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Nonlinear Bragg interferometer with a trapped Bose-Einstein condensate
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We propose a scheme for trapped-atom interferometry using an interacting Bose-Einstein condensate. The
condensate is controlled and spatially split into two confined external momentum modes through a series of
Bragg pulses. The proposed scheme (i) allows the generation of large entanglement in a trapped-interferometer
configuration via one-axis twisting dynamics induced by interatomic interaction and (ii) avoids the suppression
of interactions during the interferometer sequence by a careful manipulation of the state before and after phase
encoding. The interferometer can be used for the measurement of gravity with a sensitivity beyond the standard
quantum limit.
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I. INTRODUCTION

Matter-wave atom interferometers are ideal tools for in-
ertial measurements [1,2]: they enable tests of fundamental
theories [3–8], as well as practical applications [9] such
as gravimeters [10–14], gradiometers [15–17], and gyro-
scopes [18–23]. In the wider context of grand unification
theory [24], dual-species matter-wave atom interferometer
have been proposed to test in a unique way the weak
equivalence principle [25–29] where gravity can be tested
within a quantum framework competing with state-of-the-art
classical technologies [30–32]. The use of entangled probe
states [33–35] has been proposed as a viable method to
increase the sensitivity of atom interferometers beyond the
standard quantum limit (SQL) imposed by uncorrelated-atom
probes [36–44]. However, so far, sub-SQL sensitivities have
been mainly shown in proof-of-principle experiments [36]
that might not be compatible with the strict experimental con-
ditions imposed by the specific application [45]. For instance,
gravimeters require the creation of entangled atoms in con-
trollable and separable momentum modes [46]. To generate
such states, recent proposals explored the use of high-finesse
optical cavities [47–49] or particle-particle interaction in
Bose-Einstein condensates (BECs) where entanglement into
internal levels is converted to external degrees of freedom via
Raman addressing [37,50].

In this paper we propose a trapped-atom interferome-
ter for the measurement of inertial forces and gravity with
a sensitivity beyond the SQL. The interferometer uses a
trapped interacting BEC with beam splitters implemented
by Bragg pulses [51–53] (see Fig. 1). Particle entangle-
ment is generated in trapped momentum modes via elastic
atom-atom interaction, which is kept in the interferometer
sequence. We show that sub-SQL sensitivities can be reached,
in our scheme [also referred to as a nonlinear atom inter-
ferometer (NLAI)], due to a careful rotation of the state
before and after the interferometer sequence that accounts
for the growth of phase fluctuations generated by interatomic

collisions. This avoids the exploitation of a Feshbach res-
onance to suppress the scattering length between BEC
atoms [38] during the interferometer operations, which
may introduce substantial systematic effects [54,55]. It thus
paves the way toward practical applications of ultrasensitive
trapped-atom interferometry.

II. INTERFEROMETER SCHEME

The atom interferometer discussed in this paper is shown
schematically in Fig. 1. It starts with a BEC of N atoms
initially at rest in the bottom of a harmonic dipole potential.
The trap is kept on during the full interferometer process,
until the final readout. At t = 0, a Bragg pulse coherently
splits the BEC in two momentum states ±h̄k0, where the
effective wave vectors correspond to the two-photon tran-
sition k0 = 2kL. Each particle in the BEC is in a quantum
superposition of momenta ±h̄k0 such that the state after the
Bragg pulse is described by the coherent spin state |ψin〉 =
2−S

∑S
n=−S

( 2S
S+n

)1/2|S + n, S − n〉, with S = N/2 and the state
|S + n, S − n〉 indicating S ± n atoms with momenta ±h̄k0,
respectively. Notice that we neglect the possible extra momen-
tum mode generated at each laser pulse [53,56]. To this aim,
different configurations can be considered, such as double
Bragg pulses [52] or the combination of an optical lattice and
single Bragg pulses [51,53]. Here we assume an infinitely
narrow momentum distribution of the input state and justify
the use of BECs instead of a thermal ensemble [57].

