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We investigate the Bose-Hubbard chain in the presence of nearest-neighbor pairing. The pairing term gives
rise to an unusual gapped Z2 Ising phase that has number fluctuation but no off-diagonal long range order. This
phase has a strongly correlated many-body doubly degenerate ground state which is effectively a gap-protected
macroscopic qubit. In the strongly interacting limit, the system can be mapped onto an anisotropic transverse spin
chain, which in turn can be mapped to the better-known fermionic sister of the paired Bose-Hubbard chain: the
Kitaev chain which hosts zero-energy Majorana bound states. While corresponding phases in the fermionic and
bosonic systems have starkly different wave functions, they share identical energy spectra. We describe a possible
cold-atom realization of the paired Bose-Hubbard model in a biased zigzag optical lattice with reservoir-induced
pairing, opening a possible route towards experimental Kitaev chain spectroscopy.
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While p-wave fermionic pairing is a subject of in-
tense ongoing investigations, analogous bosonic phenom-
ena are less well explored. Here we pose and address
a variety of questions regarding pairing in spinless one-
dimensional (1D) bosonic systems: What new phases emerge
due to pairing? What are the effects of interactions?
What parallels exist to 1D fermionic counterparts? The
fermionic Kitaev chain hosts gapped topological phases and
midgap Majorana states; do bosonic systems exhibit related
features?

The Bose-Hubbard model offers fertile ground to explore
these questions; its rich phase diagram has been charac-
terized for decades [1–5], sustaining a productive interplay
between theory and experiment since the advent of direct
realizations using ultracold atoms in optical lattices [3,6]. The
phase diagram hosts a gapless superfluid phase exhibiting
number fluctuations and condensation as well as multiple
gapped Mott phases. A commonly employed mapping be-
tween site occupations and spins serves a fruitful source of
physical intuition and a connection to models of magnetism.
The description reduces to a spin-1/2 system in the limit of
strong interactions where the occupation number on each site
can only fluctuate between particular numbers n0 and n0 + 1
[2,5,7–11]. Here, we focus on a homogeneous 1D chain of
bosons hopping between neighboring lattice sites with tun-
neling strength w and an on-site interaction U . The chemical
potential μ is determined by the total number of bosons.
The additional crucial ingredient is a pairing contribution
that creates and annihilates pairs of bosons on neighbor-
ing sites with strength �. This chain is described by the
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Hamiltonian

H = HBH + H�,

HBH = −w
∑
〈i j〉

(b†
i b j + H.c.) +

∑
i

[
U

2
n̂i(n̂i − 1) − μn̂i

]
,

H� = −�
∑
〈i j〉

(b†
i b†

j + H.c.). (1)

Here 〈i j〉 denotes a sum over nearest-neighbor sites, b†
i (bi)

is the creation (annihilation) operator for a boson on site i,
and n̂i = b†

i bi is the number operator. The effect of the pairing
term, �, on 1D Bose-Hubbard physics is the main subject of
this work.

Combining established insights stemming from boson-
to-spin and spin-to-fermion maps in one dimension, we
demonstrate that pairing gives rise to remarkable new features
in strongly interacting Bose-Hubbard chains. Most promi-
nently, as depicted in Fig. 1, we find that pairing reduces the
U(1) symmetry of the unpaired system to an Ising symmetry,
leading to a unique Z2 symmetry-broken phase. As with the
usual condensate, which corresponds to the U(1) symmetry-
broken phase, this phase exhibits number fluctuations on each
site. However, it is gapped and lacks the Goldstone modes
associated with an ordinary superfluid. Moreover, its ground
state is doubly degenerate, reflecting two very different super-
positions of bosonic occupation on every site. Effectively, this
subspace forms a gap-protected macroscopic qubit. We note a
close relation to non-Abelian Majorana bound state physics:
while this Z2 phase is not a topological phase that hosts
such states, the two phases can be connected via a specific
nonlocal mapping. Furthermore, since the energy spectrum of
the Hamiltonian H is identical to that of the fermionic Kitaev
chain, a Bose-Hubbard realization would enable experimental
measurement of the spectrum for the entire phase diagram.
In what follows, we present our analyses of these features,
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FIG. 1. Phases of the paired Bose-Hubbard model. (a) Superfluid
and Mott phases for large U and � = 0. (b) The pseudospin Bloch
sphere, with Mott phases at the poles and superfluid phases breaking
the associated U(1) symmetry. (c) Finite � creates a new phase that
breaks this symmetry down to Z2. Energy spectra, shown for a few
representative points, are identical to those of the fermionic Kitaev
chain.

beginning for concreteness by briefly describing a possible
realization.

