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Intensity correlation speckles as a technique for removing Doppler broadening
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A method involving intensity correlation measurements is described, which allows for the complete removal
of Doppler broadening in the emission of electromagnetic radiation from faraway sources that are inaccessible
to conventional Doppler-free measurements. The technique, relying on a correction to g(2) of order N−1, probes
the separation between neighboring spectral lines and is also applicable to the elimination of broadening due to
collisions (N is the number of emitting particles and g(2) is the second-order field correlation function). Possible
applications include a determination of cosmological parameters from redshifts of gravitationally lensed quasars.
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The dependence of the frequency of waves and, in partic-
ular, electromagnetic radiation, on the velocity of the source
with respect to a detector is known as the Doppler effect. For
an ensemble of atoms or molecules in thermal equilibrium, the
random motion adds an inhomogeneous term to the natural
width of spectral lines, referred to as Doppler broadening,
which reflects the spread in velocities. Proven techniques to
remove or circumvent Doppler broadening are the early meth-
ods of Doppler-free saturated absorption [1] and two-photon
spectroscopy [2], and the more recently developed techniques
of laser cooling and trapping [3,4]. All these approaches rely
on the resonant interaction between a set of counterpropa-
gating laser beams and the radiating particles and, as such,
they are ineffective for studying faraway sources, especially
astrophysical objects. In this paper, we describe an approach
to fully eliminate Doppler broadening, which does not require
the manipulation of the sources for it involves solely the
detection and processing of spontaneously emitted radiation.
The same procedure also serves to remove broadening due to
collisions.

The method we propose relates to various intensity- and
noise correlation techniques, the list of which includes one-
and two-photon [5] speckle spectroscopy as well as time-
domain applications such as fluorescence [6] and photon
correlation spectroscopy [7], also known as dynamical light
scattering [8]. Speckles contain information about spatial cor-
relations and have thus been used in a variety of applications
in microscopy, imaging, and studies of surface roughness [9],
while time correlations give information on, e.g., the diffu-
sion properties of liquids and small particles in suspension.
Closely related to our proposal is the technique of coherent
anti-Stokes Raman scattering noise correlation spectroscopy,
which purposely uses incoherent light to determine vibra-
tional resonance differences [10]. In some way, all these
methods trace back to the pioneering work of Hanbury-Brown
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and Twiss, who showed that intensity correlation interferom-
etry allows one to measure the angular sizes of astronomical
sources [11]. This and their ensuing work on photon bunch-
ing [11] was crucial for understanding the boundary between
classical and quantum optics and paved the way for the de-
velopment of closely related techniques to study collisions in
nuclear physics [12].

Consider a conventional chaotic source, such as a gas dis-
charge lamp, involving M spectral lines emitted by N � 1
identical atoms (or molecules), which radiate incoherently
and independently of one another. In their respective cen-
ter of mass rest frame, these lines have frequencies {� +
�1, .., � + �M} where |�i| � � for all M lines. We are
interested in the intensity fluctuations of a parallel light beam,
which propagates in free space with velocity c. We assume
that the differences |�i − � j | (i �= j) are large enough so
that collisional and spontaneous emission broadening can be
ignored (collisions are considered later). Chaotic sources are
well described by classical theory wherein the total Doppler-
broadened complex electric field of a given polarization is
given by [13]

E =
∑

n

En(t, z) =
∑

n=1,N

∑
m=1,M

Eme−i[(ωn+�m )(t−z/c)+ϕ(n)
m ]. (1)

Here, t is the time and z is the distance from the atomic cloud’s
center to the observer; ωn = �(1 + vn/c), where vn is the line
of sight component of the velocity of the nth atom, and ϕ(n)

m is
the phase shift of the nth atom’s mth spectral line. Following
the classical model, the amplitudes {Em} are assumed to be
deterministic and the same for all the atoms [13]. The {ωn} and
{ϕ(n)

m } are taken to be independent and identically distributed
random variables that are statistically independent from each
other and, respectively, Gaussian (Maxwellian) distributed
with mean � and variance σ 2, and uniformly distributed in
[0, 2π ]. Note the fact that because |�i| � �, the Doppler
shift (� + �m)vn/c is ≈ �vn/c so that Doppler broaden-
ing does not significantly affect the separation between lines
(this is a key point that made possible the first experimental
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determination of the Lamb shift [14]). We observe that a
full quantum treatment of our problem should yield the
same results as those of the classical theory since quantum
and classical models give identical predictions for chaotic
sources [13].

