
PHYSICAL REVIEW A 104, 012203 (2021)

Many-body anticommutator and its applications in the normalization of completely symmetric
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Understanding the quantum properties of many-body states is important in the fields of both quantum infor-
mation and condensed-matter physics. For this purpose, we generalize the basic concept of the anticommutator
from two operators to the many-body case. Some key properties are given for the many-body anticommutators,
and examples are provided for Pauli operators and density matrices. Using these results and techniques from the
symmetry group, in a straightforward way, we give the normalization of the completely symmetric states with
Majorana’s stellar representations. Our developed method will help to pave the way in the study of many-body
symmetric systems.
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I. INTRODUCTION

The completely symmetric state can describe lots of quan-
tum systems [1–3], especially the spin and boson system.
Boson systems such as spin-J particles coupled by n = 2J
spin- 1

2 particles (or pseudospin) have been widely studied
in recent years [4–7]. The dynamics of Bose-Einstein con-
densates is observed with spin-1, spin-2, and even spin-3
atomic gases in experiments [8–13]. Theoretical research on
the entanglement [1–3,14–18], the dynamics of the geometric
phase [18–23], the metastable decay of currents [24], and the
spin knots [25] in the boson system also has attracted a lot
of interest.

How to present the evolution of these high-dimensional
quantum systems clearly is always a challenge. For two-
level systems, the identity matrix I and the Pauli matrices
σ = (σx, σy, σz ) constitute a complete basis of the space of
2 × 2 Hermitian matrices over the real numbers. Especially,
the density matrix of two-level systems can be expressed as
ρ = 1

2 (I + u · σ). To simplify the writing of the derivation
process, we rewrite the identity matrix I as 1 in this paper,
so the density matrix is rewritten as

ρ = 1
2 (1 + u · σ ). (1)

Since the eigenvalues of ρ are positive, i.e., 1
2 (1 ± |u|) � 0,

the coefficient vector u satisfies the condition |u| � 1, with
equality if and only if the state of the system is a pure state
[26]. So the vector u can be represented by a point on or within
the unit sphere, and the vector u is referred to as a Bloch vector
when the unit sphere here is referred to as a Bloch sphere, after
the physicist Felix Bloch.

*xgwang1208@zju.edu.cn

Similarly, the Italian physicist Majorana proposed the rep-
resentation of high-dimensional quantum systems in 1932,
in which a quantum state of a spin-J system is viewed as a
constellation of 2J stars on the Bloch sphere [27].

Majorana’s stellar representation (MSR) is an intuitive way
to study a spin-J quantum system, and it has also been widely
used in a general completely symmetric state system in recent
years [1,2,7,14,17–23,27–30]. For the completely symmetric
state system coupled by n particles, if we know the n states
|ψi〉, i = 1, 2, . . . , n, we can express the wave function of the
system as

|�(n)〉 = 1

Nn

∑
P∈Sn

|ψP(1)〉 ⊗ |ψP(2)〉 ⊗ · · · ⊗ |ψP(n)〉, (2)

where Nn is the normalization constant, Sn denotes the nth
permutation group, and

∑
P∈Sn

sums all n permutations with P =

( 1 2 · · · n
P(1) P(2) · · · P(n)) [31].

Although MSR of the completely symmetric state system
has been used for many years, the origin of the form is much
more empirical than it is intuitive [23]. The state |�(n)〉 is a
multipartite entangled state [17,18,32]. How to study its prop-
erties is an essential issue. Even the normalization constant is
not very direct to derive when one often can guess the form
of it [23]. In this paper, we first introduce the anticommutator
in a many-body system. By calculating the many-body anti-
commutator of density matrices, we can get the form of the
normalization constant of the completely symmetric state in
MSR in a straightforward way [23].

The structure of this paper is as follows. In Sec. II, we
promote the concept of the anticommutator to a many-body
system and calculate some results of many-body anticom-
mutators in MSR. Then in Sec. III, we apply the results to
normalize the the completely symmetric state, and in this way
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we get the form of the the completely symmetric state in MSR.
In Sec. IV, we provide a summary and outlook.