Experimental access to the paired Bose-Hubbard model is
most naturally attained using controlled systems of photons
or bosonic atoms. Such systems have attracted theoretical
interest due to the close relationship to the Kitaev chain: pro-
posals and investigations include employing photonic modes
as analogs to Majorana states [12–14], and ultracold fermions
[15–18] and bosons [19] for the realization of anyonic modes.
In the context of cold atoms, experimental access to the
bosonic Kitaev chain analog is more straightforward than in
the original fermionic case: an optical lattice configured as
a biased zigzag chain offers a possible natural experimental
realization of the Hamiltonian H in Eq. (1). Figure 2 dia-
grams a section of such a potential, which can be created in
a four-beam monochromatic optical lattice with a controllable
relative phase between the beams. An appropriate choice of
phases yields an array of quasi-1D zigzag ladders having a
tunable chemical potential offset μ0 between the legs. We
define the higher-energy leg as our system of interest and the
lower-energy leg as the “reservoir chain.” In a tight-binding
picture, the hopping term w is achieved through tunneling
along the upper chain. The pairing term � can effectively
be obtained by the quartic bosonic process V b†

i b†
jbkRblR of

FIG. 2. Potential optical lattice realization of the paired 1D BH
model. (a) Array of zigzag ladder potentials created by four-beam
optical lattice with tunable interbeam phase. Hopping and pairing
terms in a single ladder (boxed) are schematically indicated. Here
the lower leg of each ladder is the “reservoir chain.” (b) Schematic
of off-resonant single-particle interchain hopping. (c) Schematic of
resonant pair hopping.

having a pair of bosons hopping from two sites k and l in the
reservoir onto two sites i and j on the chain of interest. The
effective term thus would depend on the expectation value of
the pair annihilation process 〈bkRblR〉. The remarkable feature
of this staggered chain setting is that it enables us to pro-
pose a scheme wherein the dominant effect of such two-body
processes corresponds to our proposed nearest-neighbor pair
creation or annihilation term. In particular, one can achieve
such effective pairing by setting μ0 = Ur where Ur is the
interaction energy of two bosons on the reservoir chain. At
this offset, single-particle tunneling between the legs of the
ladder is nonresonant, and resonant pair tunneling to or from
a single site on the reservoir chain dominates. Similar resonant
or near-resonant chemical potential offsets in optical lattices
have been theoretically and experimentally demonstrated to
enable control of superexchange dynamics, realization of spin
Hamiltonians based on bosonic pairing, and simulation of
gauge theories [20–24]. To maintain constant pairing � and
an associated phase which we arbitrarily set to 0, the tunnel-
ing rate within the reservoir chain should be set at a value
sufficient to stabilize superfluidity. Asymmetrical interchain
hopping rates can be tuned by adjusting the lattice phase.
In this scheme, the pair annihilation process 〈bkRblR〉 would
translate to k = l , and superfluidity in the reservoir would
pin and enhance its expectation value. We note that this
scheme differs from those offered in prior work, is based upon
already-demonstrated experimental techniques, and opens up
a window on bosonic Z2 phases and Majorana spectroscopy.

Now we show that approaches commonly employed to
analyze the standard Bose-Hubbard chain can provide insight
into the effects of the additional pairing term. We focus on
the regime of U and μ such that the average density on each
site lies between n0 and n0 + 1. For larger enough interaction
strength, w/U � 1, the Hilbert space can be restricted to the
number-basis states |n0〉 and |n0 + 1〉 at each site. The most
energetically relevant excluded states, |n0 − 1〉 and |n0 + 2〉,
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would contribute corrections of the order of w2/U . Follow-
ing truncation, the bosonic chain can be mapped to an XY
(pseudo-)spin-1/2 chain in a transverse field [2,7,11,20,21].
The truncated Hilbert space may be represented by the spin-
1/2 states, |n0 + 1〉 = |↑〉 and |n0〉 = |↓〉, the eigenstates of
the operator sz having eigenvalues ±1/2. The tunneling term
in the Bose-Hubbard Hamiltonian can be identified with rais-
ing and lowering spin-1/2 operators, s+ and s−, such that
b†

i b j → (n0 + 1)s+
i s−

j . The interaction and the potential en-
ergy terms are diagonal in the number basis at each site, and
the boson number operator, n̂i, can be expressed in terms of
the spin-1/2 matrix sz: n̂ → n0 + 1/2 + sz. In the truncated
spin-1/2 Hilbert space, the one-dimensional version of the
paired Bose-Hubbard Hamiltonian of Eq. (1) takes the form

