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Three-body universality in ultracold p-wave resonant mixtures
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We study three-body collisions within ultracold mixtures with resonant interspecies p-wave interactions. Our
results for the three-body effective interaction strength and decay rate are crucial towards understanding the
stability and lifetime of these dilute quantum fluids. On resonance, we find that a class of universal scattering
pathways emerges, regardless of the details of the short-range interactions. This gives rise quite generally to
a remarkable regime where three-body effective interactions dominate over both inelastic decay and two-body
effective interactions. Additionally, we find a series of mass-ratio-dependent trimer resonances further from
resonance.
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Introduction. The physics of p-wave interactions is funda-
mental to many important quantum systems such as superfluid
3He [1], unconventional superconductors [2], polarons [3],
and halo nuclei [4,5]. This subject has received a recent
surge of attention in ultracold atomic gases due to the
availability of p-wave Feshbach resonances via which the
interaction strength can be tuned in both fermionic [6–9] and
mixed systems [10,11]. Recently, a powerful set of univer-
sal relations connecting thermodynamical and microscopic
properties were found for ultracold Fermi gases with strong
p-wave interactions [12–14], and such systems are predicted
to display topological quantum phase transitions [15,16]. For
p-wave resonant mixtures, an intriguing finite-momentum
atomic-molecular superfluid phase is predicted [17–19]; how-
ever, these mixtures remain largely unexplored.

Determining the thermodynamics of ultracold p-wave res-
onant mixtures requires an analysis of microscopic few-body
scattering processes. In the case of a mixture of weakly inter-
acting Bose-Einstein condensates (BECs), the miscibility and
stability of the system are determined by the intra- and in-
terspecies scattering lengths which set the effective two-body
interaction strengths [20–25]. However, elastic three-body
scattering processes can also play a pivotal role through an
effective three-body interaction, which was predicted recently
to give rise to liquid quantum droplets in single-component
BECs at weak interactions [26–28]. Identifying other regimes
dominated by three-body effective interactions and studying
the associated evolution from few- to many-body physics
remains an important, open pursuit, in particular, at strong
interactions, which motivates the present study.

Three-body effective interactions are typically ignored in
descriptions of ultracold atomic gases due to their diluteness
[29,30]. In the vicinity of an s-wave dimer resonance, these
interactions are strong [31–35], but so are losses [33,34,36,37]
and resultant heating [38–41]. We find that for p-wave reso-
nant mixtures this barrier can be overcome quite generally via
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a set of three-body elastic scattering processes that involve
p-wave interactions between two dissimilar particles and even
occur at zero collision energy. This gives rise to an intriguing
regime near a p-wave dimer resonance where three-body ef-
fective interactions dominate over both losses and two-body
effective interactions, which opens the way to novel classes of
quantum fluids.

In this Letter, we study mixed three-body systems near
an interspecies p-wave dimer resonance. We extract the elas-
tic transition amplitude for scattering at zero energy, which
provides information on both the strength of three-body ef-
fective interactions and recombination in ultracold mixtures.
We find that this transition amplitude diverges universally on
resonance, depending only on a few parameters that charac-
terize low-energy s- and p-wave two-body collisions. For two
identical bosons interacting with a dissimilar particle, we also
analyze how a series of trimer resonances, originating from
a universal long-range three-body attraction [42,43], impacts
the elastic three-body transition amplitude near the p-wave
dimer resonance. We conclude with a discussion of the ex-
perimental and theoretical implications of our findings.