II. MANY-BODY ANTICOMMUTATOR

A. Definition and properties

Considering two operators A1 and A2, we know that the an-
ticommutator of them is defined as {A1, A2} = A1A2 + A2A1.
Now we expand the anticommutator into many-body cases
and define

{A1, A2, . . . , An} =
∑
P∈Sn

AP(1)AP(2) · · · AP(n), (3)

where
∑

P∈Sn

goes through all n permutations as in Eq. (2).

Especially, when n = 1, we have {A1} = A1.
From this definition we can see the following properties.
Property i. If A1, A2, . . . , An are linear operators, then the

many-body anticommutator is an n-fold linear operator.
Property i is easy to obtain since for ∀a, b ∈ C and ∀i ∈

{1, 2, . . . , n} we have

{A1, . . . , aAi + bBi, . . . , An}
=
∑
P∈Sn

AP(1) · · · (aAi + bBi ) · · · AP(n)

=
∑
P∈Sn

(aAP(1) · · · Ai · · · AP(n) + bAP(1) · · · Bi · · · AP(n) )

= a{A1, . . . , Ai, . . . , An} + b{A1, . . . , Bi, . . . , An}. (4)

Property ii. The many-body anticommutator operation is
symmetric about any pair of Ai and Aj .

To get Property ii, we first build a new n permutation P′
which only swaps i and j in P, and in this way we have

{A1, . . . , Ai, . . . , Aj, . . . , An}
=
∑
P∈Sn

AP(1) · · · AP(i) · · · AP( j) · · · AP(n)

=
∑
P′∈Sn

AP′(1) · · · AP′( j) · · · AP′(i) · · · AP′(n)

= {A1, . . . , Aj, . . . , Ai, . . . , An}. (5)

With the above process, we can get another equivalent expres-
sion of Property ii as

{A1, A2, . . . , An} = {AP(1), AP(2), . . . , AP(n)}, (6)

where P(1)P(2) · · · P(n) is the arbitrary permutation of all
elements in index set Tn = {1, 2, . . . , n}.

Property iii. When dividing the n operators A1, A2, . . . , An

into q groups of fixed size as k1, k2, . . . , kq, the anticommuta-
tors can be divided as

{A1, A2, . . . , An}
=
∑

T ′
n

{
Ai(1)

1
, . . . , Ai(1)

k1

} · · · {Ai(q)
1

, . . . , Ai(q)
kq

}
, (7)

where {i(1)
1 , . . . , i(1)

k1
, . . . , i(q)

1 , . . . , i(q)
kq

} = Tn and
∑

T ′
n

sums all

n permutations but requires i(m)
k < i(m)

k+1.

Property iii is also easy to obtain with the definition of
the many-body anticommutator. After setting the q groups of
fixed sizes, we have

{A1, A2, . . . , An}
=
∑

Tn

[
Ai(1)

1
· · · Ai(1)

k1

] · · · [Ai(q)
1

· · · Ai(q)
kq

]

=
∑
T (1)

n

· · ·
∑
T (q)

n

[
Ai(1)

1
· · · Ai(1)

k1

] · · · [Ai(q)
1

· · · Ai(q)
kq

]
, (8)

where T (1)
n , . . . , T (q)

n are determined by being chosen from
Tn one by one. Accordingly,

∑
T (1)

n
· · ·∑T (q)

n
represents the

summation based on all the fixed {T (1)
n , . . . , T (q)

n }. Then after
setting i(m)

k < i(m)
k+1, we can get the result in Eq. (7).

Property iv. When some of the operators are the identity
operator, the anticommutators can be simplified as

{A1, A2, . . . , Ak, 1, . . . , 1} = n!

k!
{A1, A2, . . . , Ak}. (9)

For Property iv, the sum of coefficients of the left-hand
side is n! since the coefficient of each of the n! terms is 1.
Due to the completely symmetric property, it should equal
{A1, A2, . . . , Ak} multiplied by a coefficient, which contains
k! terms. So the coefficient of each term of the right-hand
side is n!

k! .

B. Examples: Some results of many-body
anticommutators in MSR

With the promotion of the definition, we can calcu-
late some useful results in MSR with the many-body
anticommutator.