HS = −
∑
〈i j〉

(
Jxsx

i sx
j + Jysy

i sy
j

) −
∑

i

hsz
i , (2)

where we have the identifications Jx ↔ 2(n0 + 1)(w + �),
Jy ↔ 2(n0 + 1)(w − �), and h ↔ μ − Un0. As shown in
Figs. 1(a) and 1(b), in the standard case without pairing, Mott
states having integer boson filling n0 and n0 + 1 correspond
to gapped phases in which spins are polarized along the ±ẑ
directions, while the gapless superfluid phase at intermediate
fillings corresponds to a ferromagnetic state which sponta-
neously breaks U(1) symmetry.

The presence of the pairing term renders the XY couplings
anisotropic, indicative of the aforementioned reduction of the
gapless U(1) phase to a gapped phase of the Ising Z2 univer-
sality class. In order to study this effect of the pairing term,
it is useful to recall features of the standard unpaired case,
where � = 0 and Jx = Jy ≡ J . The U(1) symmetry associated
with particle number can be seen in Eq. (1) by noting its
invariance under the transformation b† → b†eiφ, b → be−iφ .
The superfluid phase associated with the breaking of this sym-
metry exists even beyond the spin-1/2 limit where w/U � 1;
for large enough tunneling, it includes occupation numbers
beyond the n0 and n0 + 1 Mott lobes. In the spin-1/2 limit
described by Eq. (2), a large enough transverse field strength
h, or equivalently, deviation of the chemical potential μ from
the value Un0, tips the system into the n0 or n0 + 1 Mott
states, depending on the sign of the field. For field strengths
lower than this critical value, the system is in the superfluid
state. At a mean-field level, which is more appropriate for
higher dimensions but provides good insights into the phases
for any dimension, this behavior can be captured by replac-
ing the pseudospin on each site with an expectation value
parametrized by 〈Si〉 = 1

2 (sin θ cos φ, sin θ sin φ, cos θ ). The
Hamiltonian of Eq. (2) then takes the form of a spin on
each site in an effective magnetic field, Hmf = −Si · Bmf ,
where for a chain, Bmf = (J sin θ cos φ, J sin θ sin φ, h). The
equilibrium configuration of the pseudospin corresponds to
minimizing the associated energy, yielding cos θ = h/J and
no constraints on the value of φ. In the Mott phase, the
pseudospins are completely polarized along the z direction,
i.e., 〈sz

i 〉 = ±1/2, allowing the identification of μ± = Un0 ±
2w(n0 + 1), the values of the chemical potential at the bound-
aries of the Mott states having n0 and n0 + 1 bosons per site.
In the superfluid phase, the mean-field ground state comprises

a superposition on each site:

|ψ〉i = cos θ |n0〉i + eiϕ sin θ |n0 + 1〉i. (3)

Spontaneous U(1) symmetry breaking entails making a choice
of the continuous parameter ϕ, giving rise to a gapless Gold-
stone mode in the excitation spectrum.

Compared with this unpaired Bose-Hubbard chain, in
which number fluctuations on a given site are due to nearest-
neighbor hopping, the pairing term in Eq. (1) allows for the
insertion and depletion of bosons in pairs at neighboring sites.
The system no longer respects the invariance under b† →
b†eiφ, b → be−iφ associated with number conservation. The
only exception is for the choices φ = 0, π , reflecting pairwise
processes as opposed to those of single bosons. Thus, in the
presence of the pairing term, U(1) symmetry is reduced to
Z2 Ising symmetry. In the spin-chain limit of Eq. (2), the
reduction to the Ising symmetry is reflected in the identifi-
cation � ↔ Jx − Jy. The inequality of Jx and Jy leads to the
reduction to Ising symmetry; for Jx > Jy, the ferromagnetic
coupling favors ordering along the eigenstates of the Pauli
spin σ x on each site and for Jx < Jy along σ y. In terms of
spin symmetry properties, one can see that Eq. (2) is invariant
under the transformation sx

i → −sx
i ; sy

i → −si
y; sz

i → sz
i .