The intensity correlation function stems from the product

I (t )I (t + τ ) = (c/8π )2E∗(t )E (t )E∗(t + τ )E (t + τ ), (2)

where I is the cycle average intensity at a particular point of
detection. In the limit N → ∞, the only terms that survive
involve contributions from individual atoms as all other terms
vanish because of the random relative phases of different
atoms [13]. Let 〈〉ϕ denote the statistical ensemble average.
Then,

〈I (t )I (t + τ )〉ϕ

= (c/8π )2

⎡
⎢⎢⎣
∑

n=1,N 〈E∗
n (t )En(t )E∗

n (t + τ )En(t + τ )〉ϕ
+∑

n �=n′ 〈E∗
n (t )En(t )〉ϕ〈E∗

n′ (t + τ )En′ (t + τ )〉
ϕ

+∑
n �=n′ 〈E∗

n (t )En(t + τ )〉ϕ〈E∗
n′ (t + τ )En′ (t )〉

ϕ

⎤
⎥⎥⎦.

(3)

Simple calculations give 〈E∗
n (t )En(t )E∗

n (t + τ )En(t + τ )〉ϕ =
(
∑

m E2
m)2+|∑m E2

me−i�mτ |2− ∑
m E4

m and 〈E∗
n (t )En(t+τ )〉ϕ=

e−iωnτ
∑

m E2
me−i�mτ (note that the average over the random

phases removes the t dependence). Thus, we have exactly

〈I (t )I (t + τ )〉ϕ = (c/8π )2

[
N2

( ∑
m=1,M

E2
m

)2

− N
∑

m

E4
m + S(τ )

∣∣∣∣∣
∑

m=1,M

E2
me−i�mτ

∣∣∣∣∣
2]

,

(4)

with

S(τ ) =
∑
n,n′

e−i(ωn−ωn′ )τ =
∣∣∣∣∣
∑

n=1,N

e−iωnτ

∣∣∣∣∣
2

. (5)

S(τ ) can be viewed in the complex plane as the result of a
random walk where the step length is unitary and the random
directions are Gaussian distributed. The statistical analysis
gives

〈S(τ )〉ω = N + N (N − 1)e−σ 2τ 2
, (6)

where 〈〉ω is the average over the frequencies whereas the
variance is

VarωS = 〈S2(τ )〉ω − 〈S(τ )〉2
ω = 8N (N − 1)e−2σ 2τ 2

× [N − 1 + cosh σ 2τ 2]sinh2(σ 2τ 2/2). (7)

Results for a single trial involving 104 atoms are shown in
Fig. 1. Note the large, random variations of order N for στ>

˜
3,

which reflect the random-walk nature of the sum [15]. For
στ<

˜
3, fluctuations are negligible and S(τ ) is well represented

by its large-N average N2e−σ 2τ 2
. In this range, Eq. (7) gives a

standard deviation of order N1.5, which explains the fact that,

FIG. 1. Single-trial computer simulation of S(τ ) = |∑m e−iωmτ |2
(black curve, logarithmic scale). The horizontal orange line is N =
104 and the dashed gray curve is N2e−σ 2τ2

. Inset: S(τ )/N vs τ (linear
scale).

up to στ ≈ 3, departures from the Gaussian behavior are not
apparent in the numerical data. The large τ fluctuations, with a
timescale given by σ−1, mimic those that occur in the intensity
[16] as well as the spatial fluctuations observed in speckle
patterns [9]. The single-trial results for στ>

˜
3 are consistent

with the approximate expressions 〈S〉ω ≈ N and VarωS ≈ N2,
which are valid in the limit Ne−σ 2τ 2 � 1.

The normalized intensity correlation function, also known
as the degree of second-order temporal coherence, is defined
as

g(2)(τ ) = 〈I (t )I (t + τ )〉t/I2
0 (8)

where 〈 f (t )〉t = T −1
∫

T f (t )dt and I0 = 〈I (t )〉t is the average
intensity. The integration interval T is taken to be much longer
than the characteristic time of the intensity fluctuations, σ−1,
so that the time-average samples all of the values consistent
with the ergodic properties of the source. With this choice, the
average over time, relevant to experiments, is equivalent to the
statistical average over the phases and frequencies. Thus, we
get from Eqs. (4) and (6)

g(2)(τ ) = 1 − 1

N

∑
m E4

m( ∑
m=1,M E2

m

)2

+
∣∣∣∣
∑

m=1,M E2
me−i�mτ∑

m=1,M E2
m

∣∣∣∣
2 〈S(τ )〉ω

N2
. (9)

Since 〈E∗(t )E (t + τ )〉t = 〈∑n e−iωnτ 〉ω
∑

m E2
me−i�mτ ,

this expression becomes identical to that from the
Siegert relation g(2) = 1 + |g(1)|2 [17] for N � 1
[g(1)(τ ) = 〈E∗

n (t )En(t + τ )〉t/I0 is the first-order temporal
coherence].
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In the following, we address the question as to how to
extract information on the separation between lines from mea-
surements of g(2). In situations where the Doppler broadening
is not significant, that is, for σ<

˜
min |�i − � j | (i �= j), the

line separations can be obtained from the behavior of g(2) for
τ<

˜
2π/ min |�i − � j |. In such cases or, more generally, for

Ne−σ 2τ 2 � 1,

g(2)(τ ) ≈ 1 +
∣∣∣∣
∑

m=1,M E2
me−i�mτ∑

m=1,M E2
m

∣∣∣∣
2

e−σ 2τ 2
. (10)

Thus, the frequency differences can be gained by Fourier
transforming g(2)(τ ). Since the separations can more easily be
obtained using a conventional spectrometer, however, these
cases are not very interesting experimentally. Further, it is
also clear that the Gaussian factor makes it essentially im-
possible to probe the range τ<

˜
2π/ min |�i − � j | for σ>

˜
max |�i − � j |.