Let u1, . . . , un be a series of Bloch vectors. For two ar-
bitrary vectors, we know that (ui · σ )(u j · σ ) = (ui · u j )I +
i(ui × u j ) · σ = ui · u j + i(ui × u j ) · σ, where I is omitted
for simplicity of writing as stated above. Then it is easy
to obtain

{ui · σ, u j · σ} = 2ui · u j . (10)

Now we consider general n. When n is even, with the
results in Eq. (7), i.e., Property iii, we have

{u1 · σ, u2 · σ, . . . , un · σ}
=
∑

T ′
n

{ui1 · σ, u j1 · σ} · · · {ui n
2

· σ, u j n
2

· σ}

=
(n

2

)
!
∑
T ′′

n

{ui1 · σ, u j1 · σ} · · · {ui n
2

· σ, u j n
2

· σ}

=
(n

2

)
!
∑
T ′′

n

(2ui1 · u j1 ) · · ·
(

2ui n
2

· u j n
2

)

=
(n

2

)
!2

n
2 D

( n
2 )

Tn

= n!!D
( n

2 )
Tn

, (11)

where
∑

T ′′
n

requires not only i(m)
k < i(m)

k+1 but also i(m)
1 <

i(m+1)
1 , with which we can extract the factor ( n

2 )!, and D(k)
T is
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defined as

D(k)
T =

{∑
T ′′ (ui1 · u j1 )(ui2 · u j2 ) · · · (uik · u jk ), k > 0

1, k = 0,

(12)

in which i1, j1, . . . , ik, jk ∈ T are distinct numbers [23]. For
example, for the elements in index set Tn, we have

D(1)
T2

= u1 · u2,

D(1)
T3

=
∑

i j∈{12,13,23}
ui · u j,

D(1)
T4

=
∑

i j∈{12,13,14,23,24,34}
ui · u j,

D(2)
T4

=
∑

i1 j1i2 j2∈{1234,1324,1423}
(ui1 · u j1 )(ui2 · u j2 ),

· · · , (13)

When we define (ui1 · u j1 )(ui2 · u j2 ) · · · (uik · u jk ) as a (2k)-
order term, it is obvious that D(k)

Tn
is the sum of N (D(k)

Tn
)

different (2k)-order terms, where

N
(
D(k)

Tn

) = n!

(2k)!!(n − 2k)!
. (14)

In the same way, when n is odd, it is similar that

{u1 · σ, u2 · σ, . . . , un · σ}
=
∑

T ′
n

{ui1 · σ, u j1 · σ} · · · {ui n−1
2

· σ, u j n−1
2

· σ}(ui n+1
2

· σ)

=
(

n − 1

2

)
!2

n−1
2

∑
T ′′

n

(ui1 · u j1 )

· · · (ui n−1
2

· u j n−1
2

)(u j n+1
2

· σ )

= (n − 1)!!V
( n−1

2 )
Tn

· σ, (15)

where V (k)
T is defined as

V (k)
T =

∑
T ′′

(ui1 · u j1 )(ui2 · u j2 ) · · · (uik · u jk )u jk+1 , (16)

in which i1, j1, . . . , ik, jk, jk+1 ∈ T are also distinct.
Then we calculate the many-body anticommutator on

density matrices ρ1, ρ2, . . . , ρn. Applying Eq. (1) and the
properties of the anticommutator, we have

{ρ1, ρ2, . . . , ρn}
= 1

2n
{1 + u1 · σ, . . . , 1 + un · σ}

= 1

2n

n∑
k=0

∑
{i1,··· ,ik}⊂Tn

{ui1 · σ, . . . , uik · σ, 1, . . . , 1}

= 1

2n

(
n! +

n∑
k=1

n!

k!

