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Vacuum radiation pressure fluctuations on atoms
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Recent work has shown that the stress tensor components, such as energy density or pressure, of a quantum
field can be subject to large vacuum fluctuations. The energy density or pressure must be averaged in time
before the fluctuations can be finite, and the probability of a large fluctuation depends upon the details of the
averaging and can be much larger than that predicted by a Gaussian distribution. This paper explores vacuum
radiation pressure fluctuation on Rydberg atoms and their possible observable effects. The excitation and de-
excitation of a Rydberg atom provide an explicit model for the time averaging of the radiation pressure, as
the atomic polarizability becomes time dependent, first increasing and then decreasing again by several orders
of magnitude. This switched polarizability can induce large vacuum pressure fluctuations, which can in turn
temporarily transfer linear momentum to the atom and cause a transient recoil which might be observable.
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I. INTRODUCTION

Recent work has shown that components of the stress
tensor for a quantized field can exhibit large vacuum fluctu-
ations [1–6]. The relevant quantum operator must be averaged
in time or in space and time, and the resulting probability
distribution is sensitive to the details of this averaging, but
typically decreases as an exponential of a small fractional
power. Hence the probability of a large vacuum fluctuation
can be much larger than would be predicted by the Gaussian
distribution which governs random processes. This reflects the
fact that vacuum fluctuations exhibit strong correlations. The
averaging in time, or space and time, may be viewed as arising
from the details of the measurement of the stress tensor.

Quantum stress tensor fluctuations can lead to passive fluc-
tuations of the gravitational field, and are hence a type of
quantum gravity effect which might play a role in the early
universe [7,8]. Analogous effects might be observable in con-
densed matter system, such as a quantum density fluctuations
in a fluid [9].

In this paper, a specific model for the measurement of
vacuum radiation pressure on an atom will be discussed. It in-
volves a Rydberg atom which is excited to a high energy level
by a short laser pulse, and later de-excited by another pulse.
During this time, the polarizability of the atom can increase by
many orders of magnitude before decreasing again. This time
dependent polarizability acts to average the radiation pressure
operator in time [10] resulting in potentially observable veloc-
ity fluctuations of the atom.

The outline of this paper is as follows: We first review
previous results on the fluctuations of linear quantum field
operators is Sec. II A, and then discuss the significance of
measurements in finite intervals in Sec. II B. The resulting
probability distributions for the stress tensor operators are
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reviewed in Sec. II C. In Sec. II D we introduce an averaging
function depending upon two timescales which will be used
later in the paper. The dependence of the probability distribu-
tion upon the details of the averaging is discussed in Sec. II E,
and in Sec. II F we review the case of radiation pressure
fluctuations on atoms. In Sec. III our model for switching the
polarizability of an atom is presented, and estimates for both
the expected atomic speed fluctuations and the probability
of large fluctuations are presented. The underlying physical
picture and our key assumptions are analyzed in Sec. III C.
The results of the paper are summarized in Sec. IV.

Lorentz-Heaviside units in which h̄ = c = 1 are used
throughout the paper, except as otherwise noted.

II. VACUUM FLUCTUATIONS OF QUANTUM
FIELD OPERATORS

A. The case of linear field operators

It is well known that the vacuum fluctuations of a linear
field operator, such as the electric field, satisfy a Gaussian
probabilitiy distribution. However, the operator must first be
averaged in either time or space with a test or sampling
function. The use of test functions has long been used in
rigorous approaches to quantum field theory as a formal tool
to obtain well-defined operators [11]. However, we may also
view these functions as describing the physical effects of a
measuring apparatus. Let f (t ) denote a temporal sampling
function which vanishes as t → ±∞ and is normalized so that

∫ ∞

−∞
f (t ) dt = 1. (1)

Now let E (x, t ) be one cartesian component of the free electric
field operator, and define its time average by

Ē =
∫ ∞

−∞
f (t ) E (x, t ) dt . (2)
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Now Ē will undergo Gaussian fluctuations around a mean
value of 〈0|Ē |0〉 = 0 with a finite variance of

σ = 〈0|Ē2|0〉. (3)

If τ is the characteristic duration of the sampling, then σ ∝
τ−4, with the constant of proportionality dependent upon the
detailed functional form of f (t ). As τ → 0, the variance
grows, σ → ∞. The mathematical reason for this is that
smaller values of τ cause higher frequency modes to give
the dominant contribution to Ē . The physical reason is that
measurements on shorter timescales probe larger vacuum fluc-
tuations. Here we have concentrated on time averaging, but
averaging in space alone or in both space and time produce
similar results for linear field operators.