Repeating the mean-field argument above in the presence
of pairing establishes salient features of the Z2 phase. En-
ergy minimization is no longer independent of φ due to the
presence of the nonvanishing � term. For Jx > Jy, the phase
is pinned to values φ = 0, π , while for Jx < Jy, it is pinned
to φ = π/2, 3π/2. In these two cases, the average density,
captured by the expectation value 〈sz

i 〉, now varies as cos θ =
h/Jx and cos θ = h/Jy, respectively. Hence, once more, the
system enters into the regular n0 (θ = π/2) or n0 + 1 (θ = 0)
Mott phases for large enough effective field. However, for
couplings that allow a solution in the range 0 < θ < π/2,
the symmetry-broken Z2 phase is different from the usual
condensate phase. On the one hand, it too exhibits number
fluctuations such as those depicted in Eq. (3). On the other
hand, the pairing term pins the phase such that no continuous
symmetry is broken. As seen from the mean-field wave func-
tion, depending on the relative magnitudes of the anisotropic
couplings, the phase φ is pinned to one of two possible values
that are consistent with eigenstates of sx or sy, respectively,
translating to two macroscopically different ground state wave
functions for the bosonic chain. Furthermore, the absence of
U(1) symmetry breaking implies the absence of a low-lying
Goldstone mode; the system is gapped.

Thus, a remarkable feature of this bosonic Z2 phase is that
its correlated many-body ground state is doubly degenerate
and protected by a gap. As a simple example, in the limit
of equal hopping and pairing, � = w, the system is exactly
in the transverse Ising limit Jy = 0. If the system is now set
to half filling, h = μ − Un0 = 0, then the mean-field states
described above become the exact ground states with all spins
either pointing along +x or −x. In terms of bosons, every
site has equal superposition of n0 and n0 + 1 bosons and the
degeneracy corresponds to all sites having a symmetric or
antisymmetric superposition.

Having discussed the possible Z2 phases of the paired
Bose-Hubbard chain and their ground state properties, we
proceed to describe the entire energy spectrum in the regime

L051301-3



SMITHA VISHVESHWARA AND DAVID M. WELD PHYSICAL REVIEW A 103, L051301 (2021)

of interest. To this end, the transverse XY spin chain of
Eq. (2) can be diagonalized via the standard Jordan-Wigner
transformation [2,25,26], as has also been pointed out for
lattice bosons in double well potentials [27]. Here, the spin
operators on a given site j along the chain are expressed
in terms of fermionic creation and annihilation operators
( f †, f ) through the transformation sx

j = f †
j f j − 1/2, s+

j =
f †

j e−iπ
∑

l< j Nl , where Nl is the fermion occupation number on
site l . The spin-chain Hamiltonian, in terms of the fermions,
transforms to a one-dimensional tight-binding representation
of a p-wave superconductor, known as the Kitaev chain
[28–31], whose chief feature is that it supports topologically
robust isolated Majorana fermionic bound states. The Kitaev
chain consists of spinless fermions experiencing nearest-
neighbor hopping w̃ and pairing �̃, and is described by the
Hamiltonian

HF =
N−1∑
j=1

[−w̃( f †
j f j+1 + f †

j+1 f j ) + �̃( f j f j+1 + f †
j+1 f †

j )]

− μ̃

N∑
j=1

(
f †

j f j − 1

2

)
. (4)

In terms of the original Bose-Hubbard parameters, we can
identify w̃ = w(n0 + 1) and �̃ = −�(n0 + 1). The effective
magnetic field experienced by the transverse spin chain trans-
lates to μ̃ = μ − Un0, namely, an effective chemical potential
for fermions.

As can be seen by comparing the fermionic Hamiltonian
above with the paired bosonic Hamiltonian of Eq. (1), hopping
and pairing terms in one system directly translate to those in
the other. While the two systems are very similar in form,
the nature of the phases and states they exhibit are radically
different. The Z2 aspect, while common to both, reflects
local order in the bosonic system and topological order in
the fermionic system. The bosonic Z2 phase discussed above
corresponds to a topological phase in the fermionic chain that
supports Majorana bound states at its ends. The ground state
degeneracy is common to both systems, and in the fermionic
case, corresponds to the pair of Majorana end bound states
forming a Dirac fermionic state that can either be occupied
or unoccupied. The Z2 degree of freedom is thus associated
with electron parity. Spontaneous symmetry breaking in the
topological phase corresponds to picking odd or even par-
ity, or a specific superposition. The Mott-insulating phase in
the bosonic system translates in the fermionic system to a
topologically trivial nondegenerate phase having no isolated
Majorana bound states.

