Mn(ω, t )dω, (19)

where

Mn(ω, t ) = (−1)n+1 sin(ωt ) + 2
n∑

j=1

(−1) j sin

(
jωt

n + 1

)
.

FIG. 9. Optimum value of the quantum Fisher information for
the estimation of ωc for a sub-Ohmic environment with s = 0.1. The
dashed, red line refers to the QFI we get while taking into account
the initial system-environment correlations, without control pulses,
while the ◦ markers indicate the quantum Fisher information we get
without taking these correlations into account and without control
pulses. We then apply periodic pulses in both scenarios. We get the
blue crosses when we do not take into account the initial correlations
but apply control pulses and we get the solid, black line when we take
into account the initial system-environment correlations with control
pulses applied as well. As always, we have set h̄ = 1 with ω0 = 1.
Here we have used G = 1 and T = 0.

�corr(t ) and χ (t ) are then modified accordingly since

�corr(t ) = −1

2
ln

[
1 − sin2[φ(t )]

cosh2(ω0/2T )

]
,

tan[χ (t )] = tanh(ω0/2T ) tan[φ(t )]

are still valid. With these modified factors at hand, �(t ) and
χ (t ) can easily be calculated. We then look to again estimate
ωc, G, and T . Our aim will be to optimize the quantum Fisher
information by modifying the total interaction time of the
probe with the environment as well as the number of pulses
to be applied during this interval. Results for the estimation of
the cutoff frequency ωc are shown in Fig. 9 for a sub-Ohmic
environment, since this is the scenario in which the initial
correlations play the most significant role. The magenta cir-
cles show the optimized quantum Fisher information if initial
correlations are not considered, and no pulses are applied
either. The dashed, red curve shows the drastic improvement
in the quantum Fisher information when initial correlations
are taken into account. With applied pulses, the improvement
is even more drastic (see the solid, black curve). In short,

FIG. 10. Same as Fig. 9, except that we are now estimating the
coupling strength G, with ωc = 5.
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FIG. 11. Same as Fig. 9, except that we are now estimating the
temperature T , with ωc = 5.

orders of magnitude improvement in the Fisher information
is obtained if initial correlations are taken into account and
control pulses are also applied. Similar results hold when the
coupling strength G and the temperature T are estimated (see
Figs. 10 and 11). However, for the estimation of temperature,
we find that the improvement in the estimation of the tem-
perature using pulses is much more modest; taking the initial
correlations into account plays a far more important role.

VI. CONCLUSION

In conclusion, we have found an exact expression for the
quantum Fisher information for a two-level quantum probe
that is used to estimate an arbitrary environment parameter,
valid if the probe is undergoing pure dephasing. We make
no assumption in this expression regarding the form of the
environment or the probe-environment interaction strength.
This expression is able to take into account the effect of any
probe-environment correlations that existed before the probe
state preparation, and shows a possible increase in the quan-
tum Fisher information and hence an increase in the precision
of our estimates. We then applied this general expression to
the case of a probe interacting with an environment consist-
ing of a collection of harmonic oscillators. We showed that,
especially for relatively strong probe-environment coupling
strength with sub-Ohmic environments, the initial correlations
between the probe and the environment can greatly improve
the quantum Fisher information. In this sense, both the cor-
relations that develop between the probe and the environment
after the probe state preparation as well as the correlations
that exist before the probe state preparation are useful for
the estimation of the environment. We then discussed which
measurements on the probe actually need to be performed
for the harmonic-oscillator environment to obtain the most
precise estimates. Importantly, these optimal measurements
also depend on the initial correlations. Finally, we applied
control pulses to the probe so as to affect the way that the
probe gets correlated with the environment after the probe
state preparation. We found that, by applying suitable control
pulses, the quantum Fisher information, as a result of both
the initial correlations and the control pulses, is increased by
orders of magnitude. Our results should be very useful for
quantum noise sensing.
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APPENDIX A: QUANTUM FISHER INFORMATION
WHEN THE INITIAL PROBE STATE IS MIXED

If the initial probe state is mixed (as would be the case
if the initial probe state is prepared via a unitary operation
performed on the probe), the state of the probe can be written
as [71]

ρ(0) =
(

cos2
(

θ̃0
2

)
1
2 sin θ̃0e−iφ0 e−�0

1
2 sin θ̃0eiφ0 e−�0 sin2

(
θ̃0
2

)
)

, (A1)

where �0 > 0 takes into account the fact that the initial probe
state is mixed. Note that θ̃0 is not necessarily a Bloch angle
here. It follows that, at time t ,

