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Density-dependent spin-orbit coupling in degenerate quantum gases
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In this letter we propose a method to realize a kind of spin-orbit coupling in ultracold Bose and Fermi gases that
depends on the density of atoms. Our method combines two-photon Raman transition and periodical modulation
of spin-dependent interaction, which gives rise to both the direct Raman process and the interaction-assisted
Raman process. The interaction-assisted Raman process depends on the density of atoms. These two processes
have opposite effects in terms of spin-momentum locking and compete with each other. As the interaction
modulation increases, the system undergoes a crossover from the direct Raman process dominated regime to the
interaction-assisted Raman process dominated regime. During this crossover, for bosons, both the condensate
momentum and the chirality of condensate wave function change sign, and for fermions, the Fermi surface
distortion is inverted. We highlight that there exists an emergent spatial reflectional symmetry in the crossover
regime, which can manifest itself universally in both Bose and Fermi gases. Our method may pave a way to
novel phenomena in the density-dependent spin-orbit coupling gauge field with intrinsic dynamics.
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Introduction. Spin-orbit (SO) coupling is an unambigu-
ous phemonenon of the electron gases in quantum materials,
which is essentially a relativistic effect of charged particles.
For a given material, both the form and the strength of the
SO coupling are fixed [1,2]. Although the atoms are neutral,
SO coupling can now be simulated for ultracold atoms by
ultilizing the atom-light interactions [3–5]. In the simplest and
most widely used setting, a pair of Raman lasers are applied to
an ultracold atomic cloud [6–8]. This pair of lasers can flip the
spin from down to up, accompanied by a momentum transfer
to the right, and simultaneously, can flip the spin from up to
down, accompanied by a momentum transfer to the left. In
this way, the spin and momentum are coupled, thus it leads
to the SO coupling effect. Studying SO coupling in ultracold
atomic gases can significantly enrich our understanding of
its effects on many-body physics. For instance, the impacts
of SO coupling on a Bose gas [9–28] and its interplay with
the Bose-Einstein condensation–Bardeen-Cooper-Schrieffer
(BEC-BCS) crossover [29–39] are both novel effects revealed
by ultracold atomic systems, which have no counterpart in
electronic system studied before.

Another unique aspect of SO coupling in ultracold atom
systems is that the coupling itself can be made dynamical,
where the atoms can give feedback to the form or strength
of the SO coupling. There are two approaches to realize
such dynamical SO coupling. One approach is to replace the
classical Raman lasers with the quantum photon field. For
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instance, by strongly coupling the ultracold atoms with the
optical cavity field [40–42]. Another approach is to make the
SO coupling depending on the atom field itself, for instance,
depending on the density of atoms. Here we will focus on the
second approach. Actually, for the Abelian case, the density-
dependent U (1) gauge field has been proposed [43–45] and
realized in ultracold atom systems [46–48]. In this letter, we
will show that the density dependence can also be realized in
SO coupling as a density-dependent spin-orbit coupling gauge
field in both degenerate Bose and Fermi gases.

Setting. First, we consider the configuration where a cloud
of ultracold atoms is shined by two counterpropagating Ra-
man beams, as shown in Fig. 1(a) and described in the caption
of Fig. 1. The single-particle Hamiltonian of the atoms is
given by

Ĥ0 = − h̄2∇2

2m
+ h

2
σz + h̄� cos(2krx − ωt )σx. (1)

Here h is the Zeeman splitting between spin-up and spin-
down, kr the wave number of the lasers, � the strength of the
Raman process, and ω is the frequency difference between
two Raman lasers.

We consider periodically modulating the interaction be-
tween two spin components as gcos(2ωt )n̂↑(r)n̂↓(r). Such
a technique of modulating interaction is nowadays quite ma-
tured in ultracold atom experiments, specifically, the Chicago
group’s experiment has shown the entire process of modu-
lating scattering length in a Bose gas can be coherent and
reversible, therefore heating in this system can be negligible
[46,49,50]. For the situation we consider here, to a very good
approximation, 〈n̂↑(r) + n̂↓(r)〉 is a constant. Therefore, it is
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FIG. 1. (a) Schematic of experimental configuration. A pair of
Raman lasers propagating along x̂ are applied to a cloud of ultracold
atoms. One laser is linearly polarized along ŷ with frequency ω0 and
the other laser is linearly polarized along ẑ with frequency ω0 + ω.
A Zeeman field is applied along ẑ and spin-dependent interaction is
modulated with frequency 2ω. (b) Direct Raman transition regime. A
two-photon process induces a spin flip σ+ with momentum transfer
2kr. (c) Interaction-assisted Raman transition regime. A two-photon
process induces a spin flip σ+ with momentum transfer −2kr, and
the energy offset is compensated by interaction modulation.

