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Quantum electrodynamics description of localized surface plasmons at a metal nanosphere
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A canonical quantization scheme for localized surface plasmons (LSPs) in a metal nanosphere is presented
based on a microscopic model composed of electromagnetic fields, oscillators that describe plasmons, and a
reservoir that describes excitations other than plasmons. The eigenmodes of this fully quantum electrodynamic
theory show a spectrum that includes radiative depolarization and broadening, including redshifting from the
quasistatic LSP modes with increasing particle size. These spectral profiles correctly match those obtained
with exact classical electrodynamics (Mie theory). The present scheme provides the electric fields per plasmon
in both near- and far-field regions whereby its utility in the fields of quantum plasmonics and nano-optics is
demonstrated.
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Metal nanoparticles (MNPs) have been of great interest in
nanotechnology owing to their unique properties originating
from localized surface plasmon (LSP) resonances, the collec-
tive oscillations of conduction electrons in MNPs [1,2]. These
resonances exhibit a tremendous potential for manipulating
electromagnetic fields beyond the diffraction limit and pro-
vide unique control of light, energy, charge, and heat at the
nanoscale [3–7]. A wide range of applications of nanoplas-
monics has been reported including nanolasers [8,9], optical
metamaterials [10], optical nonlinearities [11], photovoltaics
[12], photocatalysis [13], surface- and tip-enhanced Raman
spectroscopy [14,15], biosensing [16], and photothermal ther-
apy [17]. Parallel to this prominent progress, the quest for
the quantum nature of plasmons and their interaction with
matter has triggered a new branch of research named quan-
tum plasmonics [18,19]. There have been widespread studies
of quantum plasmonics covering such quantum properties
as strong coupling [20], entanglement [21], squeezing [22],
and Bose-Einstein condensation [23]. Quantum plasmonics
drives progress in the field of integrated quantum photonics
and nano-optics, providing a platform for many technological
applications and devices operated at the quantum level, in-
cluding single-photon sources [24], SPASER [25], transistors
[26], ultracompact circuits [27], quantum information [28],
and quantum computing devices [29].

The recent upsurge of interest in quantum plasmonics re-
quires a quantum description of both electromagnetic fields
and plasmons, which should be described in the natural
context of quantum electrodynamics (QED) [30–32]. Quan-
tization of electromagnetic fields has been developed since
Dirac [30], however, including plasmons with radiative damp-
ing and dissipation is a challenge. A canonical quantization
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procedure for electromagnetic fields in dispersive and dis-
sipative homogeneous media was proposed by Huttner and
Barnett [33], which is based on prior work by Fano [34]
and Hopfield [35]. This “microscopic” approach has been ex-
tended to several inhomogeneous media subsequently [36,37].
A different “macroscopic” approach was developed using the
Green’s function formalism and the noise current method
[38,39]. The quantum description of plasmons has been devel-
oped for bulk materials [40], metal surfaces [41], and MNPs
[42,43]. However, both the macroscopic Green’s function
and the microscopic Huttner-Barnett approaches have several
drawbacks in the quantization process for LSPs in MNPs.
Since the former offers a complicated procedure to calculate
the electromagnetic fields, that are obtained indirectly from
a phenomenologically introduced noise current operator, it
is difficult to physically interpret each mode of the system
[38,39]. The latter is based on the Lagrangian formalism and
justified in terms of a canonical scheme [33]. Although this is
the most prominent approach, the scheme becomes cumber-
some to apply to an inhomogeneous medium. Therefore, the
canonical quantization of LSPs has never been achieved even
for a simple metal nanosphere. The canonical quantization
procedure for LSPs was recently presented for a sphere by
Shishkov et al. [44] but only within the quasistatic approxi-
mation. This approximation is valid only for a small particle
(<20 nm) as retardation effects become quite prominent oth-
erwise [2,45,46].

A phenomenological approach to quantization of LSPs
is widely used and much simpler [42,43]. However, in this
approach, no canonical formulation is obtained in dispersive
and dissipative media. Moreover, the effects of Joule losses
cannot be described in a consistent way [44]. For example,
eigenfrequencies of LSP resonances are calculated neglecting
loss in the quantization procedure [18]. Also, as pointed out
in Ref. [44], the imaginary part of the permittivity does not
affect the electric field generated by LSPs obtained by this
approach. In order to overcome these limitations, it is prereq-
uisite to construct a rigorous approach to the quantization of
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LSPs which offers a canonical formulation in dispersive and
dissipative inhomogeneous media.