The vacuum fluctuations of the electric field can have
observable effects. Welton [12] showed that the dominant
contribution to the Lamb shift may be estimated by a simple
argument involving the effects of electric field fluctuations on
energy levels of the hydrogen atom. It was argued in Ref. [13]
that vacuum electric field fluctuations will slightly increase
the probability of barrier penetration by a charged particle,
and that a simple estimate using the time-averaged electric
field operator agrees with a one-loop perturbation theory cal-
culation [14].

B. Measurements in a finite interval

It is often convenient to select simple functions, such
as Lorentzians or Gaussians for the sampling functions.
However, these have tails which strictly correspond to a mea-
surement which began in the infinite past and extends to the
infinite future. A better choice is a function which is strictly
zero outside of a finite interval, a function with compact sup-
port. Such a function is necessarily nonanalytic, but can be
taken to have all of its derivatives finite, a C∞ function. Some
examples of compactly supported functions are constructed
and discussed in Refs. [3,5]. Here we consider such a function
of time, f (t ), with duration of the order of τ , the sampling
time.

A key feature of compactly supported functions is the
rate at which their Fourier transforms decay. Let the Fourier
transform of f (t ) be

f̂ (ω) =
∫ ∞

−∞
dte−iωt f (t ). (4)

If f (t ) is a compactly supported C∞ function, then f̂ (ω) will
fall more rapidly that any power of ω, but more slowly than
an exponential function as |ω| → ∞. Here we take both f (t )
and f̂ (ω) to be real, even functions, and consider a class of
compactly supported functions for which

f̂ (ω) ∼ γ e−β|ωτ |η , |ω| → ∞ (5)

for some constants γ , β > 0, and 0 < η < 1. (Note that the
parameter η is denoted by α in Refs. [3,5], but in this paper we
reserve α to denote atomic polarizability.) In all cases, f̂ (ω)
decreases more slowly than exponentially for large |ω|. The
value of η = 1/2 is of physical interest. A simple electrical
circuit is given in Ref. [3] in which the current increases as a
function of time with η = 1/2 after a switch is closed.

The value of η is linked to the rate of switch-on and
switch-off of f (t ); the more sudden the switching, the smaller
will be the value of η, and the more important will be the
contribution of high-frequency modes. This contribution will
play an important role in the probability of large vacuum
fluctuations for quadratic operators.

C. Probability distributions for stress tensor operators

The case of operators which are quadratic in the fields,
such the energy density and other components of the stress
tensor is more complicated, and has been treated in several
recent papers [1–5]. Here the operator must be averaged in
time in order to have finite fluctuations. Additional averaging
in space is optional and is discussed in Ref. [5]. Let T (t, x) be
a normal ordered quadratic operator, and define its space and
time average T̄ by

T̄ =
∫ ∞

−∞
dt f (t )

∫
d3x g(x) T (t, x). (6)

Here g(x) is a spatial sampling function of characteristic width
	 normalized so that

∫
d3x g(x) = 1. Its spatial Fourier trans-

form is

ĝ(k) =
∫

d3xeik·x g(x) (7)

and satisfies ĝ(0) = 1. The limit of time averaging alone at
spatial point x0 corresponds to g(x) = δ(x − x0) and ĝ(k) = 1
for all k.

The averaged quadratic operator may be expanded in nor-
mal modes in a plane wave basis as

T̄ =
∑

i j

(Ai j a†
i a j + Bi j ai a j + B∗

i j a†
i a†

j ). (8)

Here a†
i and ai are the creation and annihilation operators for

mode i of a bosonic field. Quantization in a finite volume
is assumed, so the modes are discrete. The Ai j and Bi j are
symmetric matrices which are proportional to f̂ , and satisfy

Ai j ∝ (ωi ω j )
p/2−1 f̂ (ωi − ω j ) ĝ(ki − k j ),

Bi j ∝ (ωi ω j )
p/2−1 f̂ (ωi + ω j ) ĝ(ki + k j ), (9)

where p is an odd integer which depends upon the dimensions
of the operator T̄ . For example, for T = ϕ2, the square of a
massless scalar field, p = 1, For T = ϕ̇2, or a typical compo-
nent of the stress tensor for a massless field, p = 3. In Sec. II F
we will consider operators with higher time derivatives, and
hence larger values of p.