∑
{i1,...,ik}⊂Tn

{ui1 · σ, . . . , uik · σ}
)

. (17)

Then applying the result of the many-body anticommutator
on Pauli matrices, we have∑

{i1,...,ik}⊂Tn

{ui1 · σ, . . . , uik · σ}

=

⎧⎪⎪⎨
⎪⎪⎩

k!!
∑

{i1,...,ik}⊂Tn

D
( k

2 )
{i1,...,ik}, k is even

(k − 1)!!
∑

{i1,...,ik}⊂Tn

V
( k−1

2 )
{i1,...,ik} · σ, k is odd

=
{

k!!D
( k

2 )
Tn

, k is even

(k − 1)!!V
( k−1

2 )
Tn

· σ, k is odd.
(18)

In this way, we can get

{ρ1, ρ2, . . . , ρn}

= 1

2n

⎡
⎣ [ n

2 ]∑
j=0

n!(2 j)!!

(2 j)!
D( j)

Tn
+

[ n−1
2 ]∑

j=0

n!(2 j)!!

(2 j + 1)!
V ( j)

Tn
· σ

⎤
⎦

= n!

2n

⎡
⎣ [ n

2 ]∑
j=0

D( j)
Tn

(2 j − 1)!!
+

[ n−1
2 ]∑

j=0

V ( j)
Tn

(2 j + 1)!!
· σ

⎤
⎦, (19)

and since Tr(A · σ ) = 0 for arbitrary vector A, we have

Tr{ρ1, ρ2, . . . , ρn} = n!

2n−1

[ n
2 ]∑

j=0

D( j)
Tn

(2 j − 1)!!
, (20)

where (−1)!! = 1.

III. APPLICATIONS TO THE COMPLETELY
SYMMETRIC STATES

With the conclusion in the previous section, we can get
more useful results in MSR. In this section we calculate
the normalization constant of completely symmetric states
with MSR.

From Eq. (2), we know that the normalization constant
Nn satisfies

N 2
n =

∑
P,P̃∈Sn

n∏
i=1

〈ψP̃(i)|ψP(i)〉, (21)

where both P and P̃ go through all n permutations. It is
obvious that the value of

∏n
i=1〈ψP̃(i)|ψP(i)〉 will not change

when the factors 〈ψP̃(i)|ψP(i)〉, i = 1, 2, . . . , n exchange with
each other. Then for every fixed P̃ we can adjust the factors
with permutation P̃−1 and get

∑
P∈Sn

n∏
i=1

〈ψP̃(i)|ψP(i)〉 =
∑
P∈Sn

n∏
i=1

〈ψi|ψP(P̃−1(i))〉

=
∑
P∈Sn

n∏
i=1

〈ψi|ψP(i)〉. (22)

Thus

N 2
n = n!

∑
P∈Sn

n∏
i=1

〈ψi|ψP(i)〉, (23)
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FIG. 1. The cycle diagram of P = (1 2 3 4 5 6
2 3 1 5 4 6).

where
∏n

i=1〈ψi|ψP(i)〉 are different from each other for
arbitrary fixed P when the states |ψi〉, i = 1, . . . , n are dis-
tinguishable.

On the other hand, with the definition of the l
cycle as the structure of P(i1) = i2, P(i1) = i2, ..., P(il ) =
i1, every permutation P in Eq. (23) is either an n cy-
cle or a product of some disjoint cycles [31]. Taking P =
(1 2 3 4 5 6
2 3 1 5 4 6) ∈ S6 for an example, it is constructed

by three cycles (1, 2, 3)(4, 5)(6), and the corresponding cycle
diagram is given in Fig. 1. It is obvious that any permutation
P can be reconstructed as a combination of several cycles
(i(1)

1 , . . . , i(1)
l1

) · · · (i(q)
1 , . . . , i(q)

lq
), where 1 � q � n. Corre-

spondingly, with the cycles we have

n∏
i=1

〈ψP̃(i)|ψP(i)〉

=
q∏

j=1

(〈ψi( j)
1

|ψi( j)
2

〉〈ψi( j)
2

|ψi( j)
3

〉 · · · 〈ψi( j)
l j

|ψi( j)
1

〉)

=
q∏

j=1

Tr
(
ρi( j)

1
ρi( j)

2
· · · ρi( j)

l j

)
. (24)

So when the states |ψi〉 are distinguishable (all of the dis-
cussion below assumes this condition), there are n! different
terms as

∏q
j=1 Tr(ρi( j)

1
ρi( j)

2
· · · ρi( j)

l j

).

