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Measurement of work and heat in the classical and quantum regimes
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Despite the increasing interest, the research field which studies the concepts of work and heat at the quantum
level has suffered from two main drawbacks: first, the difficulty to properly define and measure the work, heat,
and internal energy variation in a quantum system and, second, the lack of experiments. Here, we report a
full characterization of the dissipated heat, work, and internal energy variation in a two-level quantum system
interacting with an engineered environment. We use the IBMQ quantum computer to implement the driven
system’s dynamics in a dissipative environment. The experimental data allow us to construct quasiprobability
distribution functions from which we recover the correct averages of work, heat, and internal energy variation in
the dissipative processes. Interestingly, by increasing the environment coupling strength, we observe a reduction
of the pure quantum features of the energy exchange processes that we interpret as the emergence of the classical
limit. This makes the present approach a privileged tool to study, understand, and exploit quantum effects in
energy exchanges.
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I. INTRODUCTION

The oddities of quantum mechanics such as particle en-
tanglement, superposition of states, interference between
evolution paths, and so on have proven to be a valuable asset
to envision quantum devices able to outperform the corre-
sponding classical ones. From metrology [1] to the detection
of gravitational waves [2] passing through quantum compu-
tation and communication [3], the exploitation of quantum
effects has given a decisive impulse towards new discoveries.
With the advent of quantum technologies, this trend will be
reinforced, allowing for mass production of quantum-based
devices. In this direction, studying the energy exchange pro-
cesses of a quantum system with an external drive and an
environment could have important implications for future de-
velopments. This is the aim of a relatively new area of research
referred to as quantum thermodynamics.

Although numerous results have been obtained, there is
still no clear consensus about how to determine what is the
work and the heat in a quantum system [4–9]. In a closed
quantum system, the work done on the system is equal to the
variation of the internal energy of the system. However, the
need for information at different times makes it impossible to
envision a proper measurement protocol for these quantities
[10].

This limitation has delayed experimental verification, espe-
cially in the case of a quantum system undergoing dissipative
dynamics. Indeed, apart from a single experiment with closed
quantum systems [11] and open ones [12–20], a full and
convincing measurement of the dissipated heat is still missing.
In this Letter, we fill this gap by showing that it is possible to
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obtain the correct and expected average values of work, heat,
and internal energy variation, and important information about
the underlying quantum processes.

To avoid any confusion and interpretative pitfalls, we
choose a more practical approach by focusing on simple and
precise questions. Given a quantum system controlled by an
external time-dependent field, how much energy does the sys-
tem absorb during the evolution? How much work does the
external field do on the quantum system? And what is the heat
dissipated by the quantum system?

To answer these questions, we implement the detection
scheme proposed in Refs. [8,9,21] on an IBMQ device [22].
In particular, we study a two-level quantum system, i.e., a
qubit, subject to an external driving field and interacting with
an engineered environment. The quantum detector and the
engineered environment are represented by three additional
qubits. The advantage of using an engineered environment is
that we can tune the system-environment coupling strength
and explore different dissipative regimes. We implement the
scheme on real physical qubits made available in the IBM
quantum experience initiative.

Our physical observable is the phase of the detector qubit
that is measured with standard techniques (see [22] and the
Supplemental Material [23]) from which we recover the in-
formation about the average work, heat, and internal energy
variation while preserving the full quantum features of the
evolution (see [8,9,21] and the Supplemental Material [23]).

Furthermore, from the measured detector phase, we are
able to construct a quasicharacteristic generating function and
a quasiprobability density function (QPDF) for these physical
observables. The QPDF reproduces the statistics of the two-
measurement protocol (TMP) [4] when the system is initially
in an eigenstate of the Hamiltonian and keeps much more
information about the evolution of the system. In a direct
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analogy with the Wigner function [24], the negative regions
of the derived QPDF are associated to the violation of the
Leggett-Garg inequalities and are the signature of a pure
quantum phenomenon [21,25–28]. The disappearance of these
regions in the presence of strong dissipation can be seen as a
proof of the emergence of the classical limit in energy ex-
change processes induced by the presence of an environment.