One approach to finding the probability distribution for
the vacuum fluctuations of T̄ is to study the behavior of the
moments,

μn = 〈T̄ n〉, (10)

where the expectation value is in the vacuum state. Because
T̄ is normal ordered, the first moment vanishes, μ1 = 0. The
probability distribution has equal area on either side of T̄ = 0,
so a given measurement is equally likely to return a negative
value as a positive value, even for quantities such as energy
density which are non-negative in classical physics. This does
not mean that the distribution is symmetric. For quantities
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such as the energy density, the odd moments are nonzero and
the distribution is skewed. The width of the distribution is
described by the second moment, or variance,

μ2 = 2
∑

i j

Bi j B∗
ji. (11)

The fact that ωi + ω j � 0, combined with the decrease of
f̂ for increasing values of its argument, guarantees that the
variance is finite so long as a time average over a nonzero
interval has been performed.

We can also understand now why time averaging is essen-
tial for quadratic operators. If there is no time averaging, so
f̂ (ωi + ω j ) = 1, we see from Eq. (9) that Bi j is not suppressed
for pairs of modes where ki = −kj and μ2, and receives a
divergent contribution from such modes.

A dimensionless measure of the value of the averaged
operator T̄ is

x = τ p+1 T̄ . (12)

We seek the probability distribution P(x), and especially its
asymptotic form for x 	 1. This form is determined by the
behavior of the moments μn for large n. The general moment
μn may be expressed as a mode sum of an nth degree polyno-
mial in the Ai j and Bi j , and hence in the Fourier transform, f̂ .
If the asymptotic form in Eq. (5) holds, and there is no spatial
averaging, then [3]

μn ∝ (p n/η)! (13)

for large n. This rapid growth of the moments leads to a slow
decrease in P(x) for large x. Specifically,

P(x) ∼ c0 xbe−axc
, (14)

where the constants c0, b, a, and c depend upon the choice of
sampling function. In particular, with only time averaging, we
have

c = η

p
(15)

and

b = 2 − η

p
− (η + 1). (16)

The most crucial of these constants is c, and its relatively small
value describes the slow rate of decrease of P(x). For example,
a stress tensor component such as energy density, with p = 3,
sampled with a temporal sampling function with η = 1/2, will
have c = 1/6, implying a relatively large probability for large
fluctuations.

The vacuum is a state with zero total energy, but fluctu-
ations in the energy contained within finite regions of space
or time are possible. We can view these fluctuations as a
temporary loan which must be returned within a finite time,
possibly through anticorrelated fluctuations. The timescale for
the return of energy to the vacuum is inversely related to the
magnitude of the energy. This is enforced by the probability
distribution, Eq. (14). For a fixed magnitude of the averaged
energy density, the dimensionless variable x increases with
increasing τ , causing P(x) to decrease. Thus the probability
of finding a given value of the averaged energy density T̄
decreases with increasing averaging time.

The case of averaging both in time and in space is treated
in Ref. [5], and here we summarize some of the key results.
Now we have a temporal sampling function of width τ and a
spatial function g(x) of characteristic radius 	. Here we are
interested in the case where 	 
 τ , but 	 is nonzero. The
regime where only the temporal sampling is significant. arises
if x, still defined by Eq. (12), is not too large. If 1 
 x � x∗,
where

x∗ =
(

2

a

)p/η (τ

	

)p
, (17)

then P(x) is approximately given by Eq. (14) with c given by
Eq. (15). However, for x � x∗, P(x) makes a transition to a
regime with the same functional form, but with c given by

c = η

p − 2
. (18)

Now P(x) falls more rapidly than in the worldline approxima-
tion, where spatial averaging is ignored, so the effect of spatial
averaging is to somewhat decrease the probability of large
fluctuations. However, with η < 1, the decay is still slower
than exponential.

The results in Refs [3,5], which have just been sum-
marized, were obtained by a study of the behavior of the
moments. There is an alternative approach to finding P(x)
which involves diagonalization of the operator T̄ by a Bo-
golubov transformation. This allows the determination of the
eigenstates and eigenvalues of this operator. The probability
of finding a given eigenvalue in a measurement is the squared
overlap of the corresponding eigenstate with the vacuum,
which yields P(x). In practice, this procedure needs to be
performed numerically in a system with a finite number of
modes. This was done in Ref. [4] for the worldline case and
in Ref. [6] for the spacetime-averaged case, and the results are
in good agreement with those of the moments approach.