Formalism. To study three-body scattering, we start from
the Alt-Grassberger-Sandhas (AGS) equations [44],

Uα0(z) = (1 − δα0)G−1
0 (z) +

3∑
β = 1
β �= α

Tβ (z)G0(z)Uβ0(z)

for α = 0, 1, 2, 3, (1)

which define a set of transition operators Uα0(z) for scattering
of three free particles at energy z in their center-of-mass
frame. The outgoing states are labeled by α and are either
free-particle states (α = 0) or a state consisting of a free
particle and a dimer, in which case α = 1, 2, 3 specifies the
free particle. Here, G0(z) represents the free Green’s function
(z − H0)−1, where H0 is the three-body kinetic energy oper-
ator in the center-of-mass frame. Tα (z) describes two-body
scattering between particles β and γ with particle α spectat-
ing (α, β, γ = 1, 2, 3, α �= β �= γ ). This means that Tα (z) =
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Vβγ + Vβγ G0(z)Tα (z), where Vβγ indicates the pairwise poten-
tial between particles β and γ and is assumed to be spherically
symmetric.

The elastic three-body transition operator U00(z) de-
termines the zero-energy three-body scattering state via
|�3b(0)〉 = |0, 0〉 + G0(0)U00(0)|0, 0〉, when the limit z →
0 is taken from the upper half of the complex energy
plane. Here, we also introduce the free-particle states
|pα, qα〉α , where pα = μβγ (Pβ/mβ − Pγ /mγ ) and qα =
μβγ ,α[Pα/mα − (Pβ + Pγ )/(mβ + mγ )] are the Jacobi mo-
menta describing the relative motion of the three-particle
system and Pα is the laboratory momentum of particle α.
The masses mα of particles α = 1, 2, and 3 determine
the reduced masses μβγ = mβmγ /(mβ + mγ ) and μβγ ,α =
mα (mβ + mγ )/(mα + mβ + mγ ). We normalize plane-wave
states according to 〈p′|p〉 = δ(p′ − p). Naturally, |pα, qα〉α =
|pβ, qβ〉β for α, β = 1, 2, or 3. The choice of α = 1, 2, or
3 is therefore arbitrary in our definition of the elastic three-
body transition amplitude α〈pα, qα|U00(0)|0, 0〉, so that we
can drop the index α for notational compactness and write
〈p, q|U00(0)|0, 0〉. This amplitude behaves as

〈p, q|U00(0)|0, 0〉 =
3∑

α=1

{
α〈pα, qα|Tα (0)|0, 0〉

+ Aα

q2
α

+ Bα

qα

+ Cα ln

(
qαρ

h̄

)

+ 1

(2π )6
U (α)(pα, qα )

}
, (2)

where ρ is an arbitrary length scale. The coefficients Aα , Bα ,
and Cα are real and depend on the masses and scattering
lengths [45–48]. The functions U (α)(pα, qα ) represent the re-
mainder for which limqα→0 U (α)(0, qα ) is finite [49]. So we
define

U0 =
3∑

α=1

lim
qα→0

U (α)(0, qα ). (3)

This definition of U0 is closely related to the definition
of the three-body scattering hypervolume considered in
Refs. [26,35,50,51] for identical bosons and in Ref. [47] for
dissimilar particles. In the Supplemental Material [48] we
make this connection explicit. The imaginary part of U0 is
proportional to the three-body recombination rate due to the
optical theorem for three-particle scattering [48,52], whereas
the real part is connected to elastic three-body scattering
processes. The latter can be used to quantify the strength of
an effective three-body contact interaction when modeling an
ultracold quantum gas [32,33,47,53,54].

To illustrate this connection to many-body systems, we
consider a dilute Bose-Bose mixture at zero temperature. A
recent study [47] demonstrated that the corresponding energy
density E can be approximated by

E = 1
6 h̄6U (BBB)

0 n3
B + 1

6 h̄6U (bbb)
0 n3

b

+ 1
2 h̄6U (BBb)

0 n2
Bnb + 1

2 h̄6U (Bbb)
0 nBn2

b (4)

under the assumption that the two-body scattering lengths are
negligible. Here, we have denoted the two types of bosons by
B and b and the corresponding number densities by nB and nb,

respectively. We have also added labels to U0 to distinguish
those corresponding to different three-body systems. These
amplitudes determine the stability of the mixture against col-
lapse or phase separation [47]. The dynamics of the mixture
can be studied from the corresponding Gross-Pitaevskii equa-
tions with effective three-body contact interactions whose
strengths are set by the amplitudes U0 [47].