In this Letter, we present a fully canonical quantiza-
tion scheme for LSPs in a dispersive and dissipative metal
nanosphere placed in vacuum. To quantize the electromag-
netic fields and plasmons simultaneously, we utilize the
Huttner-Barnett model and explore the eigenmodes of the
system. Here, the plasmonic optical response of the metal
is modeled with a set of harmonic oscillators that describe
linear collective excitations of the electrons [34,35]. In addi-
tion, we account for continuum reservoir degrees of freedom
(electron-hole pair excitations and phonons) that are coupled
to the plasmonic oscillator fields leading to damping [33].
The reservoir is also responsible for the light absorption such
that diagonalization of the matter part of the Hamiltonian
results in a set of dressed continuum fields that describe LSP
modes in the quasistatic approximation. As a second step,
the effects of radiation and retardation are investigated by
exploring the eigenmodes of the total system composed of
the vacuum electromagnetic field and the dressed oscillator
field of the matter. The calculated spectral function correctly
exhibits radiation broadening and redshifting (depolarization)
of the plasmon peak due to the light-matter coupling. By
comparing the obtained results with the exact Mie solution
from the classical electrodynamics, we find the developed
quantum theory can reproduce the exact classical theory well.
Electric fields per plasmon are also calculated and correctly
demonstrate both near- and far-field behaviors. Thereby we
conclude that the developed theory provides a fully canonical
quantization scheme and is valid for both small and relatively
large metal nanospheres, including structures where the qua-
sistatic approximation can no longer be applied.

We consider a metal nanosphere with radius R composed
of damped harmonic oscillators coupled to vacuum electro-
magnetic fields. The Lagrangian is given by

L = ε0

2

∫
d3r{[Ȧ(r, t ) + ∇φ(r, t )]2 − c2[∇ × A(r, t )]2}

+ κ

2

∫
r<R

d3r{Ṗ(r, t )2 − ω2
PP(r, t )2}

+ 1

2

∫
r<R

d3r
∫ ∞

0
d�{ẎP�(r, t )2 − �2YP�(r, t )2}

+
∫

r<R
d3r{φ(r, t )∇ · P(r, t ) + Ṗ(r, t ) · A(r, t )}

−
∫

r<R
d3r

∫ ∞

0
d�VP�P(r, t ) · ẎP�(r, t ), (1)

where A(r, t ) and φ(r, t ) represent vector and scalar po-
tentials, respectively. ε0 and c are, respectively, the vacuum
permittivity and the speed of light in vacuum, and t is time.
P(r, t ) indicates a polarization density with the frequency ωP
of the harmonic oscillator and the ratio κ of the mass to the
charge density of the harmonic oscillator. YP�(r, t ) represents
a reservoir composed of a continuum of harmonic oscillators
with frequency �. VP� denotes a polarization-reservoir cou-
pling. The Lagrangian model is chosen such that it leads to a
wave equation which follows from the Maxwell equations in
a dissipative and dispersive medium [33]. The corresponding
Lagrangian model has been utilized in Ref. [44] where the

wave equation in a bulk medium and the bulk permittivity
have been derived. We note that whereas a single resonance
is assumed in this model, the proposed theory can easily be
expanded to the many-resonance cases. It is, therefore, safe
to state that the parameters can be chosen to match the ex-
perimentally observed permittivity [33]. In addition, the use
of a local permittivity can be justified as this study targets a
nanoparticle with a radius of several tens of nanometers or
larger. According to the literature [47,48], nonlocal effects are
expected to be significant for a very tiny particle, such as a
metallic nanoparticle with a radius below 2 nm.

Electromagnetic fields, harmonic-oscillator (plasmon)
fields, and the reservoir are quantized in a standard manner
subject to the commutation rules between the variables and
their conjugates [31]. Here, according to the standard ap-
proach in nonrelativistic QED, the Coulomb gauge is utilized.
The vector potential A is expanded onto the vector spherical
harmonics and φ, P, and Y are expanded in terms of the scalar
spherical harmonics. The second-quantized Hamiltonian is
given by

Ĥ =
∑
s=e,o

∞∑
l=1

l∑
m=0

[
ĥ(slm)

mat + ĥ(slm)
em

]
, (2)

ĥ(slm)
mat = h̄ωl d̂

†
slmd̂slm +

∫ ∞

0
d� h̄�b̂†

slm�
b̂slm�

+
∫ ∞

0
d�VP�P̂slm�̂Yslm (�), (3)

ĥ(slm)
em =

2∑
λ=1

∫ ∞

0
dk h̄ckâ†

λslmkâλslmk

−
∫ ∞

0
dk

	l (k)