D. Sampling functions with two timescales

In Sec. II B we discussed sampling functions of time which
depend upon a single timescale, τ . Now we consider functions
which depend upon two different scales, τ , which is the char-
acteristic rise or decay time, and a potentially much longer
duration, t0. Let F (t ) be a function which varies from values
of zero to one on a timescale of the order of τ , so F (t ) = 0 for
t < 0 and F (t ) → 1 for t � τ . An explicit example is

F (t ) = e−τ/t , t > 0. (19)

We can define a two-timescale sampling function by

f2(t ) = C2

t0
F (t + t0/2) F (t0/2 − t ). (20)

This function switches on at t = −t0/2 and off again at t =
t0/2, and hence has a total duration of t0 � 2τ . The rise and
fall time is characterized by τ . If F (t ) has the form given in
Eq. (19), then τ is the time required for F (t ) to increase from
zero to 1/e of its final value, so the total switch-on or switch-
off time for f2(t ) will be a few times τ . An example of such
a function is illustrated in Fig. 1. The switch-on region of the
same function is shown in more detail in Fig. 2.
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FIG. 1. A two-timescale sampling function f2(t ), with a duration
of t0 and switch-on and switch-off times of the order of τ . Here t0 =
50 τ , and f2(t ) was constructed using Eqs. (19) and (20).

We can define a single-timescale sampling functions, such
as those used in Sec. II B, by setting t0 = 2 τ and writing

f1(t ) = C1

2τ
F (t + τ ) F (t − τ ). (21)

Here C1 and C2 are constants defined so that these functions
are normalized as in Eq. (1). Note that if t0 	 2τ , then C2 ≈ 1.

The Fourier transforms of these temporal functions, F̂ (ω),
f̂1(ω), and f̂2(ω), are defined as in Eq. (4), and are related
to one another. In particular, Eq. (20) and the convolution
theorem imply

f̂2(ω) = C2

2πt0

∫ ∞

−∞
dω1 F̂ (ω1) F̂ (ω1 + ω)eiω1t0 . (22)

Note that the exponential factor will suppress contributions to
the integral from values of ω1 	 1/t0. Hence, if ω 	 1/t0, we
have F̂ (ω1 + ω) ≈ F̂ (ω) and

f̂2(ω) ≈ C2

2πt0
F̂ (ω)

∫ ∞

−∞
dω1 F̂ (ω1)eiω1t0 = C2

t0
F (t0) F̂ (ω).

(23)
If we set t0 = 2τ , then the above result gives the asymptotic
form of f̂1(ω) for large ω. We see that F̂ (ω), f̂1(ω), and
f̂2(ω) all have the same asymptotic functional forms, given by
Eq. (5) with the same values of β and η, but different values
of γ .

Because f1(t ) and f2(t ) are normalized sampling functions
which satisfy Eq. (1), Eq. (4) implies that f̂1(0) = f̂2(0) = 1.
However, F (t ) is not normalizable, so we have F̂ (ω) → ∞

FIG. 2. Here the switch-on of the function f2(t ) with t0 = 50 τ is
illustrated in detail.

as ω → 0. Because F (t ) is a dimensionless function, F̂ (ω)
has dimensions of time and is hence proportional to τ . For
ω 	 1/τ ,

F̂ (ω) ≈ γ0 τe−β|ωτ |η , (24)

where γ0 is a constant of order one. If t0 	 τ , where C2 ≈ 1
and F (t0) ≈ 1, Eq. (23) becomes

f̂2(ω) ≈ γ0
τ

t0
e−β|ωτ |η . (25)

E. The parameters η and β

The rate of decay of the Fourier transform of a sampling
function for large ω is given by Eq. (5), which effectively
defines the parameters η and β. Both of these parameters play
important roles in our discussion, as the probability distri-
bution describing large fluctuations is sensitive to both. The
greater sensitivity is to the value of η, which appears in the
power of ω in the exponential in f̂ (ω), and in the power of
x in P(x), so smaller values of η are linked to more slowly
decreasing f̂ (ω) and to a greater probability of large fluctu-
ations. The same is true to a lesser degree of the value of β,
which appears as a coefficient inside the exponential functions
in both f̂ (ω) and P(x).

The value of η is associated with the functional form of
f (t ) near the switch-on time, which we take here to be t = 0.
The class of compactly supported functions, whose Fourier
transforms have the asymptotic form in Eq. (5), have the
switch-on behavior

f (t ) ∼ t−μe−w t−ν

, t → 0+, (26)

where ν = η/(1 − η), w, and μ are constants determined by
η. [See Eqs. (50)–(54) in Ref. [3]]. In particular, η = 1/2 is
associated with ν = 1, as illustrated in Eq. (19). As noted
above, the functions F (t ), f1(t ), and f2(t ), related by Eq. (20),
or similar relations, all have the same values for η and β.
Recall that the electrical model in Ref. [3] creates a switch-on
described by a function with η = 1/2. The value of β can
vary in this model, but is determined by the parameters of the
specific circuit.