ρ(t ) =
(

cos2
(

θ̃0
2

)
1
2 sin θ̃0e−i�(t )e−�(t )

1
2 sin θ̃0ei�(t )e−�(t ) sin2

(
θ̃0
2

)
)

, (A2)

with �(t )=ω0t+χ (t ) + φ0 and �(t )=�uc(t )+�0+�corr(t ).
The eigenvalues are

ρ1,2 = 1

2
[1 ± F̃ (t )],

with

F̃ (t ) =
√

1 + sin2θ̃0(e−2� − 1),

and the corresponding eigenvectors are

|ε1(t )〉 = cos

(
θ̃

2

)
|0〉 + ei�(t ) sin

(
θ̃

2

)
|1〉, (A3)

|ε2(t )〉 = sin

(
θ̃

2

)
|0〉 − ei�(t ) cos

(
θ̃

2

)
|1〉, (A4)

where

sin θ̃ = F (t )−1 sin θ̃0e−�(t ),

cos θ̃ = F (t )−1 cos θ̃0.

We then find the quantum Fisher information to be

HQ(x) = sin2 θ̃0

e2� − 1

(
∂�

∂x

)2

+ sin2 θ̃0e−2�

(
∂χ

∂x

)2

. (A5)

This expression is analogous to what has been found for the
case where the initial probe state is pure.

APPENDIX B: DERIVATION OF THE TIME EVOLUTION
OF THE PROBE DENSITY MATRIX

For our pure dephasing model, only the off-diagonal ele-
ment of the density matrix, [ρ(t )]10, needs to be found as the
diagonal elements do not change with time and the other off
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diagonal is related by complex conjugation. The total system-
environment Hamiltonian is [49,51]

HS = ω0

2
σz, HB =

∑
k

ωkb†
kbk,

HSB = σz

∑
k

(g∗
kbk + gkb†

k ).

First, we transform to the interaction picture to obtain

HI (t ) = ei(HS+HB )t HSBe−i(HS+HB )t

= σz

∑
k

(g∗
kbke−iωkt + gkb†

keiωkt ). (B1)

We next find the time-evolution operator UI (t ) corresponding
to HI (t ) using the Magnus expansion to be

UI (t ) = exp

{
σz

∑
k

[b†
kαk (t ) − bkα

∗
k (t )]/2

}
, (B2)

with

αk (t ) = 2gk (1 − eiωkt )

ωk
.

The total unitary time-evolution operator is then U (t ) =
e−iω0σzt/2UI (t ). Now, the off-diagonal element can be written
as

[ρ(t )]10 = TrS,B[U (t )ρ(0)U †(t )|0〉〈1|]. (B3)

This depends on the initial system-environment state. If we
consider the initial total state to be of the form ρtot = ρ(0) ⊗
e−βHB/ZB, with ρ the initial state of the probe and ZB =
TrB[e−βHB ], then we can evaluate the trace over the system
and the environment to obtain [2]

[ρ(t )]10 = [ρ(0)]10eiω0t e−�uc(t ). (B4)

This is the usual result. However, we aim to include the initial
correlations. To this end, we suppose that the probe and the
environment have reached the joint equilibrium state propor-
tional to e−βH . The quantum probe state is then prepared at
t = 0. The joint probe-environment state is then written as

ρtot(0) = � e−βH�†

Z
, (B5)

where Z is the normalization factor and � is an operator
which describes the probe preparation procedure—it can be a
projection operator or a unitary operator. This initial state can
then be used to find the time dependence of the off-diagonal
elements. Using a unitary transformation that “displaces” the
environment harmonic oscillators, it is possible to show that
now

[ρ(t )]10 = [ρ(0)]10eiω0t e−�uc(t )X (t ), (B6)

with

X (t ) =
∑

l〈l|�†|0〉〈1|�|l〉e−i(−1)l φ(t )e−βω0(−1)l /2∑
l〈l|�†|0〉〈1|�|l〉e−βω0(−1)l /2

.

Assuming that � is a projection operator, that is, � = |ψ〉〈ψ |,
we can further simplify and write X (t ) in polar form to obtain

[ρ(t )]10 = [ρ(0)]10eiω0t eiχ (t )e−�(t ), (B7)

where �(t ) and χ (t ) are defined below Eq. (10) in the main
text. We get the same result at low temperatures if � is instead
a unitary operator which tries to prepare the same initial probe
state.
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