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Order from chaos in quantum walks on cyclic graphs
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It has been shown classically that combining two chaotic random walks can yield an ordered (periodic) walk.
Our aim in this paper is to find a quantum analog for this rather counterintuitive result. We study the chaotic and
periodic nature of cyclic quantum walks and focus on a unique situation wherein a periodic quantum walk on
3-cycle graph is generated via a deterministic combination of two chaotic quantum walks on the same graph. We
extend our results to even numbered cyclic graphs, specifically a 4-cycle graph too. Our results will be relevant
in quantum cryptography and quantum chaos control.
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I. INTRODUCTION

Parrando’s paradox describes situations wherein a random
or deterministic combination of losing strategies can yield a
winning outcome. Parrondo’s games seen in random walks
have been shown to have significant applications in biological
systems, algorithms, and cryptology [1–3]. Studies in recent
years have shown Parrando’s paradox in classical random
walks wherein two chaotic walks were combined to yield an
ordered (periodic) walk [4–8]. In these papers the main focus
is on combining two chaotic systems to generate order, i.e.,
Chaos1 + Chaos2 = Order, a profound and counterintuitive
result. This result is far reaching, especially in classical chaos
control theory [9], etc. Our aim in this work is to find the
quantum analog of this result, and we show it in the context of
quantum walks on 3-cycle graphs (see Fig. 1). Quantum walks
(QWs) have been used in simulating physical systems [10] as
well as in designing quantum algorithms [11,12]. A QW can
be described on a one-dimensional lattice, or analogously on
a circle with k sites, with the walker starting from the origin
[13–15]. Unlike the walker of the classical random walk, in
the quantum version the walker is represented by a wave
function. However, similar to a classical random walk, QWs
consist of a walker and a coin. The coin in a QW, in general,
is a qubit. Quantum walks can also be fashioned with coins
which are qutrits [16] or even qudits [17] and also entangled
coins [18]. In this paper we only focus on qubits as coins.
Similar to classical random walks, in QWs if applying the
coin operator on the initial coin state yields head the walker
shifts to the right or else the shift is to the left. In addition
to head or tail, the coin state in the quantum case can be in a
superposition of head and tail, in which case the walker moves
to a corresponding superposition of left and right lattice sites.

A QW need not be restricted to a line, QWs on k-cycle
graphs have been studied in detail in Refs. [13,14]. Intrigu-
ingly, in quantum walks on k-cyclic graphs, chaotic behavior
has been seen. A quantum walk on a k-cycle graph is termed
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periodic if it returns periodically to a particular position,
say the origin, after a finite number of steps, otherwise it is
chaotic. Our aim in this work is to show that two chaotic QWs
can be combined to yield a periodic walk. To fulfill our aim
we proceed as follows, we first dwell on defining the shift
and coin operators in a k-cycle graph and then find out the
condition for the walker to be ordered or periodic. Next we
deal with specific coin operators which yield chaotic QWs
and find out the conditions under which combination of these
coins, i.e., Parrondo sequences, will generate periodic QWs.
We then show via plots the probability of returning to origin
in a 3-cycle graph focusing on our aim of getting periodic
QWs via a Parrondo strategy of alternating between coins
which yield only chaotic QWs. Next, we show results for a
4-cycle graph wherein similar to the 3-cycle graph we see
the combination of chaotic quantum walks leading to periodic
quantum walks. Recently there have been reports on designing
quantum algorithms for quantum key generation via mixing
chaotic signals [19]. We at the end of this paper show how to
do that via mixing quantum chaotic walks to generate a secure
encryption-decryption mechanism.

II. DISCRETE TIME QUANTUM WALK (DTQW)
ON CYCLIC GRAPHS

In the DTQW on a cycle, similar to that on a line, the space
of the walker is defined via the tensor product of position and
coin space, i.e., HP ⊗ Hc, where HP is the position Hilbert
space and Hc is the coin Hilbert space. In this case, coin is
a qubit with two states |0〉 = (1

0) and |1〉 = (0
1), and then the

general unitary coin operator can be written as

C2(ρ, α, β ) =
(√

ρ
√

1 − ρeiα√
1 − ρeiβ −√

ρei(α+β )

)
, (1)

where 0 � ρ � 1, 0 � α, and β � π .
The walker shifts to the right by one site when the final

state is |1〉 and to the left by one site when the final state is
|0〉. So the shift operator for th0e case when the walker walks
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FIG. 1. 3-cycle graph (a) and 4-cycle graph (b).

on a line is given by

S =
1∑

s=0

∞∑
i=−∞

|i + 2s − 1〉〈i| ⊗ |s〉〈s|, (2)

but to perform a QW on a circle of “k” sites the shift operator
has to be modified [14] as shown below:

S =
1∑

s=0

k−1∑
i=0

|(i + 2s − 1), mod k〉〈i| ⊗ |s〉〈s|. (3)

Using Eq. (3) and the coin operator we can represent the QW
by a unitary operator as.