p-wave resonance. To see how resonant p-wave interac-
tions influence U0, we expand α〈p, q|Tα (0)|p′, q′〉α in the
Legendre polynomials Pl (p̂ · p̂′) as

α〈p, q|Tα (0)|p′, q′〉α = 〈q|q′〉
∞∑

l=0

(2l + 1)Pl (p̂ · p̂′)

× t (βγ )
l

(
p, p′,− q2

2μβγ ,α

)
. (5)

In contrast to identical bosons, dissimilar particles can interact
via the p-wave component of the two-body transition ampli-
tude, which behaves as

t (βγ )
1

(
p, p′,− q2

2μβγ ,α

)
=

a1,βγ pp′

4π2μβγ h̄3

1 − 1
2 r̃1,βγ a1,βγ

μβγ

μβγ ,α

q2

h̄2

(6)

in the limit of small p, p′, and q for short-range potentials
[55]. Here, a1,βγ is the p-wave scattering volume that di-
verges at the resonance, and r̃1,βγ > 0 is the p-wave effective
range [55]. For a1,βγ r̃3

1,βγ � −1, the p-wave state is quasi-
bound, whereas it is bound for a1,βγ r̃3

1,βγ 	 1. In the latter
regime, the p-wave dimer energy is universally described by
−h̄2/(μβγ r̃1,βγ a1,βγ ). For van der Waals potentials, Eq. (6)
is valid in the limit |a1,βγ | → ∞ [56,57], which is the exact
regime we concentrate on in the following.

The p-wave component of the two-body transition am-
plitude contributes to U0 via scattering processes con-
taining at least three T operators because the first and
final T operators only contribute via their s-wave compo-
nents at zero energy. The most simple scattering events
containing p-wave βγ interactions are thus described by
[Tβ (0) + Tγ (0)]G0(0)Tα (0)G0(0)[Tβ (0) + Tγ (0)]. A diagram-
matic representation of these scattering processes is shown
in Fig. 1. In the Supplemental Material [48], we demonstrate
that their contributions to U0 near a p-wave dimer resonance
scale with

√−a1,βγ due to an integration over the p-wave
component in Eq. (6). For positive a1,βγ , this integration goes
over a pole, resulting in the imaginary scaling

√−a1,βγ =
i
√

a1,βγ . Terms that contain more than three T operators do
not contribute to the leading

√−a1,βγ scaling. The dominant
behavior of U0 close to a p-wave βγ dimer resonance is thus
given universally by

U0/
√−a1,βγ =

|a1,βγ |→∞
−24

√
2π2

(
aγα

mγ

− aαβ

mβ

)2

×
√

μβγ ,αμβγ

h̄4√r̃1,βγ

, (7)

where the scattering lengths aαβ and aγα correspond to the αβ

and γα interaction, respectively. This general result applies to
three dissimilar particles with one resonant p-wave interac-
tion.

L051303-2



THREE-BODY UNIVERSALITY IN ULTRACOLD P-WAVE … PHYSICAL REVIEW A 103, L051303 (2021)

(a) (b)
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FIG. 1. Diagrammatic representation of the four distinct three-
body scattering processes that result in the

√−a1 scaling of U0 due
to one resonant p-wave interspecies interaction. In these diagrams,
individual particles propagate from right to left with identities distin-
guished by color and line style. The vertices represent the s- (circles)
or p-wave (squares) component of the two-body transition operator.