To resolve neighboring lines in systems with large broad-
ening, we consider instead the limit Ne−σ 2τ 2 � 1 [which
necessarily implies στ � 1 and 〈S(τ )〉ω ≈ N] and get

g(2)(τ ) ≈ 1 − 1

N

∑
m E4

m( ∑
m=1,M E2

m

)2 + 1

N

∣∣∣∣
∑

m=1,M E2
me−i�mτ∑

m=1,M E2
m

∣∣∣∣
2

.

(11)

Note that g(2)(τ ) ≈ 1 − N−1/2 + N−1cos2(δτ/2) for a dou-
blet with E1 = E2; δ = �1 − �2 is the spacing between the
two lines. Once again, a simple Fourier transform can be
used to obtain the line separations. Since the average and
the standard deviation of S(τ ) are on the same order, the
signal to noise ratio can be enhanced by first filtering the data
through a multiplicative noise-removal algorithm [18] of the
sort commonly used in image processing [19].

Equation (11) is the main result of our work. It shows that
intensity correlation measurements can be used to resolve ar-
bitrarily close neighboring lines in the presence of arbitrarily
large Doppler broadening. Concerning practical implementa-
tions, two comments are in order. First, we note that all the
τ -independent contributions to g(2) and, in particular, the one
derived from the dominant background term of order N2 in
Eq. (4), can be experimentally eliminated if one uses a shaker
controlled by a lock-in amplifier [20]. Second, the condition
Ne−σ 2τ 2 � 1 or, alternatively, ln N<

˜
(2πσ/ max |�i − � j |)2,

is easily satisfied in gas discharge tubes since typical densities
are in the range 1016–1017 cm−3. As an example, consider
measuring the Lamb shift in hydrogen (∼1 GHz) using the
Balmer α spectrum. For a Doppler width of 2 GHz, we find
that this condition is met for N � 1068.

The method we propose also serves to remove collision
broadening, which is accounted for by a classical field of the
form

E =
∑

n

En(t ) =
∑

n=1,N

∑
m=1,M

Eme−i[(ω0+�m )(t−z/c)+ϕn
m (t )] (12)

involving time-dependent phases that change randomly and
suddenly when a collision occurs [13]. Using a procedure
similar to that for Doppler broadening, we find

g(2)(τ )

= 1 − 1

N

∑
m E4

m( ∑
m=1,M E2

m

)2

+ 1

N2

〈∣∣∑
n=1,N,m=1,M ei[ϕn

m (t+τ )−ϕn
m (t )]E2

mei�mτ
∣∣2〉

t(∑
m=1,M E2

m

)2 .

(13)

It is easy to see that this expression satisfies the Siegert
relation for N � 1. Moreover, since the phases become un-
correlated at times much longer than the collision time τC,
it can be shown that the above expression becomes identi-
cal to Eq. (11) for Ne−τ 2/τ 2

C � 1, provided collisions do not
change the relative phase of neighboring lines. Therefore, the
discussion of the previous paragraphs applies also to collision
broadening.

In conclusion, we have shown that frequency differences
that are much smaller than the Doppler or the collision width
can be determined using intensity correlation methods by
uncovering a critical correction to g(2) of order N−1. Our
approach holds promise for resolving fine spectral features
in situations where gaining access to or disturbing the source
is, respectively, impracticable or undesirable. One such a case
bears on the determination of the expansion of the universe
from the redshifts of a distant galaxy or quasar, measured at
different epochs, as proposed by Sandage and Loeb [21–23].
To that end, multiply imaged quasars, a result of gravitational
lensing, present an even better opportunity since light from
the same object follows paths of different lengths, resulting in
effective time delays as large as 100 y [24]. For an acceleration
of about 2.5 cm/s y, the expected frequency shift of the Ly-α
line of hydrogen is several orders of magnitude smaller than
the Doppler broadening and, thus, beyond the reach of a con-
ventional spectrograph. The results presented here open up the
possibility that expansion-induced shifts could be determined
from measurements of the intensity correlation between mul-
tiple images.

The authors are grateful to the anonymous referee who
provided very useful and detailed comments on an earlier
version of the manuscript.
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