II. SYSTEM AND DYNAMICS DESCRIPTION

We start by considering a two-level system (denoted by S)
that evolves under unitary evolution US = UzUx, with Uz =
exp (−iβσz ) and Ux = exp (−iασx ) where σi (i = x, y, z) are
the usual Pauli operators. The system is initially in the state
|ψ0〉 = cos θ

2 |0〉S + sin θ
2 eiφ |1〉S , where |0〉S and |1〉S are the

eigenstates of σz.
This evolution is generated by the time-dependent Hamil-

tonian HS = εσx/2 for 0 � t < t1 and HS = εσz/2 for t1 <

t � T with appropriate t1 and T . The fact that the Hamilto-
nian changes in time assures that the external field does work
on the system [8].

The detector is represented by an additional two-level sys-
tem (denoted by D). Its Hamiltonian is HD = ω
z/2 (where
the operators 
i with i = x, y, z are the Pauli operators acting
on the detector) and it is time independent. The detector is
initialized in an equal superposition of eigenstates of HD, i.e.,
(|0〉D + |1〉D)/

√
2.

The coupling Hamiltonian HSD = f (χ, t )HS (t ) ⊗ HD al-
lows us to store information about the system energy into
the accumulated phase of the detector [9,21]. The function
f (χ, t ) in HSD determines the time at which the system-
detector coupling is active and its coupling strength χ . If the
system-detector coupling occurs on timescales much smaller
than all of the other timescales, we can assume that f (χ, ti ) =
χ/ε δ(t − ti ), which generates the transformation Uχ,ti =
exp{i χ

ε
HS (ti ) ⊗ HD}. In particular, in relation the system dy-

namics described above, we have U±χ,x = exp{±i χ

ε
σx ⊗ HD}

and U±χ,z = exp{±i χ

ε
σz ⊗ HD}.

We model the dissipation as an amplitude-damping chan-
nel [3,29] in which the environment induces relaxation from
the excited to the ground state with probability p (see the
Supplemental Material [23]). The parameter p determines the
strength of the dissipation process and it ranges from p = 0,
i.e., no dissipation, to p = 1, i.e., complete relaxation to the
ground state.

If the relaxation occurs in the {|0〉 , |1〉}, i.e., the σz, basis,
this corresponds to the transformation

|00〉 → |00〉 ,

|10〉 →
√

1 − p |10〉 + √
p |01〉 , (1)

where the first and the second qubits represent the system
and the environment, respectively. Physically, this describes
the emission of an energy quantum from the system, i.e., the
relaxation, and the corresponding absorption from the envi-
ronment. We assume that the environment is at temperature
T and that kBT � ε (where kB is the Boltzmann constant)
so that the processes in which the system is excited by the
interaction with the environment are exponentially suppressed
and are neglected in Eq. (1). The logical operator that mimics

FIG. 1. Three schemes for the detection of the variation of inter-
nal energy U , work W , and dissipated heat Q. The letters S, D, E1,
and E2 denote the system, the detector, and the environment qubits
1 and 2, respectively. The unitary dynamics are represented with red
and light-blue filled squares corresponding to Ux and Uz, respectively.
The dissipative gates are represented with circles connecting the S
qubit with the E1 and E2 qubits. They correspond to Rx (dark red)
and Rz (dark blue). The system-detector coupling operations are
represented with rectangles spanning the S-D qubit space. They are
U−χ,x and Uχ,x (see main text for the definition) represented with
dashed red lines from up-left to down-right and up-right to down-left,
respectively. The operators U−χ,z and Uχ,z (see main text for the
definition) are represented with dashed blue lines from up-left to
down-right and up-right to down-left, respectively. To simplify the
presentation, the gates needed to initialize the system and the detector
are not shown (see the Supplemental Material [23] for details).

the transformation (1) is denoted as Rz (see Fig. 1 and the
Supplemental Material [23]). When the relaxation occurs in
the σx basis, i.e., during the first part of the evolution, the
transformation is analogous to (1) and is implemented with
a similar operator denoted by the Rx operator (see the Supple-
mental Material [23]).

To realize the effect of this engineered environment with
the Rx and Rz operators (see Fig. 1), we need two additional
two-level systems. On a noisy intermediate-scale quantum
(NISQ) device, this translates into two additional qubits (see
the Supplemental Material [23]).

In addition, we assume that the unitary evolution occurs
on shorter timescales with respect to the relaxation timescale.
Hence, we can imagine the system evolution as a sequence of
unitary dynamics followed by relaxation.