The system is described by the field operator �̂(r, t ) =
�+(r, t )â+ + �−(r, t )â−, where �±(r, t ) carry the spatial
evolution of the two mean-field wave functions and â± (â†

±) is
the bosonic annihilation (creation) operator of the ±h̄k0 mode.
It is convenient to introduce the SU(2) pseudospin operators of
the Lie algebra [58] Ŝx = (â†

+â− + â†
−â+)/2, Ŝy = (â†

+â− −
â†

−â+)/2i, and Ŝz = (â†
+â+ − â†

−â−)/2, satisfying the com-
mutation relation [Si, S j] = iεi jkSk , with εi jk the Levi-Cività
symbol. Bragg pulses, considered instantaneous at a particu-
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FIG. 1. (a) Scheme of the trapped interferometer. At t = 0, a π/2 Bragg pulse (vertical blue π/2 pulse) splits the BEC in two momentum
modes. The state preparation consists of back-and-forth oscillations up to the time t = mT and is optimized by a final α pulse (vertical green α

pulse). A π/2 Bragg pulse starts the interferometer sequence. To be sensitive to gravity, the trap frequency is changed from ωz to ω̃z. The final
π/2 Bragg pulse closes the interferometer and the state is further optimized by a β pulse (vertical green α pulse). The phase is measured by
counting the number of atoms in each cloud at time t = mT + 3T̃ /4, when the two output modes are separated and the trap is turn off. (b) Main
steps of the sequence shown in a Husimi Q distribution on the Bloch sphere. The top row shows the initial coherent spin state at t = 0 and the
generated spin-squeezed state at t = mT . The next three rows show the state at different stages of the interferometer: after the α rotation (left
column), after phase accumulation (center column), and after β rotation optimization (right column). Here αH denotes the optimal rotation of
the state in the case of a linear interferometer sequence.

lar time tp, are characterized by an effective Rabi frequency

R and phase φL and are described by the linear Hamilto-
nian Ĥ0(t ) = h̄
Rδ(t − tp)[cos(φL )Ŝx + sin(φL )Ŝy] + h̄δθ Ŝz,
where δ(t − tp) is the Dirac delta function and δθ is the
precession of the state due to the phase accumulation. Inter-
atomic interaction in the BEC is responsible for generation
of entanglement between the particles. The interaction is de-
scribed by Ĥint (t ) = h̄χ (t )Ŝ2

z , where the time dependence in
the coefficient χ (t ) is associated with the dynamics of the
wave function in the trap.

During the state preparation, no phase is accumulated
and the state is described by the one-axis-twisting [59]
evolution

|ψe(mT )〉 = e−iτmŜ2
z |ψin〉, (1)

where τm = ∫ mT
0 χ (t )dt is the accumulated nonlinear coeffi-

cient after a time mT depending on the dynamics of the wave
packets �± in the trap, T = 2π/ωz, and ωz is the angular trap
frequency [60]. The calculation of τm can be simplified by
neglecting the recombination of the mode at each half-period
of the trap, giving

τ S
m = 2mπ

7

(
15aγ 2

√
M

h̄

)2/5( ωz

N3

)1/5
, (2)

where a denotes the particle-particle s-wave scattering length,
M is the mass of the atom, ωx,y,z are the trap frequencies, h̄ is
the Plank constant, and γ = ωx,y/ωz is the trap aspect ratio.
In practice, a fine-tuning of τm can be obtained by changing γ

and ωz. Furthermore, τ S
m linearly increases with the number

m of back-and-forth oscillations of the two spatial modes
in the trap (see Fig. 1). In Fig. 2 we compare τm with the
approximated τ S

m for the case m = 1/2, as a function of the
trap frequency [Fig. 2(a)] and trap aspect ratio [Fig. 2(b)] [60].
For relatively short times, the entangling evolution (1) can
generate a substantial amount of spin squeezing in the state
|ψe(mT )〉. This corresponds to the state having spin fluc-

tuations (�Ŝz )2 smaller than the value N/4 of uncorrelated
atoms while retaining a large coherence length 〈Ŝ2

x 〉 + 〈Ŝ2
y 〉 ≈

N2/4. When plotted in the Bloch sphere, the spin-squeezed
states have a characteristic ellipsoid distribution, as shown
in Fig. 1(b). If the state is rotated around the direction y,
perpendicular to the squeezed direction, it becomes distin-
guishable after a rotation angle θ < 1/