We can better understand the role of the parameter β from
the study of a class of functions discussed by Johnson [15] of
the form

fJ (t ) = Ce−β2 [1−(t/τ )2]1−a
, (27)

where a > 1, −τ < t < τ , and C is a normalization constant.
Note that the switching behavior is similar to that in Eq. (26),
with ν = a − 1, but without the factor of t−μ. Johnson evalu-
ates the asymptotic form for the Fourier transform f̂ j (ω) using
a saddle point approximation, and finds for the case a = 2 that

f̂J (ω) ∝ ω−3/4e−β
√

τ ω, ω 	 1/τ. (28)

This shows that a = 2 corresponds to η = 1/2, and in this
case, the parameter β in Eq. (27) is the same as that in
Eq. (5). Note that f̂J (ω) contains a factor of ω−3/4 which
does not appear in Eq. (5), and fJ (t ) lacks the factor of t−μ

which appears in Eq. (26), which show that fJ (t ) and f (t )
are somewhat different functions. Nonetheless, they share the
same exponential factor in their Fourier transforms.
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FIG. 3. The normalized function fJ (t ) is plotted for the case a =
2, or η = 1/2, for three values of β.

Here we assume that the β-dependence of fJ (t ) is a rea-
sonable guide to understanding that of f (t ). In Fig. 3, fJ (t ) is
plotted for the case a = 2 for three values of β. We can see
that smaller β leads to more rapid switch-on and switch-off,
as one might expect from the increased contribution of high-
frequency Fourier components as β decreases.

F. Vacuum radiation pressure fluctuations on atoms:
Probability distribution

Vacuum radiation pressure fluctuations on a perfect mirror
could in principle be computed from those of the appropriate
components of the electromagnetic stress tensor. However, in
the present paper we are concerned with atoms, which scat-
ter longer wavelengths of light by Rayleigh scattering. The
vacuum radiation pressure fluctuations on such polarizable
particles were treated in Sec. V of Ref. [10], and the results
will be summarized here. The Rayleigh cross section for the
scattering of light with angular frequency ω from a particle
with a static polarizability α is

σR = α2

6 π
ω4. (29)

The momentum flux in the incident beam is given by E × B,
where E and B are the quantized electric and magnetic field
operators. The net momentum carried by the scattered radia-
tion vanishes, so the the force in the z-direction on the particle
may be written as

F z = σR (E × B)z = α2

6 π
Rz, (30)

where

Rz = (Ë × B̈)z (31)

may be viewed as the radiation pressure operator for polariz-
able particles. Note that the factor of ω4 in the Rayleigh cross
section has resulted in two time derivatives on each of the
electromagnetic fields. As a consequence, Rz is an operator
with p = 7.

We may average F z in time by letting α = α(t ) and in-
tegrating along the worldline of the atom. A specific model
for the origin of this time dependence will be presented in

the next section. We take the time dependence to be propor-
tional to the two-scale sampling function, f2(t ), discussed in
Sec. II D with t0 	 τ . Here we set α2(t ) = α2

0 f2(t ), where α2
0

is the time average of α2(t ) The averaged force now becomes
F̄ z = α2

0 R̄z/(6π ), where

R̄z =
∫

f2(t ) Rz(t ) dt . (32)

The probability distribution for large fluctuations of R̄z, and
hence of F̄ z, is given by Eqs. (14), (15), and (16), with p = 7
and η determined by α2(t ).

Let x = τ 8 R̄z be the dimensionless measure of the quan-
tum radiation pressure fluctuations. For 1 
 x < x∗, its
probability distribution has the asymptotic form in Eq. (14),
with c = η/7 and b = −(8η + 5)/7 from Eqs. (15) and (16).
The remaining constants in Eq. (14) may be found from Eqs.
(100) and (101) in Ref. [3] with α → η, B0 = 4, and B =
1/(6π2). [See Eq. (35) in Ref. [10].] In addition we now set
γ = γ0 τ/t0 and f (0) → τ f2(0) ≈ τ/t0. The last factor of τ

arises because Ref. [3] uses units where τ = 1, so f (0) would
be τ f (0) in general units. Thus we find

a = 2β
( τ

3π t0

)−η/7
(33)

and

c0 = γ 2
0

128 π2 (β η)8

( τ

3π t0

)2(4η−7)/4
. (34)

If we set η = 1/2 then the constants in Eq. (14) become

c = 1

14
, b = −9

7
, a = 2β

( τ

3π t0

)− 1
14

, (35)

and

c0 = 2 γ 2
0

π2 β8

( τ

3π t0

) 2
7
. (36)

Now the asymptotic probability density has the form

P(x) = c0 x
9
7 e−a x

1
14

. (37)

If p = 7 and η = 1/2, the upper limit for the validity of the
worldline approximation, given by Eq. (17) and the value of a
in Eq. (35), becomes

x∗ = β−14
( τ

3π t0

) (τ

	

)7
. (38)

For x � x∗, the effects of a finite spatial averaging region
become important. The probability distribution still has the
asymptotic functional form given in Eq. (14), but with dif-
ferent values of the constants, especially a larger value of c
compared to worldline regime, x � x∗. The transition between
the two regimes has been studied in Refs. [4,6] for the p = 3
case.