The building block of the measurement schemes is the op-
erator sequence Uχ,ti U U−χ,t j , where U is a unitary operator
acting on the system. As discussed in Ref. [9], this allows us
to have information about the system energy changes in the
time interval ti − t j . Here, it is of fundamental importance
to note that work and heat are associated to different kinds
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of dynamical evolution [8]. The work is associated to the
changes in the Hamiltonian, while the heat is associated to the
change of the system state when the Hamiltonian is constant.

Since the system Hamiltonian changes only at time t1,
to measure the work we couple the system and the detector
shortly before and after t1 (Fig. 1).

In the present experiment, the (dissipative) dynamics of
the system is given by the operator Udiss = Rz Uz Rx Ux. The
evolution generated by the latter operator can be divided into
two parts, Rx Ux and Rz Uz, where the system Hamiltonian can
be considered constant. Before and after the time t1, when
the Hamiltonian is constant, the change in the system energy
can be associated to the action of the environment and, thus,
interpreted as dissipated heat. Analogously, we follow the
scheme in Fig. 1 to store information about the dissipated
heat in the σx and σz system basis, respectively. Note that
with this coupling scheme, we obtain information about the
heat, i.e., the dissipated energy, supplied to the environment
(see the Supplemental Material [23]). If we are interested in
the variation of the internal energy of the system, we need to
couple the system and the detector at the beginning and at the
end of the evolution only (see Fig. 1).

We would like to stress that the separation between the
unitary and dissipative dynamics, i.e., between the interval in
which the work is done and the heat is dissipated, has the only
purpose of simplifying the discussion and the implementation
on the NISQ device. As discussed in Ref. [9], the approach
also works in more complex situations. The only constraint
is that we must be able to couple the system and the detector
on timescale t such that t � T . Under this condition, in
a single interval, the system Hamiltonian can be considered
constant and the the system dynamics (if present) is associated
to the effect of the environment and to the dissipated heat.

Coming back to the discussed case, the physical observable
measured in the experiments is the phase accumulated in the
detector using the different schemes. For a given system-
detector coupling strength χ , it reads [9,21,30]

Gχ,F = D〈0|ρD(T )|1〉D

D〈0|ρ0
D|1〉D

= TrS,E
[
Uχ,Fρ0

SU†
−χ,F

]
, (2)

where F = U,W, Q, ρ(T ), ρS (T ) = TrD,E [ρ(T )], and
ρD(T ) = TrS,E [ρ(T )] are the total, the final system, and the
detector density operators, respectively; U±χ,F represents the
full (system, detector, and environments) evolution (see [9]
and the Supplemental Material [23]).

By changing the system-detector coupling strength χ , we
obtain the quasicharacteristic generating function (QCGF)
that is related to quasimoments of the observable F
[9,21,26,30]. In particular, the first derivative of Gχ,F with
respect to χ gives the average value of F . For example, by
considering F = U , i.e., the first coupling scheme in Fig. 1,
by direct calculation, it can be shown that dGχ,U /dχ |χ=0 =
〈HS (T ) − HS (0)〉 = U [9,21,26,30].

The Fourier transform of the QCGF allows us to
obtain a quasiprobability distribution function: P (F ) =∫

dχGχ,FeiχF . By using the prefix “quasi,” we stress that the
above quantities are not obtained by direct physical measure-
ments, but derived from the analysis of the detector phase
measurements. Indeed, P (F ) presents negative probability

regions [9,31] that are related to the violation of the Leggett-
Garg inequalities [9,25–28,31] and can therefore be seen as a
signature of the quantum properties of the work.

III. RESULTS

The main results of the experiments on the IBMQ device
are shown in Fig. 2 (see the Supplemental Material [23]
for details about the implementation) for different dissipative
parameters p. When no relaxation is present, i.e., p = 0, no
heat is dissipated and the heat distributions are peaked around
Q = 0. The internal energy and work QPDFs are identical and
show the classical energy peaks at E/ε = ±1, 0. However,
there are also quantum energy peaks at E/ε = ±1/2 corre-
sponding to the exchange of half of an energy quantum, as
predicted by the theory [9,21,30]. More importantly, in these
regions, the probability density distribution can be negative,
thus signaling a pure quantum effect related to the violation
of the Leggett-Garg inequalities [9,25].

The experimental data and QPDFs are in excellent agree-
ment with the theoretical predictions, which are presented as
blue dots. The red dots represent the expected values obtained
from a numerical simulation of the TMP, where the system
energy is initially projectively measured. Clearly, the QPDFs
not only contain all the information and reproduce the TMP
distributions, but they allow us to determine the presence
of additional quantum interference effects highlighted by the
half-quantum energy exchanges [9,21].