In the remainder of this Letter we focus on the BBX
system, consisting of two identical bosons (B) and a distin-
guishable particle (X). We define mB (mX) as the mass of
particle B (X) with mass ratio χ ≡ mX/mB. In the Supple-
mental Material [48], we derive how the coefficients Aα , Bα ,
and Cα in Eq. (2) depend on χ and on the scattering lengths
aBB and aBX corresponding to the BB and BX interaction,
respectively.

For the BBX system with resonant p-wave BX interac-
tions, the number of dominant scattering processes doubles
compared with three dissimilar particles with one resonant in-
teraction as considered in Eq. (7). This results in the universal
limits

Re(U0)/
√

|a1| =
a1→−∞ − 48

√
2π2

√
χ (2 + χ )

(χaBB − aBX)2

mX h̄4√r̃1
(8)

for a1 < 0 and

Im(U0)/
√

a1 =
a1→+∞ − 48

√
2π2

√
χ (2 + χ )

(χaBB − aBX)2

mX h̄4√r̃1
(9)

for a1 > 0 [48], where we defined a1 ≡ a1,BX and r̃1 ≡ r̃1,BX

for notational convenience. Clearly, the divergent behavior of
U0 becomes stronger for smaller mass ratios χ . Equation (9)
can also be derived from the optical theorem, in which case
one finds that the divergent behavior is caused only by three-
body recombination into the weakly bound p-wave dimer state
[48].

To study U0 numerically, we take a square-well potential
with depth V0 and range R to model the BX interaction.
We fix the potential range R and tune the depth V0 near
2μBXV0R2/h̄2 = π2, which is the point where the first p-wave
dimer state gets bound. We calculate U0 for this BBX sys-
tem by extending the method of Ref. [35], which considered
three identical bosons. More specifically, starting from the
AGS equations, we derive a set of integral equations for
U (α)(pα, qα ) [48], which we expand in spherical harmonics
and Weinberg states [58,59] and discretize in qα , yielding
a matrix equation that can be solved numerically. For the
definition of U0, we fix ρ = |aBX| in Eq. (2). This choice of
ρ is consistent with the convention of Ref. [47] when the BB
interaction is set to zero as we do in our analysis presented be-

low. This convention has, however, no effect on the universal
limits in Eqs. (8) and (9).

Our numerical results for U0 are presented in Fig. 2 for
various mass ratios and zero BB interaction. For a1 → −∞,
Re(U0) diverges to −∞ as described by Eq. (8), whereas
Im(U0) stays finite. Therefore elastic three-body scattering
dominates over three-body recombination. For a1 → +∞,
Fig. 2 confirms the

√
a1 scaling of Im(U0) as presented in

Eq. (9), whereas Re(U0) diverges as −ln(a1/R3). The prefac-
tor of this logarithmic behavior increases for smaller values of
χ . For large mass ratios, this behavior of Re(U0) is very subtle
for the values of a1 considered in Fig. 2(b), since the prefactor
of −ln(a1/R3) is very small. The inset in the lower panel
of Fig. 2(b) also demonstrates that only the part of Im(U0)
that corresponds to three-body recombination into the shallow
p-wave dimer state diverges, while all other contributions stay
finite at the p-wave resonance.

When |a1| decreases, U0 starts to behave nonuniversally.
For a1 < 0, Fig. 2(a) shows one trimer resonance for χ =
10 near a1/R3 ≈ −100 and two stronger trimer resonances
for χ = 0.1 near a1/R3 ≈ −2.17 and −276 which result in
clear peaks in −Im(U0). They correspond to the three-body
quasibound states with zero energy and zero total angular
momentum. The trimer resonances for χ = 0.1 arise from a
universal long-range three-body attraction that gets stronger
for smaller χ [42,43], whereas the trimer resonance for χ =
10 has not been predicted, and its origin is most likely nonuni-
versal. Figure 3 demonstrates that the trimer resonances for
χ < 1 constitute a series whose number increases as χ de-
creases. This phenomenon was predicted in Ref. [42], which
investigated the trimer spectrum exactly on resonance. Our
results show that the corresponding trimer resonances at the
three-particle threshold are accompanied with large peaks in
the three-body recombination rate. These resonances can even
enhance this rate by a few orders of magnitude compared with
the background value as shown in Fig. 3(a). In Fig. 3(b) we
demonstrate that these trimer resonances shift towards smaller
values of |a1| as χ decreases. For each trimer state there is a
critical mass ratio above which the corresponding resonance
has vanished. These critical mass ratios are not expected to be
universal, but should depend on the details of the considered
BX and BB interaction potentials.