Uk = S(Ik ⊗ C2). (4)

The matrix Uk is a 2 × 2 block circulant matrix (see also
Refs. [13,14]). It is represented as

Uk = CIRCk

([
0 0
0 0

]
0

,

[√
ρ

√
1 − ρeiα

0 0

]
1

,

[
0 0
0 0

]
2

, . . . ,

[
0 0√

1 − ρeiβ −√
ρei(α+β )

]
k−1

)
. (5)

The walker repeatedly applies Uk to its initial state to get
to its final state. For N steps we get, U N

k |ψi〉 = |ψ f 〉. If the
walker returns to its initial state after N steps for any arbitrary
initial quantum state, then the QW by the walker is said to be
periodic; hence, for a periodic QW we have

U N
k |ψi〉 = |ψi〉. (6)

Now let eigenvectors of Uk be {|xi〉} and the corresponding
eigenvalue be {λi}, as |ψi〉 is arbitrary we can represent it in
terms of eigenvectors of Uk as |ψi〉 = ∑2k

j=1 α j |x j〉. Applying
Uk , N times, on an initial state we get

U N
k |ψi〉 =

2k∑
j=1

α jλ
N
j |x j〉. (7)

Comparing Eq. (7) with Eq. (6) we get the the condition of
periodicity as

λN
j = 1, ∀ 1 � j � 2k, or U N

k = I2k . (8)

In the case where a particular unitary operator satisfies Eq. (8)
and then it gives a periodic result, that operator is said to
generate a periodic or ordered QW, while if the QW does not
satisfy Eq. (8) it is called chaotic.

Block diagonalizing Uk

By diagonalizing Uk we get its eigenvalues, which then
simplifies the problem of finding the periodicity of the QW on
cyclic graphs. As Uk is a circulant matrix it is block diagonal-
ized by a tool known as the commensurate Fourier matrix as
was also done in Ref. [14]. The commensurate Fourier matrix
of M dimension is defined as

F M = (
F M

m,n

) = 1√
M

(
e2π i mn

M
)
.

Now as our matrix is of dimension k ⊗ 2 we define F = F k⊗2

and Uk′ = FUkF †. The matrix Uk′ has the form

Uk′ =

⎛
⎜⎜⎝

Uk,0 0 . . . 0
0 Uk,1 . . . 0
...

...
. . .

...

0 0 . . . Uk,k−1

⎞
⎟⎟⎠, (9)

where each Uk,l is a block 2 × 2 matrix. The eigenvalues of
each such block Uk,l is given by

λ±
k,l = 1

2
e−2π i l

k
[(

1 − e4π i l
k +iδ

)√
ρ

±2

√
e4π i l

k +iδ

(
1 − ρ sin2

[
2π l

k
+ δ

2

])]
. (10)

Now Eq. (8) is satisfied if both eigenvalues, i.e, λ±
k,l , take the

form of a de Movire number, i.e., each λ j = e
2π i

m j
n j , which can

be equivalently written as

λ±
k,l = e

2π i
m j
n j or λk,l = λ+

k,l + λ−
k,l

2
= e

2π i
m j
n j , (11)

and the least common multiple of {nj} = N , with 1 � j � 2k;
this gives the periodicity of a QW on a k-cyclic graph to be
N . Examples of periodic and chaotic QWs can be seen in
Refs. [13,14] which satisfy Eqs. (10) and (11) and are also
given below in Fig. 2 for parameters mentioned in the figure
caption.