√
N [36,61], namely,

below the SQL that characterizes the state distinguishability
of coherent spin states under the same rotation. Metrologically
useful spin squeezing can be quantified by the Wineland pa-
rameter ξ 2 = N (�Ŝz )2/(〈Ŝx〉2 + 〈Ŝy〉2) [62]. In particular, the
horizontal dot-dashed lines in Fig. 2 denote τopt ≈ 1.2/N2/3,
leading to the minimum value min[ξ (τopt)] = N−1/3 [33]. It is
important to compare our scheme with that of Ref. [37], where
entanglement has been generated between a two-component
BEC (different internal state of 87Rb addressed by Raman
transitions; see also [50]) due to a state-dependent potential.
Here entanglement is generated between two different mo-
mentum states of a single-component BEC (same internal

1 10 102 103
10−4

10−3

10−2

10−1

Trap frequency: ωz/2π (Hz)

τ
(r

ad
)

τ1/2

τS
1/2

τopt

γ = 1.0

0 0.5 1 1.5 2
Trap aspect ratio: γ

νz = 100 Hz

(a) (b)

FIG. 2. Input state preparation. Accumulated nonlinear coeffi-
cient τ1/2 (a) as a function of ωz and for spherical trap (γ = 1) and
(b) as a function of the trap aspect ration γ , ranging from a pan-
cake geometry (γ < 1) to a cylindrical geometry (γ > 1). The solid,
dashed, and dot-dashed lines show τ1/2, τ̃ , and τopt, respectively.
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state) where the overlap of the two modes does not inhibit
the generation of squeezing.

The interferometer operation consists of two Bragg pulses
at times mT and mT + T̃ /2, described by Rx(π/2) = e−iπ/2Ŝx

and R†
x (π/2), respectively. In between, the angular trap fre-

quency is changed from ωz to ω̃z, with T̃ = 2π/ω̃z indicating
the period of the new trap (see Fig. 1). In this config-
uration the phase accumulated after half a period is θ =
2k0g(1/ω̃2

z − 1/ω2
z ) [63,64], which makes the apparatus sen-

sitive to gravity. Furthermore, the initial (final) pulse can be
combined with a rotation of angles α (β) in order to opti-
mize the state [59] [see the discussion below and Fig. 1(b)]
and combat the degradation due to phase diffusion [65]. Us-
ing R†

x (π/2)e−i(τ̃ Ŝ2
z +θ Ŝz )Rx(π/2) = e−i(τ̃ Ŝ2

y +θ Ŝy ), the final state
of the full interferometer sequence is described by the
transformation

|ψ f 〉 = e−iβŜx e−i(τ̃ Ŝ2
y +θ Ŝy )e−iαŜx |ψe(mT )〉, (3)

where τ̃ �= 0 denotes the accumulated extra nonlinear coeffi-
cient during the interferometer sequence.

The nonlinear parameters τm (for state preparation) and τ̃

(for the interferometer sequence) can be tuned independently
of each other. Note that the current trapped interferometer
sequence avoids the characteristic refocusing π pulse of free-
falling atom interferometers: the refocusing is provided by the
trap geometry. At the end of the interferometer sequence, the
BEC is kept in the trap for an extra time T̃ /4 that guarantees
maximum separation between the wave packets. After that,
the BEC is released from the trap and imaged. The phase
is estimated by inverting the sinusoidal relation between θ

and the average relative number of particles at the output
ports. In the following we study the sensitivity gain Gα,β of
the nonlinear atom interferometer sequence of Fig. 1 with
respect to the standard quantum limit �θSQL = 1/

√
N [66].

Here �θ = �θSN/Gα,β is the phase sensitivity of the NLAI,
where (�θ )2 = (�Sz )2

α,β/(d〈Sz〉α,β/dθ )2 is obtained by error
propagation and the spin moments are calculated for the out-
put state of Eq. (3). In particular, for θ = 0 we have [66]

G2
α,β = 〈Ŝx〉2

α,β

N (�Ŝz )2
α,β

cos2 β. (4)

The indices α and β refer to the rotation of the state on the
Bloch sphere before and after the interferometer sequence
[see Eq. (3)]. In the following, the parameter β is always
optimized to maximize the sensitivity gain while we consider
different choices of α: α = 0, π/2, αH , and αopt. The first two
choices lead to a total of π/2 and π pulses, respectively, at
time t = mT and can easily be implemented experimentally.
The case α = αH refers to the optimal rotation in the case
of a linear interferometer sequence and α = αopt refers to a
state protection strategy used to limit the impact of τ̃ . In the
following we denote by GL

αH
= min[ξ ] the optimal sensitivity

gain of a linear interferometer (τ̃ = 0).