It is important to note that the zero-energy state in the
bosonic system does not enjoy the topological protection for
which the fermionic Kitaev system is known. While it is
susceptible to local perturbations similar to those encountered
in nanomagnets endowed with local order, it is protected by
an energy gap. The transformations to map states between
the two systems are well known. For instance, the fermionic
creation operator in Eq. (4) can be expressed in terms of the
spin operators in Eq. (2) as f †

n = −2i[
∏n−1

i=1 (−2sz
i )]s+

n . The
beauty of the transformation is that it allows evaluating the
actual generalized version of the mean-field ground state in

Eq. (3) to the entire parameter range as well as a slew of
expectation values and correlators related to on-site boson
occupation.

Despite the complexity in mapping, the fermionic sys-
tem described by Eq. (4) provides immediate insights on the
bosonic one of Eq. (1). Not only is the ground state double
degeneracy common to the symmetry-broken Z2 phases in
both, as expected of basis-independent properties, the full
energy spectrum is identical across the entire range of pa-
rameters. Specifically, diagonalizing the quadratic fermionic
Hamiltonian by transforming into momentum space gives the
energy dispersion

Ek = ±
√

(2w̃ cos k + μ̃)2 + 4�̃2 sin2 k. (5)

The dispersion is gapped across the range of parameters, ex-
cept for the lines (i) μ̃ = 2w̃, (ii) μ̃ = −2w̃, and (iii) �̃ =
0, |μ̃| < 2w̃. Along these lines, the dispersion vanishes at spe-
cific momenta; the lines demarcate phase boundaries between
different gapped phases. In terms of paired boson physics, the
line along �̃ = 0 corresponds to the standard superfluid-Mott
insulator phase diagram in the limit of large interaction for a
given hopping strength w. As depicted in Fig. 1, phases I and
II correspond to the doubly degenerate Z2 phases. Phases III
and IV correspond to the bosonic Mott phases and their topo-
logically trivial fermionic counterparts. For any given point
in the phase diagram, Eq. (5) provides the energy dispersion,
which can be easily modified to a discrete spectrum for finite-
sized systems. The momentum modes, while corresponding
to free fermions, are highly nontrivial in terms of bosons due
to the nonlocal mapping between the two bases. The energy
spectrum, however, is common to both. Furthermore, in the
Z2 phases, the two degenerate states populate the center of the
gap. Finite size effects are expected to split this degeneracy.

Returning to experimental realizations, we note that all
major ingredients of the proposed scheme have already been
demonstrated in cold-atom experiments: tunable hopping,
interaction-induced resonant tunneling, and of course tight-
binding Hamiltonians [6,21]. The standard Bose-Hubbard
model has been a particularly fruitful focus for cold-
atom experimental work: since the initial realization of the
superfluid-Mott insulator phase transition with ultracold ru-
bidium in an optical lattice [6], a wide variety of experiments
have probed aspects ranging from compressibility [32] to
string ordering [33]. A cold-atom manifestation of the paired
Bose-Hubbard model would build upon these and related
developments of advanced characterization techniques such
as spectroscopic probes [34–36]. For revealing the Kitaev
chain spectrum, modulation spectroscopy of atoms in opti-
cal lattices would be a natural approach. Bragg spectroscopy
can reveal energy-quasimomentum relations [37,38], comple-
mented with new techniques based on position-space Bloch
oscillations [39,40] and exotic drives [41]. In principle, wave-
function features of the Z2 phase highlighted in this work
could be observed in interferometric signatures in time-of-
flight images of a multiple-chain sample.

In summary, we have investigated the physics of Bose-
Hubbard chains with nearest-neighbor pairing, motivated by
a possible experimental realization using an interaction an-
tiblockade in zigzag optical lattices. Physical insights into the
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resulting features are revealed by mapping to an anisotropic
XY spin chain and from there to a fermionic chain. The model
exhibits unusual gapped Z2 phases and a spectrum identi-
cal to that of the Kitaev chain, including doubly degenerate
zero-energy Majorana bound states. Future work suggested
by these results could include considerations of larger spin,
higher dimensions, and inhomogeneities, as well as the explo-
ration of possible connections to XY lattice models of frac-
tionalization in gapless U(1) versus gapped ZN phases [42].
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