Comparison with s-wave resonances. The universal behav-
ior of U0 for the BBX system near a p-wave dimer resonance
differs from the behavior near an s-wave dimer resonance (i.e.,
|aBX| → ∞) where the Efimov effect [33,34,36,37,46,60–63]
causes U0 to be a log-periodic function of aBX attached to an
a4

BX scaling. The latter is nonperturbative, while the
√−a1,BX

scaling for resonant p-wave interactions only involves three-
body collisions described by three T operators. In addition,
three-body recombination into deeply bound dimer states also
contributes to the leading a4

BX scaling on both sides of an
s-wave dimer resonance, whereas such contributions are non-
divergent for resonant p-wave interactions. For completeness,
we present an overview of the universal behavior of U0 near an
s-wave BX dimer resonance, of which most is already known,
in the Supplemental Material [48].

Outlook. In the p-wave universal regime [Eqs. (8) and (9)],
U0 of the BBX system diverges at a point where the s-wave
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FIG. 2. U0 near the first p-wave BX dimer resonance of the square-well potential for various mass ratios at (a) a1 < 0 and (b) a1 > 0. We
have defined the dimensionless quantities Ū0 ≡ U0mX h̄4/R4 and ā1 = a1/R3. The BB interaction is set to zero. The red dashed lines represent
Eqs. (8) and (9) with aBB/R = 0, aBX/R = 1, and r̃1R = 3. The parameters aBX and r̃1 can be regarded as constants for |ā1| � 10. For a1 > 0,
Im(U0) is determined by the three-body recombination rate into one deep s-wave dimer state (l = 0) and one shallow p-wave dimer state
(l = 1). These two contributions to Im(U0) are presented in the inset for χ = 0. The inset for Re(U0) at a1 > 0 demonstrates its logarithmic
behavior at large a1 for χ = 0.1.

scattering lengths are generally finite. This implies that three-
body scattering dominates over two-body scattering at zero
energy in an ultracold p-wave resonant mixture and could
therefore strongly alter previous predictions for the phase dia-
gram [17–19]. In particular, the divergent behavior of Re(U0)
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FIG. 3. (a) −Im(U0) near the first p-wave BX dimer resonance
of the square-well potential for various mass ratios χ � 1 at a1 < 0.
The BB interaction is set to zero. (b) The p-wave scattering volumes
a1,res that locate the local maxima in −Im(U0) for 0.025 � χ � 0.4.

to −∞ as a1 → −∞ suggests a strong effective attraction in
ultracold mixtures which could have a destabilizing effect.

We note that divergent behavior of Re(U0) can also occur
when the potentials support a three-body bound state at zero
energy whose total angular momentum is zero. This is only
possible in the absence of dimer states to which three parti-
cles can recombine. However, our universal result in Eq. (8)
applies even when deeply bound dimer states exist. This
remarkable property makes the p-wave dimer resonance a
promising tool to realize a divergent Re(U0) in atomic systems
that typically support many dimer states.