III. WEAK NLAI

We first study analytically the situation where τ̃ is small
enough to approximate e−iτ̃ Ŝ2

y ≈ 1 − iτ̃ Ŝ2
y . For θ = 0, we can

rewrite Eq. (4) as [66]

G2
α,β = (1 + (2S − 1){sin(2β )τ̃ − sin[2(α + β )]τ }) cos2 β.

(5)

In the case α = 0, the nonlinear evolution during the
interferometer sequence degrades the sensitivity gain by “un-
squeezing” the state though the term sin(2β )(τ̃ − τ ). In
contrast, for α = π/2, the contribution of τ̃ adds to τ such that
the nonlinear evolution during the interferometer “squeezes”
the state even further though the term sin(2β )(τ̃ + τ ). In this
configuration the total pulse at time mT reads Rx(π ) where
the input spin-squeezed state is rotated by π around Ŝx. The
total amount of nonlinearity can then be simply described
by e−i(τ+τ̃ )Ŝ2

z where the π pulse at time t = mT does not
change the orientation of the spin-squeezed state on the Bloch
sphere. Nevertheless, in both cases the sensitivity gain Gα,β

is strongly impacted in general for β �= 0 through the term
cos2 β of Eq. (4). In the case β = 0, the nonlinear evolu-
tion during the interferometer does not play a role and for
π/2 < α < π the sensitivity is sub-SQL. This configuration
is equivalent to a linear interferometer sequence optimized
for αH = −π/4. The fact that the different rotations do
not lead to the same maximum gain emphasizes the impor-
tance of a careful prerotation and postrotation of the state to
reach G > 1.

IV. STRONG NLAI

We now study numerically the more realistic case where
the nonlinear terms of the state preparation and interferometer
sequence are not small. Figure 3 shows the sensitivity gain as
a function of the number of back-and-forth oscillations m and
for different trap aspect ratios. Let us first discuss the case
of weak interaction, namely, γ and m small and τ � τopt.
In the case of α = αH , the results confirm qualitatively the
analysis discussed above where GαH ,βopt ≈ GL

αH
. It is interest-

ing to note that the case α = 0 gives results very similar to
a numerical optimizations over both α and β (green stars):
G0,βopt ≈ GαH ,βopt ≈ GL

αopt
. This configuration corresponds in-

deed to an effortless strategy where only the strength of the
final Bragg pulse, closing the interferometer, needs to be
scanned (and optimized). For α = 0 the state is given by
|ψ f 〉 = e−iβŜx e−iτ̃ Ŝ2

y e−iτ Ŝ2
z |ψin〉, where the sequential action of

first e−iτ Ŝ2
z and then e−iτ̃ Ŝ2

y on the state shears the ellipsoid into
two different directions, leading to the S shape highlighted
in Fig. 1(b) on the Bloch sphere. In the case where α = π/2
the state reads |ψ f 〉 = e−i(β+π/2)Ŝx e−i(τ̃+τ )Ŝ2

z |ψin〉. As shown in
Fig. 1(b), in this case the ellipsoid is not deformed and does
not exhibit an S shape. Even though the orientation of the state
can be optimized though the β rotation, the sensitivity of the
interferometer is strongly degraded for β �= 0 [see Eq. (4)].
This supports the results of Fig. 3 showing that, in this case,
the sensitivity is at the best the SQL (blue curve).

In the case of a strong interaction, namely, γ and m large,
the nonlinear term τ̃ dramatically degrades the sensitivity
gain. In this configuration a nontrivial rotation of the input
state is needed (α �= 0 and α �= αH ) and a trade-off between
the deformation of the ellipsoid, S shape, and final rotation
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FIG. 3. Gain factor Gα,βopt as a function of m (namely, for dif-
ferent spin-squeezed input states) for trap aspect ratios (a) γ = 0.2
(pancake shape) and (b) γ = 1 (spherical shape). The different lines
refer to a linear interferometer (black dashed lines) and nonlin-
ear interferometer sequence (colored lines) with α = 0 (red), π/2
(blue), αH (orange), and αopt (green stars). The numerical results
have been calculated for m = 0, 1/2, 1, . . . and curves are a guide
to the eye obtained via spline interpolation. The maximum gain
Gmax = maxτ [GL

aH (τ )] = N1/3 and SQL G = 1 are highlighted by the
horizontal dashed lines.