convenient to rewrite the interaction Hamiltonian as

−g

4
cos(2ωt )[n̂↑(r) − n̂↓(r)]2. (2)

Here we leave the total density-density interaction for future
consideration as it does not enter the Raman processes consid-
ered here. We employ the Hartree-Fock mean-field treatment
by the approximation [n̂↑(r) − n̂↓(r)]2 ≈ 2n0Mz(r)[n̂↑(r) −
n̂↓(r)], where Mz(r) = 〈n̂↑(r) − n̂↓(r)〉/n0 is the normalized
magnetization and n0 = N/V is the average total density. Thus
the mean-field single-particle Hamiltonian can be written as

ĤMF = Ĥ0 − g

2
n0Mz(r)σz cos(2ωt ), (3)

where Ĥ0 is given by Eq. (1). Note that the magnetization
Mz(r) needs to be determined self-consistently.

Floquet methods. We employ the Floquet approach
to solve the mean-field Hamiltonian in Eq. (3). One
way is to calculate the time evolution operator Û (T ) =
T exp{−i

∫ T
0 dtĤMF(t )/h̄} for a given Mz(r) numerically.

Then we diagonalize the time evolution operator as
Û (T )|ϕn〉 = e−iεnT h̄|ϕn〉. Here εn is the quasi-energy, which
is restricted in the regime −π h̄/T εnπ h̄/T and |ϕn is the
corresponding Floquet eigenstate. Thus for bosons, we con-
sider that all atoms condense on the state with the lowest
quasi-energy, and for fermions, we consider that all atoms
fill a Fermi sea. So the magnetization Mz(r) can be obtained
according to either the condensation wave function for bosons
or the Fermi sea wave function for fermions, respectively.
Finally, we substitute this Mz(r) to Û (T ) and solve the Floquet
eigenstate iteratively until a self-consistency is reached.

To see the physics more clearly, another way is to obtain
the Floquet effective Hamiltonian. First we apply a unitary

rotation Û to the mean-field Hamiltonian in Eq. (3),

Û = e
i
h̄

∫ t
0 dt ′[ h̄ω

2 σz− gn0Mz
2 σz cos(2ωt ′ )]. (4)

The Hamiltonian after rotation is given by

Ĥ (t ) = ÛĤMFÛ† − iÛ∂t Û†

= − h̄2 �2

2m
+ δσz + h̄� cos (2krx − ωt )

×
(

0 ei[ωt− λMz
2 sin (2ωt )]

H.c. 0

)
, (5)

where δ = (h − h̄ω)/2 and λ = gn0/(h̄ω), which is propor-
tional to the atom density and the modulation amplitude. Here,
for simplicity, we assumed that Mz is a spatial-independent
constant, which has been well justified by the numerical cal-
culation.

Note that

cos(2krx − ωt )ei[ωt− λMz
2 sin (2ωt )]

= ei2krx + e−i2krx+i2ωt

2

n=∞∑
n=−∞

Jn

(
−λMz

2

)
ei2nωt , (6)

where Jn is the Bessel function of order n. When h̄ω is
much larger than the typical kinetic energy and the Raman
coupling strength of the system, we can use the high-
frequency expansion to obtain the Floquet effective Hamil-
tonian [51,52], Ĥeff ≈ Ĥ (0) + ∑∞

n=1
[Ĥ (n),Ĥ (−n)]

h̄ω
+ · · · , where

Ĥ (n) = 1
T

∫ T
0 Ĥ (t )e−inωt dt . In the high-frequency limit, we

can keep the expansion to the leading order Ĥeff ≈ Ĥ (0), ob-
taining

Ĥeff = − h̄2 �2

2m
+ δσz + h̄�

2

×
(

0 J0
(

λMz

2

)
ei2kr x + J1

(
λMz

2

)
e−i2kr x

H.c. 0

)
. (7)

Discussions of the effective Hamiltonian. The effective
Hamiltonian Eq. (7) is a central result of this work. It rep-
resents a faithful representation of the density-dependent SO
coupling proposed in this work. To illustrate the physics
clearly, we first look at two limits.

Note that for low atomic density or small modulation am-
plitude λ → 0, we have J0 → 1 and J1 → 0. Thus, in this
limit, the J0 term dominates over the J1 term. If we ignore
the J1 term, this effective Hamiltonian can be transformed
into

Ĥeff = h̄2

2m
(−i∇ + krexσz )2 + δσz + h̄�0

2
σx (8)

by a unitary transformation Û0 = e−iσzkrx, where �0 =
�J0(λMz/2). Except for renormalizing � to �0, this is the
same effective Hamiltonian for the direct Raman process at
the single-particle level. This direct Raman coupling term is
shown in Fig. 1(b), where the momentum of an atom increases
by 2h̄kr when its spin is flipped from down to up, and de-
creases by 2h̄kr when its spin is flipped in an opposite way.