κR3l
�̂Pslm Â2slmk

+
[∫ ∞

0
dk

	l (k)√
2κR3l

Â2slmk

]2

, (4)

with

ω2
l = ω2

P + 1

ε0κ

l

2l + 1
+ 1

κ

∫ ∞

0
d�V 2

P�. (5)

Here, d̂slm (d̂†
slm) is the annihilation (creation) operator

for polarization density with mode slm and frequency
ωl , b̂slm� (b̂†

slm�
) is the reservoir field annihilation (creation)

operator for mode slm and frequency �, and âλslmk (â†
λslmk )

is the annihilation (creation) operator of a transverse pho-
ton with wave-number k and polarization λ. P̂slm (�̂Pslm )
and Ŷslm (�̂Yslm ) are displacement (conjugate momentum)
operators for the harmonic oscillator and reservoir fields, re-
spectively. Âλslmk is a vector potential operator, and 	l (k)
denotes the light-matter coupling strength. The details of the
derivation of the Hamiltonian are shown in the Supplemental
Material [49].

The matter part ĥ(slm)
mat of the Hamiltonian can be di-

agonalized by the Fano type of technique [50,51]. It has
been shown that the eigenoperators of this Hamiltonian can
be expressed using the permittivity of the bulk medium
[44]. The spectral function is then obtained by ρqs(ω) =
−Im Gqs(ω)/π , where Gqs(ω) is the Fourier transform of
the retarded Green’s function [52,53] defined by Gqs(t, t ′) =
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FIG. 1. Spectral function ρqs(ω) for the dipolar mode (l = 1)
for (a) Al, (b) Ag, and (c) Au nanospheres. The real part of the
permittivity of (d) Al taken from the experimental data reported in
Ref. [54] and (e) Ag and (f) Au in Ref. [55] are displayed. The spec-
tral function ρqs(ω) for multipolar modes in (g) Al, (h) Ag, and (i)
Au nanospheres are plotted. The red solid, blue dashed, green dotted,
and purple dashed-dot lines indicate l = 1–4 modes, respectively.

(1/ih̄)θ (t − t ′)〈[d̂slm(t ), d̂†
slm(t ′)]〉mat with θ (t ) as the step

function, d̂slm(t ) as the operator d̂slm in the Heisenberg repre-
sentation, [·, ·] as a commutator of two operators, and 〈· · · 〉mat

as the statistical average in the representation defined by the
system evolution for

∑
s,l,m ĥ(slm)

mat .
Figures 1(a)–1(c) show the calculated results for ρqs(ω) for

the dipolar mode (l = 1). The spectral profiles are found to be
independent of particle radius R as expected for the quasistatic
limit. The peak appears near 8.9 eV for Al, 3.5 eV for Ag, and
2.4 eV for Au, respectively. The energetic position of the peak
in ρqs(ω) corresponds to the energy satisfying Re ε(ω) = −2,
where ε(ω) is the metal permittivity [Figs. 1(d)–1(f)]. This
relation denotes the so-called Fröhlich condition [1], which
represents the condition for a resonance excitation of the
dipolar LSPs for a small metal nanosphere and is valid within
the quasistatic approximation. It is, therefore, concluded that
the eigenmodes of the matter part of the system provide the
LSP modes in the quasistatic approximation. Figures 1(g)–1(i)
demonstrate higher-order multipolar modes (l > 1), which
reproduce the corresponding LSP modes in the quasistatic
approximation.

We now consider the energy region where the imagi-
nary part Im ε(ω) of the permittivity is much smaller than
ω|∂ Re ε(ω)/∂ω|. In this region, the LSP modes can be sepa-
rated from the reservoir, and the eigenmodes of the matter part
of the Hamiltonian offer a single discretized mode for each
pair of (s, l, m) with the angular frequency ω̄l , which satisfies
Re ε(ω̄l ) = −(l + 1)/l [44]. It is shown that such an approxi-
mation, which we call the low-loss approximation, is valid in

the range of 3.0 eV < h̄ω < 15.0 eV for Al, h̄ω < 4.0 eV for
Ag, and h̄ω < 2.6 eV for Au [49]. Since the peak of the LSP
modes appears in the energy range where the low-loss approx-
imation is valid, we employ this approximation hereafter.