β �= 0 degrading the sensitivity gain is required to reach a
sub-SQL sensitivity (green stars).

Figure 4 shows the sensitivity gain optimized with re-
spect to α and β for different trap aspect ratios [Fig. 4(a)]
and trap frequencies [Fig. 4(b)] in the case where the input
spin-squeezed state is generated by m = 1/2 (red) or m = 1
(blue) back-and-forth oscillations. In both cases, increasing
the number of back-and-forth oscillations increases the maxi-
mum sensitivity gain, where the nonlinear terms are controlled
through the different trap parameters. Indeed, even if τ1/2 is
small, after m back-and-forth oscillations τm = 2mτ1/2 while
τ̃ = τ1/2. The oscillation of the maximum sensitivity gain,
shown in Fig. 4(b), is a direct consequence of the trade-off
discussed above. In the case of high trap frequencies and
oversqueezed input spin-squeezed states (namely, τ > τopt),
the nonlinear term τ̃ can unsqueeze the state, explaining the
sudden increase of the optimized sensitivity gain at high trap
frequency observed in Fig. 4(b).

V. DISCUSSION

Let us give some details on the sensitivity of the trapped
interferometer used for a gravity measurement. In this case
the phase accumulated between the two arms is given by
θ = (2k0)g(T̃ /4)2 [63], where, in analogy to a free-fall
Mach-Zehnder interferometer sequence, T̃ /4 denotes the time
between the different pulses. As a result, the single-shot
gravity sensitivity is directly related to the phase sensitivity

0 0.5 1 1.5 2
1

10

trap aspect ration: γ (ωz = 2π 100 Hz)

G α
o
p
t
,β

o
p
t

(τ1/2, τ1/2) (τ1/2, 0) (τ1, τ1/2) (τ1, 0)

(a)

1 10 102 103
1

10

trap frequency: ωz/2π (Hz) (γ= 1.0)
G α

o
p
t
,β

o
p
t

(b)

FIG. 4. Optimized gain factor Gαopt,βopt (a) as a function of the
trap aspect ratio and for a fixed trap frequency νz = 100 Hz and (b) as
a function of the trap frequency for a spherical trap γ = 1. Red and
blue symbols are obtained for a nonlinear interferometer with m =
1/2 (τ = τ1/2) and m = 1 (τ = τ1), respectively. The dashed lines
denote the corresponding sensitivity for a linear interferometer where
τ̃ = 0.

gain through

�g = 4�θSQL

Gα,βkLT̃ 2
. (6)

Considering the case of a 87Rb BEC of N = 103 in an ωz =
2π × 50 Hz trap along the vertical direction, kL = 2π/λL,
λL = 852 nm, and a maximum sensitivity gain of Gmax =
N1/3, one could reach a sensitivity of �g/g ≈ 5 × 10−7 per
shot. Using a coherent spin state as a probe, namely, in
the absence of the squeezed-state preparation sequence, an
equivalent result would require a BEC of N = 105 atoms.
Nevertheless, in this case the impact of interaction during the
different laser pulses would generate extra modes degrading
the sensitivity of the interferometer.