Then to distinguish the n! different terms as the final result
in Eq. (24) and sum all of them, we introduce Young diagrams
to describe the grouping. For example, when n = 4, there
are five structures of the grouping described by the Young
diagrams in Fig. 2, which are associated with the partitions
of integer n = 4. In general, the grouping is associated with

(a) (b)

(c) (d)

(e)

FIG. 2. The Young diagrams associated with the partitions of
n = 4, where the rows stand for li, i = 1, . . . , q, with li � li+1, as
(a) 4, (b) 3 + 1, (c) 2 + 2, (d) 2 + 1 + 1, and (e) 1 + 1 + 1 + 1.

TABLE I. The nT , nI , and KI associated with the Young diagrams
when n = 4.

nT nI KI

Fig. 2(a) 6 24 6
Fig. 2(b) 8 24 8
Fig. 2(c) 3 12 6
Fig. 2(d) 6 12 12
Fig. 2(e) 1 1 24

the partitions of integer n as

n =
q∑

i=1

li =
∞∑

α=1

α · nα, (25)

where nα is the times that α repeats in the partition.
It is obvious that

∏q
j=1 Tr(ρi( j)

1
ρi( j)

2
· · · ρi( j)

l j

) are differ-

ent when corresponding with a different Young diagram.
However, when we fill the same Young diagram with in-
dices (i(1)

1 , . . . , i(1)
l1

) · · · (i(q)
1 , . . . , i(q)

lq
) and get different Young

tableaux, the corresponding results
∏q

j=1 Tr(ρi( j)
1

ρi( j)
2

· · · ρi( j)
l j

)

will repeat. This is easy to prove since the Young tableaux
are equivalent to the cycle diagrams, in which the rotation
of indices in the same circle and the exchange between cir-
cles of the same size will not change the value of the terms∏q

j=1 Tr(ρi( j)
1

ρi( j)
2

· · · ρi( j)
l j

). Then, in this way, we can get the

number of unequal terms for every Young diagram in Fig. 2,
and the results are given in Table I as nT . In general, we can
get the number of unequal terms in a Young diagram as

nT = n!
∞∏

α=1
αnα nα!

. (26)

Then we sum all the unequal terms to get N 2
n . With sym-

metry, we can assume

N 2
n =

∑
I

KI

∑
PI

q∏
j=1

Tr
{
ρi( j)

1
, · · · , ρi( j)

l j

}
, (27)

where I stands for all kinds of Young diagrams and PI =
{i(1)

1 , . . . , i(1)
l1

}, . . . , {i(q)
1 , . . . , i(q)

lq
} stands for all the possible

sequences as the Young tableaux that are associated with
the Young diagrams, in which i( j)

k � i( j)
k+1, l j � l j+1, and, if

l j = l j+1, i.e., if the lines are of equal width in the Young
diagram, there should be i j

1 � i j+1
1 to exclude the dupli-

cates. Furthermore, the coefficient KI should be determined.
For each Young diagram in Fig. 2, we list all the terms of∑
PI

∏q
j=1 Tr{ρi( j)

1
, . . . , ρi( j)

l j

} in Table II, and in this way we can

get the number of terms as

nPI = 1∏∞
α=1 nα!

Cl1
n Cl2

n−l1
· · ·Clq

n−∑q−1
j=1 l j

= n!∏∞
α=1 nα!(α!)nα

. (28)
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TABLE II. The terms and corresponding nPI and nI associated with the Young diagrams when n = 4.