III. PARRONDO STRATEGIES (ABAB . . .) IN DTQW
ON 3-CYCLE GRAPHS

In the subsequent analysis in this section we stick to
only QWs on 3-cycle graphs [see Fig. 1(a)]. We consider
three different unitary operators A = U3(ρ1, α1, β1) = S[I3 ×
C2(ρ1, α1, β1)], B = U3(ρ2, α2, β2) = S[I3 × C2(ρ2, α2, β2)],
and C = U3(ρ, α, β ) = S[I3 × C2(ρ, α, β )], with the coin op-
erator C2 defined in Eq. (2) and U3 in Eq. (4) with k = 3. We
note that only a QW obtained from the unitary operator C
satisfies Eq. (6) and gives an ordered QW with period N , while
unitary operators A and B lead to chaotic QWs. Our aim is to
find a suitable combination of A and B coin operators which
would give an ordered (periodic) QW. To achieve our goal,
we first check the Parrondo sequence ABAB . . . of unitary
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(a)

(b)

FIG. 2. Probability for finding the walker at its initial site at x =
0 for a 4-cycle graph [panel (a), ordered, i.e., periodic with period 8]
and a 5-cycle graph [panel (b), chaotic]. Probability is plotted against
time steps for the QW with a Hadamard coin H = C2( 1

2 , 0, 0). Only
even time steps are plotted.

operators and calculate the eigenvalues of the matrix FABF †.
For the 3-cycle graph, there will be three diagonal blocks U3,0,
U3,1, and U3,2 [see Eq. (9)]. The sum of eigenvalues for the
diagonal block U3,1 is

λAB
3,1 = λAB+

3,1 + λAB−
3,1

2
= (

2eiα2+iβ1
√

1 − ρ1

√
1 − ρ2

+ 2eiα1+iβ2
√

1 − ρ1

√
1 − ρ2 + 2(−1)2/3√ρ1

√
ρ2

− 2(−1)1/3eiα1+iα2+iβ1+iβ2
√

ρ1
√

ρ2
)
/4. (12)

Since our aim is to check if the Parrondo combination
ABAB . . . leads to periodicity. We now evaluate the eigen-
values of the matrix [FCCF †], remembering that the unitary
operator C generates a periodic QW. The eigenvalues for a
3-cycle graph with coin CC . . ., and for the same diagonal
block, U3,1, are given as

λCC
3,1 = λCC+

3,1 + λCC−
3,1

2
= [

4ei(α+β ) + 2(−1)2/3ρ − 4ei(α+β )ρ

− 2(−1)1/3e2i(α+β )ρ
]
/4. (13)

Since repeatedly applying C generates a periodic QW, if
repeatedly applying AB were to also generate a periodic QW,
then the form of the eigenvalues should match, i.e.,

λCC
3,1 = λAB

3,1. (14)

Repeating the abovementioned procedure for other diagonal
blocks U3,0 and U3,2, we get exactly similar equations to that
shown in Eq. (14). Taking α1 = α2 = α and β1 = β2 = β and
equating the coefficients of frequencies on both sides, we get
two equations as follows:

ρ1ρ2 = ρ2, and
√

1 − ρ1

√
1 − ρ2 = 1 − ρ. (15)

The only solution to Eq. (15) is ρ1 = ρ2 = ρ, which gives
the trivial solution A = B, as α1 = α2 = α and β1 = β2 = β.
This solution is not desirable as the deterministic combination
of A and B gives again a chaotic QW. Following this, similar
calculations done for deterministic combinations ABB, ABBB,
ABBBB, and AABB do not generate ordered (periodic) QWs.
The solutions for ABBB and ABBBB were trivial as in the case
of AB. However, ABB gives a nontrivial solution for a small
range of ρ; one could find suitable coin operators A and B for
which ABB is periodic but unfortunately we were not able to
zero in on any exact values for ρ1, ρ2, and ρ. Nonetheless,
the deterministic combination AABB . . . does generates an
ordered (periodic) QW as shown below.

IV. PARRONDO STRATEGIES (AABB . . .) IN DTQW
ON 3-CYCLE GRAPHS

We start by calculating the eigenvalues of the matrix
FAABBF †. Similar to the case preceding, for the 3-cycle
graph, there will be three diagonal blocks: U3,0, U3,1, and U3,2

[see Eq. (9)]. The sum of eigenvalues for the diagonal block
U3,1 is

λAABB
3,1 = λAABB+

3,1 + λAABB−
3,1

2
= 4ei(α1+α2+β1+β2 )