Above, we have assumed a perfectly harmonic trap config-
uration. Indeed, nonharmonic traps (magnetic or optic) do not
prohibit the two modes from overlapping but could induce a
nonidentical shape deformation of each mode, limiting there-
fore the efficiency of the different Bragg pulses. Nevertheless,
one can expect that the different back-and-forth oscillations
would impact the shape of each mode in a similar manner, on
average limiting the detrimental effect of a shape deformation.
Furthermore, it has been shown that the problem of mode mis-
match at the end of the interferometer can as well be adjusted
through a careful rotation of the state [67]. In addition, in the
case of a dipole trap configuration large harmonic traps can be
accessible though the painted potential technique at the cost of
laser power [68,69].
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We have also considered a constant number of atoms
while, in practice, the shot-to-shot fluctuation in atom num-
ber between two consecutive runs cannot be avoided. Such
fluctuations can be dramatic in regard to the full optimiza-
tion of the interferometer sequence where the pre- and post-
of the state are directly linked to the number of atoms. In
addition, the intensity of the laser, the phase of the Bragg
pulses, and the trap frequencies have been assumed to be
identical for each experimental run. Experimental drift of
these quantities would lead to an imperfect splitting pro-
cess, imperfect manipulation of the state, and extra mode
mismatch at the end of the interferometer, degrading the sen-
sitivity of the interferometer. In this paper we have shown
that, in the regime of weak interactions (N = 103 atoms in
a 2π{20, 20, 100} Hz trap), the prerotation of the state can
be avoided (α = 0) in order to reach the best sensitivity gain
G0,βopt = 3.5. Here the BEC is described through a varia-
tional approach where the shape of the mode is assumed to
be a Gaussian with a constant shape for simplicity (a more
advanced numerical approach is required for a more quan-
titative experimental description). Weakly interacting BECs
are required since strong interactions lead to inefficient beam
splitters [70] and to the creation of extra modes [50,71]. Non-
negligible initial momentum spread would lead to the same
detrimental effects [53,56,57]. Furthermore, BEC collisions
at each half-period of oscillations may induce detrimental
effects [72]. A detailed study of the dynamical wave pack-
ets in the trapped interferometer is beyond the scope of this
paper.

VI. CONCLUSION

The trapped-atom interferometer proposed in this paper
reaches sub-SQL sensitivities without requiring the suppres-
sion of the particle-particle scattering length during phase
encoding. The presence of nonlinearity during the interfer-
ometer operations can be mitigated via optimal rotations of
the state on the Bloch sphere. Our result are supported by
analytical calculations in the regime of weak interaction and
numerically in the regime of strong interactions. Larger trap
aspect ratios and/or weaker trap frequencies accessible to-
day in the microgravity environment [73,74] would benefit
from the proposed interferometer where arbitrary input spin-
squeezed states could be made available but not impacted by
a nonlinear interferometer sequence. The strategy proposed
is consistent with the current technology development and
feasibility in current laboratory experiments [37], where only
the final beam splitter has to be optimized to exhibit sub-SQL
sensitivity measurements.

ACKNOWLEDGMENTS

The authors thank Carsten Klempt, Naceur Gaaloul,
Alessia Burchianti, Chiara d’Errico, Marco Fattori, Chiara
Fort, Francesco Minardi, and Samuel Nolan for fruitful dis-
cussions. This work was supported by the European Unions
Horizon 2020 research and innovation program, Qombs
Project, FET Flagship on Quantum Technologies Grant No.
820419.

[1] B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A.
Virdis, A. Clairon, N. Dimarcq, Ch. J. Bordé, A. Landragin,
and P. Bouyer, Six-Axis Inertial Sensor Using Cold-Atom In-
terferometry, Phys. Rev. Lett. 97, 010402 (2006).

[2] R. Geiger, A. Landragin, S. Merlet, and F. Pereira Dos Santos,
High-accuracy inertial measurements with cold-atom sensors,
AVS Quantum Sci. 2, 024702 (2020).

[3] J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich,
Atom interferometer measurement of the Newtonian constant
of gravity, Science 315, 74 (2007).

[4] G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, and
G. M. Tino, Determination of the Newtonian Gravitational Con-
stant Using Atom Interferometry, Phys. Rev. Lett. 100, 050801
(2008).

[5] P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran,
New Method for Gravitational Wave Detection with Atomic
Sensors, Phys. Rev. Lett. 110, 171102 (2013).

[6] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M.
Tino, Precision measurement of the Newtonian gravitational
constant using cold atoms, Nature (London) 510, 518 (2014).

[7] W. Chaibi, R. Geiger, B. Canuel, A. Bertoldi, A. Landragin,
and P. Bouyer, Low frequency gravitational wave detection
with ground-based atom interferometer arrays, Phys. Rev. D 93,
021101(R) (2016).

[8] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Mea-
surement of the fine-structure constant as a test of the standard
model, Science 360, 191 (2018).