It will be useful to have a measure of the actual probability
of a fluctuation of the order of magnitude of a given value of
x. For this purpose, we define the quantity

P (x) =
∫ x

1
2 x

P(y) dy, (39)
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which is the probability of finding an outcome in the interval
1
2 x � y � x. Use the form of P in Eq. (37) and define u = y

1
14

to write

P (x) = 14c0

∫ u2

u1

u−5e−a u du ≈ 14 c0 u2
−5e−a u �u, (40)

where u1 = ( 1
2 x)

1
14 , u2 = x

1
14 , and �u = u2 − u1 ≈

0.0483 u2. This leads to

P (x) ≈ 0.676 x P(x) = 0.676 c0 x− 2
7 e−a x

1
14

. (41)

Recall that in Sec. II C we discussed how the probability
distribution enforces repayment of an energy loan from the
vacuum. Similarly, a radiation pressure fluctuation on an atom
amounts to a temporary loan of linear momentum. Suppose
that we hold τ fixed but increase t0. In this case, x = τ 8 R̄z

does not change. However, if η = 1/2, then from Eqs. (33)

and (36), we have a ∝ t
1

14
0 and c0 ∝ t

− 2
7

0 . Both of these effects
act to decrease P (x) as t0 increases with x fixed.

III. SWITCHED POLARIZABILITY AND VELOCITY
FLUCTUATIONS OF ATOMS

In this section, we present a model for the origin and effects
of a time-dependent polarizability of an atom.

A. Switching with Rydberg atoms

Rydberg atoms are hydrogen-like atoms in highly excited
states, and have been extensively investigated in recent years.
For a review, see for example, Gallagher [16]. If n is the prin-
cipal quantum number of the excited state, several physical
properties of the Rydberg atom scale as powers of n. These
include the mean radius, r0 ∝ n2, the polarizability, α ∝ n7,
and the radiative lifetime, τrad ∝ n3. See Table 2 in Ref. [16].
This means that the polarizability, can increase many orders of
magnitude from its value in the ground state when the atom is
excited, maintain this value for a time as long as τrad, and then
return to a much smaller value when the atom is de-excited.
The excitation can be produced by a short laser pulse, which
at optical frequencies can have a duration of the order of
1 fs. This pulse is assumed to be described by a compactly
supported function of time, and a frequency spectrum of the
form of Eq. (5). The de-excitation can be induced by a second
such pulse, which causes the polarizability to decrease rapidly
either by stimulated emission or by ionization. In this case, the
polarizability α(t ) may have a time dependence of the form
illustrated in Fig. 1.

We may take

α2(t ) = α2
0 t0 f2(t ), (42)

where α0 is the polarizability in the excited state and f2(t ) is a
two-scale sampling function of the type discussed in Sec. II D.
The factor of t0 arises because f2(t ) satisfies Eq. (1). Recall
that f2(t ), and hence α2(t ), increases and later decreases on
a timescale τ , the duration of the exciting and de-exciting
pulses. Here we take t0 	 τ to be the approximate temporal
duration of the excited state. Because α2(t ) increases and then
decreases by many orders of magnitude, we may take its initial
and final values to be zero.

This time dependence leads to vacuum radiation pressure
fluctuations, with the averaged radiation pressure in the z-
direction being given by R̄z defined in Eq. (32). Note that here
the z-direction is randomly selected and need not be correlated
with the direction of either laser pulse. If the excited state is
approximately spherically symmetric, then vacuum radiation
pressure fluctuations are equally likely in any direction. In this
case, 〈R̄z〉 = 0, and all other odd moments will also vanish.
However, the variance, 〈(R̄z )2〉 and other even moments are
nonzero. This leads to a symmetric probability probability
distribution, P(x) = P(−x), as fluctuations of either sign and
in any direction are equally probable. The asymptotic form of
P(x) for large x can be taken to be given by Eq. (14), where
the parameters such as β and η are determined by the Fourier
transform f̂2(ω) of the sampling function and hence of α2(t )
In particular, if η = 1/2, then P(x) takes the form in Eq. (37)
and falls very slowly.