+ 2(−1)2/3ei(α2+β2 )ρ1 − 4eiα1+iα2+iβ1+iβ2ρ1

− 2(−1)1/3e2iα1+iα2+2iβ1+iβ2ρ1 + 2(−1)2/3eiα1+iβ1ρ2

− 4eiα1+iα2+iβ1+iβ2ρ2 − 2(−1)1/3eiα1+2iα2+iβ1+2iβ2ρ2

+ 2[−(−1)1/3 − (−1)2/3ei(α1+β1 ) − (−1)2/3ei(α2+β2 )

+ 2ei(α1+α2+β1+β2 ) + (−1)2/3e2i(α1+α2+β1+β2 )

+ (−1)1/3ei(2α1+α2+2β1+β2 )

+ (−1)1/3ei(α1+2α2+β1+2β2 )]ρ1ρ2 − 2(ei(α2+β1 )

+ ei(α1+β2 ) )[−(−1)2/3 + ei(α1+β1 ) + ei(α2+β2 )

+ (−1)1/3ei(α1+α2+β1+β2 )]
√

(1 − ρ1)ρ1(1 − ρ2)ρ2.

(16)

Since our aim is to check if the Parrondo combination
AABB . . . leads to periodicity. We now evaluate the eigen-
values of the matrix [FCCCCF †], remembering that the coin
operator C generates a periodic QW. The eigenvalues for a
3-cycle graph with coin operators CCCC . . . being applied
successively and for the same diagonal block U3,1 are given
as

λCCCC
3,1 = λCCCC+

3,1 + λCCCC−
3,1

2
= 4e2i(α+β ) + 8(−1)2/3ei(α+β )ρ

− 16e2i(α+β )ρ − 8(−1)1/3e3i(α+β )ρ − 2(−1)1/3ρ2

− 8(−1)2/3ei(α+β )ρ2 + 12e2i(α+β )ρ2

+ 8(−1)1/3e3i(α+β )ρ2 + 2(−1)2/3e4i(α+β )ρ2. (17)
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FIG. 3. The QW on a 3-cycle graph by repeatedly applying the
unitary A = U3(ρ1, 0, 0), which results in a chaotic quantum walk.

Since repeatedly applying C gives a periodic QW, if repeat-
edly applying AABB were to generate a periodic QW, then the
form of the eigenvalues should match, i.e.,

λCCCC
3,1 = λAABB

3,1 . (18)

Equations similar to Eq. (18) can be written for other blocks,
i.e., U3,0 and U3,2. Taking α1 = α2 = α and β1 = β2 = β and
matching frequencies on both sides, we get

ρ1 + ρ2 − 2ρ1ρ2 + 2
√

(1 − ρ1)(1 − ρ2)ρ1ρ2 = 4ρ − 4ρ2,

ρ1 + ρ2 − ρ1ρ2 + 2
√

(1 − ρ1)(1 − ρ2)ρ1ρ2 = 4ρ − 3ρ2,

ρ1ρ2 = ρ2. (19)

Of the above three equations, only two are independent. The
third can be derived from the other two. The solution to
Eq. (19) is given by

ρ1 → 3ρ − 4ρ2 ± 2
√

2
√

ρ2(1 − 3ρ + 2ρ2),

ρ2 → 3ρ − 4ρ2 ∓ 2
√

2
√

ρ2(1 − 3ρ + 2ρ2).
(20)

This gives the possibility of A and B being chaotic but AABB
being periodic.

V. PARRONDO STRATEGIES (A′A′B′B′ . . .) IN DTQW
ON 4-CYCLE GRAPHS

Similar to the 3-cycle graph, for the 4-cycle
graph we consider three different unitary opera-
tors: A′ = U4(ρ41, α1, β1) = S[I4 × C2(ρ41, α1, β1)],
B′ = U4(ρ42, α2, β2) = S[I4 × C2(ρ42, α2, β2)], and
C′ = U4(ρ4, α, β ) = S[I4 × C2(ρ4, α, β )], with the coin
operator C2 defined in Eq. (2) and U4 in Eq. (4) with k = 4.
We note that only the QW obtained from the unitary operator
C′ satisfies Eq. (6) and gives an ordered QW with period N ,
while unitary operators A′ and B′ lead to chaotic QWs. We
check the Parrondo sequence A′A′B′B′ . . . of unitary operators
and calculate the eigenvalues of the matrix FAABBF †. For
the 4-cycle graph, there will be four diagonal blocks: U4,0,
U4,1, U4,2, and U4,3 [see Eq. (9)]. Following exactly the same
procedure as was adopted for 3-cycle walks, one gets an
identical set of equations, Eqs. (19) and (20), from which we
get the condition for unitaries A′ and B′ generating chaotic
quantum walks in the 4-cycle graph, but A′A′B′B′ generating

50 100 150 200
steps

0.2

0.4

0.6

0.8

1.0

Probability (x=0)

FIG. 4. A chaotic QW on a 3-cycle graph obtained by repeatedly
applying the unitary B = U3(ρ2, 0, 0).

a periodic quantum walk. In the Results subsection on the
4-cycle graph (Sec. VI B), we give the details of parameters
which lead to the desired outcome of two chaotic quantum
walks A′ and B′ combining in sequence A′A′B′B′ to generate
a periodic quantum walk in a 4-cycle graph.