Terms in
∑

PI

∏q
j=1 Tr{ρ

i( j)
1

, . . . , ρ
i( j)
l j

} nPI nI

Fig. 2(a) {ρ1, ρ2, ρ3, ρ4} 1 24
{ρ1, ρ2, ρ3}{ρ4};{ρ1, ρ2, ρ4}{ρ3};Fig. 2(b) 4 24
{ρ1, ρ3, ρ4}{ρ2};{ρ2, ρ3, ρ4}{ρ1}

Fig. 2(c) {ρ1, ρ2}{ρ3, ρ4};{ρ1, ρ3}{ρ2, ρ4};{ρ1, ρ4}{ρ2, ρ3} 3 12
{ρ1, ρ2}{ρ3}{ρ4};{ρ1, ρ3}{ρ2}{ρ4};

Fig. 2(d) {ρ1, ρ4}{ρ2}{ρ3}; {ρ2, ρ3}{ρ1}{ρ4}; 6 12
{ρ2, ρ4}{ρ1}{ρ3};{ρ3, ρ4}{ρ1}{ρ2}

Fig. 2(e) {ρ1}{ρ2}{ρ3}{ρ4} 1 1

Then after expanding all the {ρi( j)
1

, . . . , ρi( j)
l j

}, the terms are

counted as

nI = n!
∞∏

α=1
nα!

. (29)

In this way, KI is determined as

KI = n!nT

nI
= n!

∞∏
α=1

αnα

= n!
q∏

j=1
l j

. (30)

Furthermore, applying the result in Eq. (20), we have

N 2
n = n!

∑
I

∑
PI

q∏
j=1

⎡
⎢⎣ (l j − 1)!

2l j−1

[
l j
2 ]∑

k j=0

D
(k j )

{i( j)
1 ,...,i( j)

l j
}

(2k j − 1)!!

⎤
⎥⎦. (31)

Then since Tn = {i(1)
1 , . . . , i(1)

l1
, . . . , i(q)

1 , . . . , i(q)
lq

}, we can

get that the product of the (2k j )-order term in D
(k j )

{i( j)
1 ,...,i( j)

l j
} is a

(2
∑q

j=1 k j )-order term in D
(
∑q

j=1 k j )
Tn

. In this way, we introduce
J =∑q

j=1 k j , and it is obvious that 0 � J � [ n
2 ]. Then with

the symmetry of all of the sequence in PI we can assume

N 2
n = n!

[n/2]∑
J=0

an,JD(J )
Tn

. (32)

To calculate an,J , we first introduce a counting function
N (· · · ) like N (D(k)

T ) in Eq. (14) to count the (2k)-order terms,
and it is obvious that N (λD(k)

T ) = λN (D(k)
T ) for all λ ∈ R and

N (D(k1 )
T1

D(k2 )
T2

) = N (D(k1 )
T1

) + N (D(k2 )
T2

). In this way, we can get

N

⎛
⎜⎝

D
(k j )

{i( j)
1 ,...,i( j)

l j
}

(2k j − 1)!!

⎞
⎟⎠ = 1

(2k j − 1)!!
N

(
D

(k j )

{i( j)
1 ,...,i( j)

l j
}

)

= C2ki
l j

, (33)

where C
2k j

l j
is the general binomial coefficient, which equals

the binomial coefficient C
2k j

l j
when l j � 2k j and equals

zero when l j < 2k j . Then for
∑q

j=1 k j = J , we count the

(2J )-order terms in Eqs. (31) and (32), respectively, and get

n!
∑

I

∑
PI

q∏
j=1

(l j − 1)!

2l j−1

∑
∑q

j=1 k j=J

C
2k j

l j

= n!an,J
n!

(n − 2J )!(2J )!!
. (34)

From the Appendix we see an,J = (n+1)!
2n

1
(2J+1)!! . So the

normalization constant is determined as

N 2
n = n!(n + 1)!

2n

[ n
2 ]∑

J=0

1

(2J + 1)!!
D(J )

Tn
. (35)

IV. CONCLUSION

In this paper, we first give the definition of the many-body
anticommutator by expanding the two-body anticommutator,
and then we list several properties of the anticommutator.
With these properties, we calculate the anticommutator of
Pauli matrices and density matrices as examples, which are
useful results to study completely symmetric state systems
with MSR.

Then we calculate the normalization constant of the com-
pletely symmetric state. We view every permutation as a
disjoint union of cycles, and each cycle shows up as the trace
of the product of several density matrices. Summing all per-
mutations, we can see that every term is in an anticommutator.
Then with the result of the anticommutator and the method of
partition and power series, we get the final answer.