As λ increases, J1 increases and J0 is suppressed. For
large atomic density or strong modulation, the J1 term domi-
nates over the J0 term. If we ignore the J0 term, the effective
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Hamiltonian can be transformed into

Ĥeff = h̄2

2m
(−i∇ − krexσz )2 + δσz + h̄�1

2
σx (9)

by a unitary transformation Û1 = eiσzkrx, where �1 is given
by �J1(λMz/2). Note that krσz in Eq. (8) is now changed
to −krσz in Eq. (9). This Hamiltonian actually describes the
opposite process compared with the direct Raman transition.
As shown in Fig. 1(c), the momentum of an atom decreases
by 2h̄kr when its spin is flipped from down to up; while it
will increases by 2h̄kr when its spin is flipped from up to
down. However, at the single-particle level, when h ∼ h̄ω, the
energy between the initial and the final states of this process
differs by ∼2h̄ω. This 2h̄ω energy offset can be compen-
sated by absorbing one energy quanta from the periodically
modulating with a frequency 2ω [53]. Thus, the combination
of interaction modulation and Raman beam gives rise to the
interaction-assisted Raman process depending on the atomic
density.

Therefore, when the atomic density is low, the direct Ra-
man process dominates; while in the large atomic density
limit, the interaction-assisted Raman process dominates. Both
the strength and the sign of the SO coupling are density
dependent. The effective Hamiltonian Eq. (7) includes both
processes on equal footing and illustrates clearly the competi-
tion between them.

Results for bosons. We consider the ground state of a
three-dimensional Bose condensate with δ = 0. In this case,
the numerical calculation shows that there are two degenerate
ground states where the majority of atoms, either spin-up
or spin-down, condense at the momentum of energy minima
kmin = (kmin, 0, 0) around zero. In one of the ground states,
in the direct Raman coupling regime, the majority of spin-
down atoms are coupled to the minority of spin-up atoms
with positive momentum, and therefore, kmin is pushed to a
slightly negative value in the direction of Raman lasers. If we
define a chirality 〈k̂σz〉 with k̂ = kmin/|kmin|, the chirality is
positive. In the interaction-assisted Raman coupling regime,
in contrast, the majority of spin-down atoms are coupled to
the minority of spin-up atoms with negative momentum, and
therefore, kmin is pushed to a slightly positive value in the
direction of Raman lasers. Then the chirality is negative. In the
crossover regime, both direct and interaction-assisted Raman
processes are equally important, and the minority of spin-up
atoms appear at both positive and negative momenta. This is
schematically shown in the first row of Fig. 2.

The results obtained from quantitative calculations are
shown in Fig. 3, which are obtained by self-consistently solv-
ing the Floquet Hamiltonian. We show how the condensation
momentum and chirality change when the interaction modula-
tion increases. One can especially see that the chirality jumps
from positive to negative at the point where kmin crosses zero.
In another degenerate state, the majority of spin-up atoms are
coupled to the minority of spin-down atoms with negative mo-
mentum in the direct Raman coupling regime, and are coupled
to the minority of spin-down atoms with positive momentum
in the interaction-assisted Raman coupling regime, as shown
in the second row of Fig. 2. Consequently, kmin changes from
positive to negative as the interaction modulation increases.

FIG. 2. Schematic of the experimental prediction for spin-
resolved momentum distribution. Here blue circles with upper arrows
denote the cloud of spin-up atoms, and yellow circles with down
arrows denote the cloud of spin-down atoms. The size of the cir-
cles is proportional to the atom number. They are separated along
the horizontal spatial direction because of the Stern-Gerlach effect.
The vertical axes denote different momenta measured by the time
of flight. (a), (b) The direct Raman coupling regime, where the
interaction modulation amplitude or atomic density are small. (e),
(f), The interaction-assisted Raman coupling with large modulation
amplitude or atomic density. (c), (d) The crossover regime where
both processes are important. For bosons, the prediction is for the
detuning δ ∼ 0 and two different rows are for two degenerate ground
states. For fermions, the upper row is for δ � EF > 0 and the lower
row is for δ < 0 and |δ| � EF, where EF is the Fermi energy.