VI. RESULTS

A. 3-cycle graph

In Refs. [13,14], a table of examples which satisfy Eq. (6)
has been given. From these examples, and considering k = 3

with ρ = (5−√
5)

6 = 0.460 655, α = 0, and β = 0, and using
Eq. (20) with α1 = α2 = α = 0 and β1 = β2 = β = 0, we get

ρ1 = 0.264 734, ρ2 = 0.801 571. (21)

Considering unitary operators A = U3(ρ1, 0, 0) and B =
U3(ρ2, 0, 0) while C = U3(ρ, 0, 0) and repeating the calcula-
tions done in Eqs. (14) and (15) shows that one cannot get
periodicity, i.e., coins ABABAB . . . generate a chaotic QW
when quantum walks resulting from repeated application of
coins AAA . . . and BBB . . . are chaotic too. This is shown in
Figs. 3, 4, and 5. The initial state of the walker is taken as
|1〉 ⊗ |0〉, and the probability of the walker to be in the initial
site 0 versus the number of steps of the walker is plotted.
In Fig. 6, we show that the combination of unitary operators
AABB does generate an ordered (periodic) QW fulfilling our

20 40 60 80 100 120
steps

0.2

0.4

0.6

0.8

1.0

Probability (x=0)

FIG. 5. A chaotic QW on a 3-cycle graph by repeatedly applying
the Parrondo sequence ABAB . . . , plotting every second point.
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FIG. 6. An ordered QW on a 3-cycle graph by repeatedly apply-
ing the Parrondo sequence AABB . . . Every fourth point is plotted.
The quantum walk is periodic with a periodicity of 20.

aim to show that combining two chaotic systems can in certain
situations lead to an ordered or periodic outcome. The period-
icity of the combination AABB is 20. It is to be noted that the
combination CCCC plotted in Fig. 7 gives a periodicity of 10.
The reason for this is because the value of every fourth point in
Fig. 6 is equal to the value of every fourth point in Fig. 7; i.e.,
the probability for finding the walker at x = 0, at time steps 4,
8, and 12, etc., is the same, due to which we miss a periodicity
of 10 and get a periodicity of 20 for AABB . . . Another method
of determining whether the walk is periodic or chaotic is via
calculating the Lyapunov exponent. In the Appendix, we give
a short recipe for calculating this. For chaotic quatum walks
the Lyapunov exponent [20] is positive, while for periodic
walks it vanishes. We indeed verify these results for the uni-
tary operators AAAA . . . and BBBB . . . , which give a finite
positive value for the Lyapunov exponent and which generate
chaotic walks. In the case of unitary operators AABB . . . , we
get a vanishing Lyapunov exponent which confirms a periodic
quantum walk.

B. 4-cycle graph

Although we have shown results only in the case of a
3-cycle graph, our work can be easily generalized to any
arbitrary k-cycle graph. In fact the equations obtained for a

10 20 30 40 50
steps

0.2

0.4

0.6

0.8

1.0

Probability(x=0)

FIG. 7. An ordered QW on a 3-cycle graph by repeatedly apply-
ing the unitary C. Every fourth point is plotted. The quantum walk is
periodic with a periodicity of 10.
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FIG. 8. A QW on a 4-cycle graph by repeatedly applying the
unitary A′ = U4(ρ41, 0, 0), which results in chaotic quantum walk.