[9] K. Bongs, M. Holynski, J. Vovrosh, P. Bouyer, G. Condon,
E. Rasel, C. Schubert, W. P. Schleich, and A. Roura, Taking
atom interferometric quantum sensors from the laboratory to
real-world applications, Nature Reviews Physics 1, 731 (2019).

[10] A. Peters, K. Y. Chung, and S. Chu, Measurement of gravita-
tional acceleration by dropping atoms, Nature (London) 400,
849 (1999).

[11] J. E. Debs, P. A. Altin, T. H. Barter, D. Döring, G. R. Dennis,
G. McDonald, R. P. Anderson, J. D. Close, and N. P. Robins,
Cold-atom gravimetry with a Bose-Einstein condensate, Phys.
Rev. A 84, 033610 (2011).

[12] P. A. Altin, M. T. Johnsson, V. Negnevitsky, G. R. Dennis, R. P.
Anderson, J. E. Debs, S. S. Szigeti, K. S. Hardman, S. Bennetts,
G. D. McDonald, L. D. Turner, J. D. Close and N. P. Robins,
Precision atomic gravimeter based on Bragg diffraction, New J.
Phys. 15, 023009 (2013).

[13] O. Francis, H. Baumann, T. Volarik, C. Rothleitner, G. Klein,
M. Seil, N. Dando, R. Tracey, C. Ullrich, S. Castelein, H.
Hua et al., The European Comparison of Absolute Gravimeters
2011 (ECAG-2011) in Walferdange, Luxembourg: Results and
recommendations, Metrologia 50, 257 (2013).

[14] S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga,
E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer,
W. P. Schleich, and E. M. Rasel, Atom-Chip Fountain Gravime-
ter, Phys. Rev. Lett. 117, 203003 (2016).

[15] M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and
M. A. Kasevich, Measurement of the Earth’s Gravity Gradient

L061301-5

https://doi.org/10.1103/PhysRevLett.97.010402
https://doi.org/10.1116/5.0009093
https://doi.org/10.1126/science.1135459
https://doi.org/10.1103/PhysRevLett.100.050801
https://doi.org/10.1103/PhysRevLett.110.171102
https://doi.org/10.1038/nature13433
https://doi.org/10.1103/PhysRevD.93.021101
https://doi.org/10.1126/science.aap7706
https://doi.org/10.1038/s42254-019-0117-4
https://doi.org/10.1038/23655
https://doi.org/10.1103/PhysRevA.84.033610
https://doi.org/10.1088/1367-2630/15/2/023009
https://doi.org/10.1088/0026-1394/50/3/257
https://doi.org/10.1103/PhysRevLett.117.203003


CORGIER, PEZZÈ, AND SMERZI PHYSICAL REVIEW A 103, L061301 (2021)

with an Atom Interferometer-Based Gravity Gradiometer, Phys.
Rev. Lett. 81, 971 (1998).

[16] J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and
M. A. Kasevich, Sensitive absolute-gravity gradiometry using
atom interferometry, Phys. Rev. A 65, 033608 (2002).

[17] A. Trimeche, B. Battelier, D. Becker, A. Bertoldi, P. Bouyer, C.
Braxmaier, E. Charron, R. Corgier, M. Cornelius, K. Douch, N.
Gaaloul, S. Herrmann, J. Müller, E. Rasel, C. Schubert, H. Wu
and F. Pereira, Concept study and preliminary design of a cold
atom interferometer for space gravity gradiometry, Classical
Quantum Grav. 36, 215004 (2019).

[18] F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordé,
Optical Ramsey Spectroscopy in a Rotating Frame: Sagnac
Effect in a Matter-Wave Interferometer, Phys. Rev. Lett. 67, 177
(1991).

[19] T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Precision Ro-
tation Measurements with an Atom Interferometer Gyroscope,
Phys. Rev. Lett. 78, 2046 (1997).

[20] T. L. Gustavson, A. Landragin, and M. A. Kasevich, Rotation
sensing with a dual atom-interferometer Sagnac gyroscope,
Classical Quantum Grav. 17, 2385 (2000).

[21] D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, Long-Term
Stability of an Area-Reversible Atom-Interferometer Sagnac
Gyroscope, Phys. Rev. Lett. 97, 240801 (2006).

[22] J. K. Stockton, K. Takase, and M. A. Kasevich, Absolute
Geodetic Rotation Measurement Using Atom Interferometry,
Phys. Rev. Lett. 107, 133001 (2011).