On the other hand, the imaginary part of U0 is exper-
imentally observable in a trapped ultracold atomic gas by
measuring the atom loss from the trap as a function of time.
We identify the following conditions that are required to ob-
serve the universal behavior of Im(U0) in Eq. (9). First, the
interspecies Feshbach resonance needs to be broad enough to
accurately tune a1 up to large values. Such a broad p-wave
Feshbach resonance was found in a Bose-Bose mixture of
85Rb and 87Rb atoms [10]. Secondly, the gas needs to be
cold enough to neglect temperature effects. We expect such
temperature effects to be strong due to another dominant
contribution to the three-body recombination rate at positive
three-body energies E and a1 > 0, scaling as E2a5/2

1 /
√

r̃1,
which is similar for three identical fermions [64]. There-
fore the thermal energy needs to be much smaller than
h̄2|χaBB − aBX|/(mXa1) to observe the behavior in Eq. (9).
Specifically for the broad p-wave Feshbach resonance in a
85Rb -87Rb mixture at a magnetic field of 823.3 G [10], we
find that h̄2|χaBB − aBX|/(kBmXa1) ≈ 200 nK for BBX =
85Rb 85Rb 87Rb and 20 nK for BBX = 87Rb 87Rb 85Rb [65],
where we take a1/r3

vdW = 104 according to Fig. 2(b) and rvdW

is the van der Waals length scale characterizing the range of
the interatomic BX interaction [66]. Since the magnitude of
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Im(U0) in Eq. (9) for BBX = 85Rb 85Rb 87Rb is more than 100
times larger than the one for BBX = 87Rb 87Rb 85Rb [65], the
total decay rate is primarily determined by the 85Rb 85Rb 87Rb
system close to the p-wave dimer resonance. Therefore it
suffices to consider temperatures that are well below 200 nK
to neglect temperature effects on the total decay rate when
tuning a1/r3

vdW up to 104. In addition, the behavior in Eq. (9)
dominates over other contributions to the total recombination
rate at zero energy when a1 is chosen large enough. Estimat-
ing these contributions generally requires accurate interaction
models that account for the exact three-atom spin structure.
Furthermore, it is beneficial to take χ 
 1, since Fig. 2(b)
demonstrates that the universal limit of Im(U0) is approached
faster for χ = 1 than for χ � 1 or χ 	 1. Fortunately, a good
candidate is readily available in a mixture of 85Rb and 87Rb.
Lastly, three-body recombination into the shallow p-wave
dimer state only gives rise to atom loss when the depth of
the trapping potential is smaller than the binding energy of
this dimer state. Tuning a1 to large values thus provides an
efficient way to create weakly bound p-wave molecules that
remain trapped, since only the three-body recombination rate
into the shallow dimer state diverges on resonance.

Finally, we note that the magnetic dipole-dipole interaction
between the valence electrons of alkali-metal atoms splits a
p-wave Feshbach resonance into two [8,9]. This splitting de-
pends on the quantum number corresponding to the projection
of the molecular orbital angular momentum onto the magnetic
field axis. Therefore the universal limits in Eqs. (7)–(9) will

have an additional dependence on this quantum number for
these atoms. Nevertheless, we expect that the

√−a1 scaling
of U0 is unchanged in the regime where the p-wave dimer
binding energy is well described by h̄2/(μBXr̃1a1).

Conclusion. We have studied zero-energy scattering for
mixed three-body systems with resonant p-wave interspecies
interactions. We have found a universal relation between the
three-body transition amplitude U0 and p-wave scattering
volume a1, behaving as U0 ∝ √−a1. For a1 > 0, U0 is dom-
inated by three-body recombination into the weakly bound
p-wave dimer state. For a1 < 0, the dominant contribution
comes from elastic three-body scattering processes that in-
volve three successive two-body collisions. The limit a1 →
−∞ thus offers a special regime in which elastic three-body
scattering dominates over two-body scattering and three-body
recombination in ultracold mixtures. This general effect could
significantly impact the phase diagram of these gases. For
smaller values of |a1|, U0 of the BBX system is influenced
by a series of trimer states consisting of one light particle (X)
and two heavy bosons (B). This could be relevant for nuclear
systems for which other trimer states bound by strong p-wave
interactions have been found [4,5].
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