B. Velocity fluctuations: Numerical estimates

Now we wish to estimate the magnitude and probability
of the velocity fluctuations of the atom due to vacuum radia-
tion pressure fluctuations. For simplicity, we assume that the
fluctuations may be described in the worldline approximation
and with η = 1/2, so we may use Eq. (37) with x � x∗, with
x∗ given by Eq. (38). We take the probability of a fluctuation
with x ≈ x∗ to be P (x∗), given by Eq. (41). Such a fluctuation
produces a radiation pressure of order x∗/τ 8 and a force which
magnitude is of the order of

F̄ ≈ α2
0

6π τ 8
x∗ (43)

and a duration of the order of t0. The characteristic recoil
speed will be of order

v̄ ≈ F̄ t0
m

≈ α2
0 t0

6π m τ 8
x∗, (44)

where m is the mass of the atom.
We may use Eq. (38) and set 	 ≈ r0, the characteristic size

of the Rydberg atom, to write

v̄ ≈ α2
0

18 π2 m β14 r7
0

. (45)

There are two remarkable features of this expression: first,
the dependence upon both τ and t0 have canceled. Second,
the result is very sensitive to the parameter β, which ap-
pears in the asymptotic form of the Fourier transform of the
sampling function, Eq. (5). The meaning of this parameter
was discussed in Sec. II E. However, we should note that β

makes its appearance in v̄ through the β-dependence of x∗,
and hence linked with our restriction to using the worldline
approximation. We may express Eq. (45) as

v̄ ≈ 2.1 × 10−8

β14

(
1 u

m

)(
α0

n7 a3
0

)2 (
n2 a0

r0

)7

, (46)

where a0 is the Bohr radius of hydrogen. Note our estimate for
v̄ is independent of n, as we have α0 ≈ n7 a3

0 and r0 ≈ n2 a0,
so the last two factors in the above expression will be of order
one. Recall that we are working in units with the speed of light
set to one, so v̄ = 2.1 × 10−8 = 6.3 m/s. Note the very strong
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FIG. 4. The estimate of the probability of a radiation pressure
fluctuation in a given measurement is plotted as a function of the
principal quantum number n. Here we have set τ = 1 fs.

dependence upon the value of β. For example, if β = 1/
√

2,
and the other factors in Eq. (45) are of order one, we would
obtain the estimate v̄ ≈ 2.7 × 10−6 ≈ 800 m/s.

We can compare these estimates with the expected atomic
speeds due to either thermal motion or the recoil from photon
absorption or emission. At absolute temperature T , the root-
mean-square thermal speed is

vT =
(

3 kB T

m

) 1
2

≈ 5 × 10−10

(
T

1μ K

) 1
2

(
1 u

m

) 1
2

. (47)

Thus at sufficiently low temperatures, the thermal motion
can be smaller than the effects of vacuum radiation pressure
fluctuations. If an atom at rest either absorbs or emits a photon
with energy Eγ , the magnitude of the recoil momentum of the
atom will equal the photon’s momentum, resulting in a recoil
velocity of magnitude

vR ≈ 10−9
( Eγ

1 eV

) (
1 u

m

)
. (48)

This can also be smaller than the effects of vacuum radiation
pressure fluctuations, and is also correlated with the photon’s
direction.

Let us now turn to estimates of the probability P (x∗) for
the fluctuations in question. Equations (35), (36), (38), and
(41) lead to

P (x∗) ≈ 0.14 γ 2
0 β−4

( r0

τ

)
e−2

√
τ/r0 . (49)

This probability also increases as β decreases, although not so
strongly as does v̄. Recall that r0 ≈ a0 n2. If we set τ = 1 fs ≈
3 × 10−5 cm, then

τ

r0
≈ 6000

n2
≈

(
77

n

)2

. (50)

Recall that for the worldline approximation to have any range
of validity, we need n � 77. In Fig. 4 the value of the expres-
sion for P (x∗) given by Eq. (49) is plotted as a function of n.
If both β and γ0 are of order one, then we can have P (x∗) of
the order of 1% while τ > r0.

We have presented estimates both for the mean speed,
v̄, and the probability, P (x∗), of a vacuum radiation pres-
sure fluctuation capable of producing this mean speed. Both

of these estimates assumed the worldline approximation, in
which the radiation pressure operator is averaged in time only,
and are hence restricted to considering fluctuations for which
x � x∗. This restriction is probably responsible for the strong
dependence of P (x∗), and especially of v̄, on the parameter
β. This may be seen from the sensitivity of x∗ to the value of
β exhibited in Eq. (38). Thus it is reasonable to expect that
including spatial averaging, which will allow consideration of
larger fluctuations, may reduce the dependence of the results
upon β. This will be a topic for future work.