4-cycle graph are identical to those shown in Eqs. (12)–(20).
This is no doubt a consequence of the properties of the cyclic
graph itself as well as that of the commensurate Fourier matrix
F . In Refs. [13,14], tables of examples which satisfy Eq. (6)
have been given. From these examples, and considering k = 4

with ρ4 = (5−√
5)

8 = 0.345 492, α = 0, and β = 0, and using
Eq. (20) with α1 = α2 = α = 0 and β1 = β2 = β = 0, we get

ρ41 = 0.998 489, ρ42 = 0.119 545. (22)

Considering unitary operators A′ = U4(ρ41, 0, 0) and B′ =
U4(ρ42, 0, 0) while C′ = U4(ρ4, 0, 0) and repeating the cal-
culations done in Eqs. (14) and (15), we show that quantum
walks resulting from repeated application of coins A′A′A′ . . .
and B′B′B′ . . . are chaotic. This is shown in Figs. 8 and 9.
The initial state of the walker is taken as |1〉 ⊗ |0〉, and the
probability of the walker to be in the initial site 0 versus
the number of steps of the walker is plotted. In Fig. 10, we
show that the combination of unitary operators A′A′B′B′ does
generate an ordered (periodic) QW, fulfilling our aim to show
that combining two chaotic systems can in certain situations
lead to an ordered or periodic outcome. The periodicity of the
combination A′A′B′B′ is 5. It is to be noted that the combina-
tion C′C′C′C′ plotted in Fig. 11 gives a periodicity of 10.

10 20 30 40 50
steps

0.2

0.4

0.6

0.8

1.0

Probability(x=0)

FIG. 9. A chaotic QW on a 4-cycle graph obtained by repeatedly
applying the unitary B′ = U4(ρ42, 0, 0).
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FIG. 10. An ordered QW on a 4-cycle graph by repeatedly apply-
ing the Parrondo sequence A′A′B′B′ . . . The quantum walk is periodic
with a periodicity of 5.

VII. SECURE ENCRYPTION-DECRYPTION MECHANISM
VIA MIXING CHAOTIC QUANTUM WALKS

In a recent work [21], a quantum cryptographic protocol
based on a quantum walk has been proposed. We tweak this
proposal by implementing it with chaotic quantum walks.
This adds a further layer of security on top of that shown in
Ref. [21]. These are the steps.

(i) Generating the public key. If Bob has to send a message
m ∈ {0, 1, 2} to Alice, then Alice will make a public key
using the unitary operator B and the state of the walker |l〉|s〉
as follows |ψPK〉 = BB|l〉|s〉. Here, B is the unitary operator
that generates the chaotic quantum walk as shown in Fig. 4,
|ψPK〉 is a public key, and |l〉 is the walker state on a cyclic
graph while |s〉 is a coin state. We also note that another
coin unitary A can generate a chaotic quantum walk too (see
Fig. 3). Further, as we have shown in Fig. 6, the Parrondo
sequence AABB generates a periodic chaotic quantum walk
with a periodicity of 20 meaning (AABB)5 = I , with I being
the identity. Alice after generating this chaotic state |ψPK〉,
which acts as the public key, sends it to Bob.

(ii) Encrypting the message. After Bob receives the public
key, he encodes the message m as follows: |ψ (m)〉 = (Tm ⊗
Ic)|ψPK〉, where Tm = ∑N−1

i=0 |i + m, mod 3〉〈i|, is akin to the
shift operator used in Eq. (3) for the position state, while Ic is
the identity operator acting on the coin state.

(iii) Decrypting the message. Alice then decrypts the mes-
sage by applying D = (AABB)4AA, as DBB = I . Alice then
performs the measurement M = ∑

i |i〉〈i| ⊗ Ic and obtains the
message m′. The original message m can then be recovered
via m = m′ − l, mod 3.

This protocol can be applied using the 4-cycle graph as
well, following exactly the same procedure as outlined above
for the 3-cycle graph.

VIII. CONCLUSION

The criteria for generating ordered or periodic QWs by
combining two chaotic QWs have been established. It is
shown that if a chaotic QW is obtained by repeatedly applying
coins A or B then one cannot obtain a periodic QW by repeat-
edly applying AB, ABBB, or ABBBB. Parrando’s paradox was

5 10 15 20 25 30
steps

0.2

0.4

0.6

0.8

1.0

Probability(x=0)

FIG. 11. An ordered QW on a 4-cycle graph by repeatedly apply-
ing the unitary C′. The quantum walk is periodic with a periodicity
of 10.