-0.1

0

0.1 (a)

420

-1

0

1
(b)

FIG. 3. Bose-Einstein condensate with density-dependent SO
coupling. (a) The condensation momentum kmin (in units of kr) as
a function of interaction modulation amplitude λ = gn0/(h̄ω). Two
lines are for two degenerate ground states with 〈σz〉 > 0 (the dot-
dashed line) and 〈σz〉 < 0 (solid line), respectively. The dot-dashed
line and solid line are obtained by numerical calculation, while the
dashed lines are obtained by the effective Hamiltonian. (b) The
chirality 〈k̂σz〉 of the ground state. The two ground states share the
same value of chirality. Here we take δ = 0, � = 2Er and ω = 20Er ,
with Er = h̄2k2

r /(2m). The vertical gray dashed line denotes the value
of λ where kmin = 0 and the chirality jumps.
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FIG. 4. One-dimensional degenerate Fermi gas with density-
dependent SO coupling. �kF = k+

F + k−
F , where k±

F are the Fermi
points at positive and negative momenta. �kF (in units of kr) is plot-
ted as a function of interaction modulation amplitude λ = gn0/(h̄ω).
The solid line and dashed line are obtained by calculation and the
effective Hamiltonian, respectively. The inset schematically shows
the distortion of fermion dispersion in the direct Raman coupling
regime (left) and the density-assisted Raman coupling regime (right).
The dotted lines are dispersion without spin-orbit coupling, while
the dot-dashed lines are distorted dispersion. Here we set δ = 4.5Er ,
� = 2Er , ω = 20Er , and n0/kr = 4. The vertical gray dashed line
denotes the value of λ where �kF = 0.

The behaviors of the chirality are the same for these two states,
as shown in Fig. 3(b).

Results for fermions. For the degenerate Fermi gas, we
consider a simpler situation, where fermions are confined
in a one-dimensional tube along the direction of the Raman
lasers. When δ � EF > 0 , the majority of fermions are spin-
down atoms in the presence of SO coupling. The situation
is similar to the first row of Fig. 2, with the only difference
that atoms populate a Fermi sea instead of occupying the
lowest-energy state. In one dimension, the Fermi surfaces
are simply two points whose momenta are denoted by k±

F
at positive and negative, respectively. Because the Raman
process distorts the single-particle dispersion and breaks the
spatial reflection symmetry, in general k+

F �= −k−
F . In Fig. 4

we show �kF = k+
F + k−

F as a function of the interaction mod-
ulation strength. It shows that the direct Raman coupling and
the interaction-assisted Raman coupling distort the fermion

dispersion in an opposite way, and therefore, �kF changes
from negative to positive when interaction modulation in-
creases. If δ < 0 and |δ| > EF, the majority of fermions are
spin-up atoms. The situation behaves as the second row of
Fig. 2, and �kF changes from positive to negative when inter-
action modulation increases.

Emergent Z2 symmetry. The presence of SO coupling gen-
erally breaks the spatial reflection symmetry. However, this
symmetry is restored when J0(λMz/2) = J1(λMz/2). As one
can see, spatial reflection x → −x keeps the effective Hamil-
tonian Eq. (7) invariant.

This emergent Z2 symmetry in the crossover regime has di-
rect experimental signatures. First, as illustrated in the middle
column of Fig. 2, the clouds of the minority spin component
appear at both positive and negative momenta, which are of
equal size. Second, one can see in Fig. 3 that for bosons,
the condensation momentum kmin = 0 at λ = 3.04. Third, one
can see in Fig. 4 that for fermions, �kF = 0 and the Fermi
surface is not distorted at λ = 3.06. Both are indicated by
vertical dashed lines in Figs. 3 and 4. It is remarkable to
note that although Figs. 3 and 4 consider two different sys-
tems with different detuning δ, different dimensionality, and
different statistics, these two values of λ agree remarkably
with each other because both are determined by the underlying
emergent spatial reflectional symmetry. This value is also con-
sistent with the condition J0(λMz/2) = J1(λMz/2), which
gives λ = 2.87 by taking Mz = 1. In fact, the self-consistent
Mz is close to but smaller than unity when � < 4Er, with
E r = h̄2k2

r /(2m), and the actual value of λ for the emergent
Z2 symmetry is slightly larger than 2.87.

Outlook. In the past decades, extensive studies have re-
vealed the rich physics of ultracold atoms in the presence
of a static SO coupling, whose format and strength are both
fixed. This work proposes a realistic proposal to realize a
density-dependent SO coupling, as given by Eq. (7). Since the
density of atoms is a dynamical variable, this SO coupling
has intrinsic dynamics. Here, as an important initial step to
lay down the basis, we only consider the mean-field theory,
but more interesting effects can certainly be found in future
studies by including density fluctuations. Novel physics can
be found particularly in the regime either when density fluc-
tuations are strong, such as in interacting one-dimensional
gases, or when the system is sensitive to density, such as in
the crossover regime.
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