C. Key features and assumptions

In this subsection, we examine in more detail the physical
picture and assumptions behind the analysis in the previous
subsections. We are considering the quantized electromag-
netic field in its vacuum state interacting with an atom through
radiation pressure fluctuations, and temporarily exchanging
linear momentum with the atom. The eigenstates of the time-
averaged operator R̄z are multimode squeezed vacuum states.
However, the particle content of such a state states is best
viewed as involving virtual photons, not real photons. The
linear momentum which they impart to an atom is transient
and will disappear on a sufficiently long timescale. This was
noted at the end of Sec. II F, where we saw that the probability
of finding a given value of R̄z in a measurement decreases as
the averaging time t0 increases. This means that both the initial
and final velocities of the atom can be taken to be zero. Note
that in the previous subsection, the dependence upon t0 was
hidden because we chose x = x∗, where x∗, the upper limit of
validity of the worldline approximation, depends upon t0. This
choice also hid the dependence of the mean recoil speed upon
n, the principal quantum number of the atom. More generally,
both α0 and the magnitude of the mean force on the atom
increase with increasing n.

We have assumed that the virtual photons in the eigen-
states of R̄z interact with the atom by Rayleigh scattering,
which requires that the mean wavelength of these photons
be large compared to the size of the atom. Whether this is
a good approximation needs to be tested by further work. The
numerical diagonalization approach used in Refs. [4,6] may
be capable of computing the frequency spectrum and particle
number content of these eigenstates, and will be investigated.
If the mean photon occupation numbers are large compared to
one, this would support a picture in which the large radiation
pressure fluctuations arise from large numbers of relatively
long wavelength virtual photons. In this case, conventional
perturbative quantum electrodynamics may be of limited use,
as low orders of perturbation theory usually assume small
numbers of internal photon lines. In Sec. II F a semiclassical
treatment was used to study the effect of the vacuum radiation
pressure fluctuations on an atom. This treatment assumes that
the order of magnitude of the linear momentum temporarily
transferred to the atom may be estimated as an average effect
of the scattering of many virtual photons.

In our estimates, we assumed that the switch-on part of the
sampling function f2(t ), and hence of the squared polarizabil-
ity, α2(t ), have Fourier transforms associated with the value
η = 1/2, which arises in a simple switched electrical circuit
[3]. It will be of interest to explore this further, and to study the
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extent to which α2(t ) is determined by the frequency spectrum
of the incident wave packet which excites the Rydberg atom.

IV. SUMMARY

This paper has dealt with vacuum radiation pressure fluc-
tuations on Rydberg atoms. Such fluctuations are governed by
a probability distribution which decreases very slowly and is
very sensitive to the details of how the radiation pressure is
measured. The relevant quantum operator is quadratic in sec-
ond time derivatives of the electromagnetic field. Like other
stress tensor-type operators for the quantized electromagnetic
field, it must be averaged in time before its fluctuations
become finite. This averaging describes the measurement pro-
cess of the radiation pressure. If the measurement is to begin
and end at finite times, then the temporal averaging function
must have compact support, meaning that it is a nonana-
lytic, but C∞, function which vanishes outside of a finite
time interval. Here a specific model for the measurement has
been proposed, in which an atom is excited from its ground
state to a highly excited state, forming a Rydberg atom with
greatly increased polarizability. The excitation is assumed to
be caused by a short laser pulse of finite duration, after which
the excited state persists for a time long compared to the
excitation time. A second short pulse ends the excitation by
either ionization or stimulated emission.

The effect of the resulting time-dependent atomic polar-
izability is to measure the vacuum radiation pressure on the
atom, which in turn causes a temporary recoil of the atom
that may be large enough to be observed. The atom in effect
borrows some linear momentum from the quantum vacuum
for a finite time. The probability distribution for large radi-
ation pressure fluctuations decreases remarkably slowly at a
rate determined by the pulse frequency spectrum, such as an
exponential of the 1

14 power of the pressure fluctuation. It
is this slow rate of decrease which allows the possibility of
observable recoil with non-negligible probability.

The treatment in this paper has assumed a worldline
approximation in which the radiation pressure operator is av-
eraged in time, but not in space. This approximation simplifies
the analysis, but limits the magnitude of the fluctuations which
may be considered. An expanded treatment including spatial
averaging, using either the analytic methods of Refs. [3,5] or
the numerical methods of Refs. [4,6] will be a topic for future
research.
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