seen for the deterministic combination AABB, i.e., a periodic
QW was obtained by repeatedly applying AABB even when
coins A and B generated chaotic QWs. Our work shows that
it is possible to design a quantum periodic signal from two
quantum chaotic signals. This also means that its reverse
process is also possible, i.e., breaking a periodic quantum
signal into two or more quantum chaotic signals. The periodic
probability distribution generated from two chaotic ones seen
in discrete time QWs on cyclic graphs is of great interest in
designing new quantum algorithms, in quantum cryptology,
and in development of quantum chaos control theory [22].
Finally, there have been recent reports on the development
of quantum image encryption techniques via chaotic QWs
on cyclic graphs [23]. Our work could provide intriguing
possibilities in designing better image encryption protocols.
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APPENDIX: CALCULATION OF LYAPUNOV EXPONENT

In Secs. II–V we have used the same definition for a chaotic
quantum walk as was also used in Ref. [13], which is if the
walker returns to its initial position at x = 0 after a finite
number of steps, with probability 1 then it is periodic, and if
this probability of return to its initial position is never 1 then it
is chaotic. However, another definition of whether the walk is
chaotic or not can be determined via the Lyapunov exponent
[20]. A positive value of the Lyapunov exponent, i.e., λ > 0,
implies the walk is chaotic, while if λ = 0 then it is periodic or
nonchaotic. We herein below give in short the recipe, see also
Ref. [20], for calculating the Lyapunov exponent for cyclic
quantum walks and then determine it for our case of a 3-cycle
quantum walk. In Ref. [20], the chaotic walk is generated via a
small change in the initial position of the walker. In our study,
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on the other hand, chaotic quantum walks are generated via
unitary operators. To calculate the Lyapunov coefficient we
start with the initial normalized state at time t = t0 on a cyclic
graph with three sites, |	(t0)〉. Then we let the initial state
evolve with

|	(t )〉 = Ut−t0 |	(t0)〉,
with t > t0. Now two cases arise, one wherein the unitary
operators generate a chaotic walk denoted by Uc and the other
wherein they generate a periodic walk, say Up, with period tp.

Thus, we have for U = Up,

|	(tp)〉 = U
tp−t0
p |	(t0)〉 = |	(t0)〉,

i.e., U
tp−t0
p = I , where I is the identity matrix. On the other

hand, for U = Uc,

|	(t )〉 = Ut−t0
c |	(t0)〉 �= |	(t0)〉,∀t .

Thus, one can define a “distance” state, i.e., |	d〉 =
|	(t )〉 − |	(t0)〉, with |	d〉 = 0 for U = Up at t = tp while
|	d〉 �= 0 for U = Uc,∀t .

This probability distance function d (t ) can, similarly to
Ref. [20], help us calculate the Lyapunov exponent. The prob-
ability distance function can be expanded as

d (t ) = |〈	d | 	d〉| = (〈	(t )| − 〈	(t0)|)(|	(t )〉 − |	(t0)〉),

= |2 − 2〈	(t − t0) | 	(t0)〉| = f (λ, (t − t0)). (A1)

In the above equation, λ is the Lyapunov exponent. The
distance function f (λ, (t − t0)) is bounded by a maximum
value of 2 and a minimum value of 0. In the chaotic case,
λ > 0 and the maximum possible value is 2, while for periodic
case at t = tp, λ = 0, and d = 0, this implies f (λ, (t − t0)) =
2(1 − 2−λ(t−t0 ) ) and for the Lyapunov exponent one obtains

λ = − 1

t − t0
log2 |〈	(t ) | 	(t0)〉|

= − 1

t − t0
log2 |〈	(t ) | 	(0)〉| + log2 |〈	(t0) | 	(0)〉|,

(A2)

wherein |	(0)〉 is the initial state of the walker at time step
t = 0. As the quantum walk is performed in a circular path,
taking a large value of “t” is not suitable. Following this we
get the Lyapunov exponent of process AAAA . . . as 0.012,
for process BBBB . . . as 0.085, and for process AABB . . . as
0 for t − t0 = 20 time steps. We also verified that the Lya-
punov exponent remains positive for both AAAA . . . as well
as BBBB . . . for any arbitrary value of t − t0, while λ = 0
for AABB... at time steps t − t0 = 20, 40, 60, . . . Thus, we
indeed see that while the Lyapunov exponents for chaotic
quantum walks in the 3-cycle graph are positive values, for
the periodic quantum walk, the Lyapunov exponent vanishes.
Similar results can be obtained for a 4-cycle graph wherein
we also see for the periodic walk that the Lyapunov exponent
vanishes, while for the chaotic walk there are finite positive
values for the Lyapunov exponent.
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