The anticommutation relationship between the operators is
the manifestation of symmetry in the many-body system. In
addition to the above examples and results, we believe that the
promotion of the anticommutator as the many-body anticom-
mutator will be useful in further analysis of the completely
symmetric system.
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APPENDIX: THE CALCULATION OF an,J

With Eq. (34), we define An,J = an,J

(n−2J )!(2J )!! and have

An,J = 1

n!

∑
I

∑
PI

q∏
j=1

(l j − 1)!

2l j−1

∑
∑q

j=1 k j=J

C
2k j

l j
, (A1)

which can be associated with the coefficients in the series
expansion of the binary generating function.

To find the binary generating function, first we determine∏q
j=1

∑∑q
j=1 k j=J C

2k j

l j
. It is exactly the (2J )th coefficient of the

power series about variable x in
q∏

j=1

∞∑
k j=0

C
2k j

l j
x2k j

=
q∏

j=1

1

2

[ ∞∑
i=0

Ci
l j

xi +
∞∑

i=0

Ci
l j

(−x)i

]

=
q∏

j=1

1

2

[
(1 + x)l j + (1 − x)l j

]
, (A2)

since each {k1, . . . , kq} satisfies
∑q

j=1 k j = J corresponding
to x2k1 · · · x2kq = x2J that arises in the product.

Then we have
∞∑

J=0

An,Jx2J

= 1

n!

∑
I

∑
PI

q∏
j=1

(l j − 1)!
(1 + x)l j + (1 − x)l j

2l j

= 1

n!

∑
I

∑
PI

∞∏
α=1

[
(α − 1)!

(1 + x)α + (1 − x)α

2α

]nα

. (A3)

Then for all PI in a Young diagram, {n1, n2, . . . , nα, . . .} is
fixed, which means that the terms repeat nPI times as shown in
Eq. (28). In this way, Eq. (A3) can be simplified as

∞∑
J=0

An,Jx2J =
∑

I

∞∏
α=1

1

nα!

[
(1 + x)α + (1 − x)α

2α · α

]nα

=
∑

∞∑
α=1

α·nα=n

∞∏
α=1

1

nα!

[
(1 + x)α + (1 − x)α

2α · α

]nα

.

(A4)

Again, Eq. (A4) is exactly the nth power-series coefficient
about variable y of

∞∑
nα=0

∞∏
α=1

1

nα!

[
(1 + x)α + (1 − x)α

α · 2α

]nα

ynαα

=
∞∏

α=1

exp

[
(1 + x)α + (1 − x)α

α

( y

2

)α
]

= exp

[ ∞∑
α=1

1

α

(
(1 + x)y

2

)α

+
∞∑

α=1

1

α

(
(1 − x)y

2

)α
]

= exp

[
− ln

(
1 − (1 + x)y

2

)
− ln

(
1 − (1 − x)y

2

)]

= 4

(2 − y − xy)(2 − y + xy)
, (A5)

since each {n1, n2, . . . , nα, . . .} corresponds to the term
yn1 (y2)n2 · · · (yα )nα · · · = yn in the product and it is the binary
generating function of An,J that we are finding.

So the last step is to expand the binary generating function
into a series expression as

4

(2 − y − xy)(2 − y + xy)

= 1

xy

[(
1

1−(1 + x)y/2
− 1

)
−
(

1

1 − (1 − x)y/2
− 1

)]

= 1

xy

∞∑
n=0

[
(1 + x)n+1 − (1 − x)n+1]( y

2

)n+1

= 2

xy

∞∑
n=0

∞∑
J=0

C2J+1
n+1 x2J+1

( y

2

)n+1

=
∞∑

n=0

∞∑
J=0

1

2n
C2J+1

n+1 x2Jyn. (A6)

In this way,

∞∑
n=0

∞∑
J=0

An,Jx2Jyn =
∞∑

n=0

∞∑
J=0

1

2n
C2J+1

n+1 x2Jyn. (A7)

So we get An,J = 1
2n C2J+1

n+1 , with which an,J is
determined as

an,J =
{ (n+1)!

2n
1

(2J+1)!! , 0 � J �
[

n
2

]
0, otherwise.

(A8)
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