[23] G. Tackmann, P. Berg, C. Schubert, S. Abend, M. Gilowski, W.
Ertmer, and E. M. Rasel, Self-alignment of a compact large-
area atomic Sagnac interferometer, New J. Phys. 14, 015002
(2012).

[24] C. Kiefer, Quantum Gravity (Oxford University Press, Oxford,
2007).

[25] D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C.
Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel,
Quantum Test of the Universality of Free Fall, Phys. Rev. Lett.
112, 203002 (2014).

[26] L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan,
J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, Test of
Equivalence Principle at 10−8 Level by a Dual-Species Double-
Diffraction Raman Atom Interferometer, Phys. Rev. Lett. 115,
013004 (2015).

[27] B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T.
Lévèque, A. Landragin, and P. Bouyer, Dual matter-wave iner-
tial sensors in weightlessness, Nat. Commun. 7, 13786 (2016).

[28] X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu,
F. Xiong, Y.-Y. Xu, C.-G. Shao, J. Luo, and Z.-K. Hu, Test
of the Universality of Free Fall with Atoms in Different Spin
Orientations, Phys. Rev. Lett. 117, 023001 (2016).

[29] P. Asenbaum, C. Overstreet, M. Kim, J. Curti, and M. A.
Kasevich, Atom-Interferometric Test of the Equivalence Prin-
ciple at the 10−12 Level, Phys. Rev. Lett. 125, 191101 (2020).

[30] J. G. Williams, S. G. Turyshev, and D. H. Boggs, Progress in
Lunar Laser Ranging Tests of Relativistic Gravity, Phys. Rev.
Lett. 93, 261101 (2004).

[31] S. Schlamminger, K.-Y. Choi, T. A. Wagner, J. H. Gundlach,
and E. G. Adelberger, Test of the Equivalence Principle Using a
Rotating Torsion Balance, Phys. Rev. Lett. 100, 041101 (2008).

[32] P. Touboul, G. Métris, M. Rodrigues, Y. André, Q. Baghi,
J. Bergé, D. Boulanger, S. Bremer, P. Carle, R. Chhun, B.

Christophe et al., MICROSCOPE Mission: First Results of a
Space Test of the Equivalence Principle, Phys. Rev. Lett. 119,
231101 (2017).

[33] L. Pezzè and A. Smerzi, Entanglement, Nonlinear Dynamics,
and the Heisenberg Limit, Phys. Rev. Lett. 102, 100401 (2009).

[34] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W.
Wieczorek, H. Weinfurter, L. Pezzè, and A. Smerzi, Fisher
information and multiparticle entanglement, Phys. Rev. A 85,
022321 (2012).

[35] G. Tóth, Multipartite entanglement and high-precision metrol-
ogy, Phys. Rev. A 85, 022322 (2012).

[36] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and
P. Treutlein, Quantum metrology with nonclassical states of
atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[37] M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and
P. Treutlein, Atom-chip-based generation of entanglement for
quantum metrology, Nature (London) 464, 1170 (2010).

[38] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler,
Nonlinear atom interferometer surpasses classical precision
limit, Nature (London) 464, 1165 (2010).

[39] B. Lücke, M. Scherer, J. Kruse, L. Pezzè, F. Deuretzbacher, P.
Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A.
Smerzi and C. Klempt, Twin matter waves for interferometry
beyond the classical limit, Science 334, 773 (2011).

[40] O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A.
Kasevich, Measurement noise 100 times lower than the
quantum-projection limit using entangled atoms, Nature
(London) 529, 505 (2016).

[41] I. Kruse, K. Lange, J. Peise, B. Lücke, L. Pezzè, J. Arlt, W.
Ertmer, C. Lisdat, L. Santos, A. Smerzi, and C. Klempt, Im-
provement of an Atomic Clock Using Squeezed Vacuum, Phys.
Rev. Lett. 117, 143004 (2016).

[42] R. J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N.
Behbood, and M. W. Mitchell, Magnetic Sensitivity Beyond the
Projection Noise Limit by Spin Squeezing, Phys. Rev. Lett. 109,
253605 (2012).

[43] B. Braverman, A. Kawasaki, E. Pedrozo-Peñafiel, S. Colombo,
C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu,
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