For intermediate values of the system-environment cou-
pling strength (p = 0.5 in Fig. 2), the QPDFs of W and
U have some notable differences, but the features described
above persist. However, in this case, some heat is being dissi-
pated by the system, as pointed out by the presence of a peak
at energy Q = E/ε = 1. Notice that while the internal energy
is bounded between ±1, the dissipated heat is not. Because of
the chosen dynamics, the system can dissipate energy at two
times (formally when we apply Rx and Ry) corresponding to a
maximum energy exchange of two energy quanta.

The strong dissipation case p = 1 has two interesting fea-
tures. First, as expected, the peaks of the heat distribution
are evidently signaling an increased dissipation. Second, the
W and U distributions are now both positively defined and
no quantum energy exchange at E/ε = ±1/2 is present. The
disappearance of the quantum region in the QPDFs signals the
emergence of the classical limit due to the interaction of the
system with an environment.

As a side remark, we note that the Q distribution is always
classical, i.e., positively defined and with no half-quantum
energy exchange. This is a feature we expect from a large
Markovian environment that is always in equilibrium and, in
this sense, a classical environment.

These results and trends are confirmed by the behavior
of the average values shown in Fig. 3 as a function of the
dissipative parameter p. The experimental points (in light
blue) are in good agreement with the expected theoretical
prediction (blue curve). For no or weak dissipation (p = 0
and p = 0.5), these are different from the one predicted by the
TMP (red curve). The difference lies in the initial coherences
and interference effects that are preserved with the present
approach. For strong dissipation (p = 1), the averages
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FIG. 2. The quasiprobability distribution functions for the variation of internal energy, work, and dissipated heat (y axis) with respect to
the energy (x axis), normalized to the energy gap of the system, E/ε. The parameter p represents the strength of the dissipation from p = 0 (no
dissipation) to p = 1 (full relaxation process). The blue dots represent the theoretical predictions of the discussed detection scheme. The red
triangles represent the theoretical predictions of the two-measurement process. The quasiprobability distribution functions have been rescaled
to plot them with the probability distribution obtained with the TMP (see the Supplemental Material [23]). In the experiments, we set θ = 0.7,
φ = 1.2 for the initial state and α = 1 and β = 0.5 for the system dynamics.

obtained with different approaches coincide. Since the main
effects of a strong dissipation are to destroy the quantum
coherences and make the evolution classical, this is another

FIG. 3. The average values of the variation of internal energy,
work, and dissipated heat normalized to ε as a function of the dissi-
pative parameter p. The blue dots represent the experimental data
with the corresponding error bars (see the Supplemental Material
[23] for details). The dashed blue curve is the theoretical prediction
of the discussed approach. The red solid curve is the prediction of the
TMP obtained by simulations with the IBMQ computers. The error
in these simulations is within the curve thickness. As can be seen, for
strong dissipation, the three curves converge, demonstrating that the
quantum features are destroyed and the classical limit is reached.

manifestation of the emergence of the classical limit that
coincides with the TMP results.

All the averages satisfy the energy conservation law
〈U 〉 + 〈Q〉 − 〈W 〉 = 0. In particular, we find from the ex-
perimental data that the energy conservation law is satisfied
within the experimental error (see the Supplemental Material
[23]).

IV. CONCLUSIONS

The present approach has several advantages with respect
to the one presented in Refs. [4,32]. First, it allows us to
obtain the dissipated heat by acting on the system degrees
of freedom. This is an important difference with respect to
the theoretical proposal to measure the variation of the energy
of the environment, which is practically unrealizable since it
would require an insurmountable number of measurements.
Other viable schemes have been designed in order to measure
the dissipated energy quanta [12–16]. However, these can be
used only in specific physical systems, while our scheme is
system independent and, thus, can be used with any quantum
system.

More importantly, the information about the classical TMP
distributions is included in the more general QPDFs that,
at the same time, contains much more valuable information
about the quantumness of the process. In Wigner’s spirit [24],
these can be seen as quantum correction to an underlying
classical process. The Wigner function has become an in-
valuable tool to understand quantum phenomena [33,34].
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Analogously, the presented approach could shed light on the
energy exchanges, allowing us to identify their quantum fea-
tures. This is a first step toward understanding if and when
quantum energy exchanges can be more efficient that classical
ones and exploit their quantum advantage.
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