To investigate the retardation and radiation effects, the total
Hamiltonian is diagonalized by the Fano type of technique
[50,51]. The spectral function ρfull (ω) of the LSP modes for
the total system is obtained from the imaginary part of the
retarded Green’s function [52,53] where the statistical av-
erage is taken in the representation defined by the system
evolution for the total Hamiltonian. The electric-field E(slm)

ω (r)
per plasmon is obtained by E(slm)

ω (r) = [X̂ (slm)
ω (t ), Ê(r, t )],

where X̂ (slm)
ω is the eigenoperator for ĥslm with a frequency

ω and the electric-field operator Ê(r, t ) is given by Ê(r, t ) =
−∇φ̂(r, t ) − ∂Â(r, t )/∂t with φ̂(r, t ) and Â(r, t ) as the scalar
and vector potential operators, respectively [49]

It can be analytically shown that our theory reproduces
the effects of radiation damping and dynamic depolarization
on the LSP resonance. According to the concrete expression
of ρfull (ω) [49], the resonance for the dipolar mode (l = 1)
appears at

ω2 − ω̄2
1 + 36ω̄1

2ξ 2I (ω) + iξ j2
1 (ξ )

|∂ Re ε(ω̄1)/∂ω| = 0, (6)

with ξ = ωR/c and I (ω) = (R/π )P
∫ ∞

0 dk j2
l (kR)/[k2R2 −

ξ 2], where P denotes the principal part and jl (ξ ) is the
spherical Bessel function. In the following, for the sake of
simplicity, we consider the lossless Drude model ε(ω) = 1 −
ω2

p/ω
2 with ωp as the plasmon frequency. When the value of

ξ is small, we obtain I (ω) ≈ 1/15 and j1(ξ ) ≈ ξ/3, and then
the resonance condition is given by

[ε(ω) + 2] − 4
5 [ε(ω) − 1]ξ 2 − 2

3 i[ε(ω) − 1]ξ 3 = 0. (7)

The second and third terms indicate a shifting and width
broadening of a resonance peak with an increase in R, re-
spectively. The shift and broadening can be scaled as O(ξ 2)
and O(ξ 3), respectively. These phenomena have been inten-
sively investigated in classical electrodynamics [2,45,46,56],
whereas their analytical derivation based on QED is reported
here. The effects of radiation damping and dynamic depo-
larization on the LSP resonance are confirmed in numerical
calculation results shown below.

Figures 2(a)–2(c) show the calculated results for ρfull (ω)
and ρqs(ω) for Al nanospheres with different radii R in the
case of a dipolar mode. To confirm the validity of the results,
we compare with the extinction spectra σext (ω) calculated
using Mie theory [57]. The permittivity ε(ω) of Al is taken
from experimental data [54]. The results of ρqs(ω) in the qua-
sistatic approximation exhibit a peak near 8.9 eV independent
of R. In ρfull (ω), the peak reflects radiative depolarization and
broadening, leading to a peak that is redshifted. The results are
in good agreement with the Mie theory result for σext (ω). In
addition to the dipolar mode, the quadrupolar mode is consid-
ered in Figs. 2(d)–2(f). The resonance energy extracted from
the peak position in σext (ω) matches well with the energetic
position of the peak in ρfull (ω).

Figure 3 exhibits the calculated results for Ag and Au
nanospheres obtained using the permittivity ε(ω) reported
in Ref. [55]. Radiative broadening and peak redshift due to
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FIG. 2. Comparison of the spectral function ρfull (ω) of the total
system (red solid line), the spectral function ρqs(ω) in the quasistatic
approximation (green dotted line), and the extinction spectra σext

calculated using Mie theory (blue dashed line) for Al nanosphere
with radii R of (a) and (d) 30 nm, (b) and (e) 60 nm, and (c) and
(f) 90 nm, respectively. The dipolar (a)–(c) and quadrupolar modes
(d)–(f) are displayed. The permittivity ε(ω) of Al is taken from the
experimental data [54].
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FIG. 3. Comparison of ρfull (ω) (red solid line), ρqs(ω) (green
dotted line), and σext (blue dashed line) for Ag and Au nanospheres
with radii R of (a) and (d) 30 nm, (b) and (e) 60 nm, and (c) and (f)
90 nm, respectively. The dipolar mode is displayed. The permittivity
ε(ω) of both Ag and Au is taken from the experimental data [55].
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FIG. 4. Comparison of ρfull (ω) (red solid line), ρqs(ω) (green
dotted line), and σext (blue dashed line) for a metal nanosphere with
radii R of (a) and (d) 30 nm, (b) and (e) 60 nm, and (c) and (f) 90 nm,
respectively. The (a)–(c) dipolar and (d)–(f) quadrupolar modes are
displayed. The metal permittivity ε(ω) is parametrized utilizing the
Drude model. The parameters (ε∞, h̄ωp, h̄γ ) are assumed to be (1.00,
9.04 eV, and 21.25 meV) as has been used to model the permittivity
of silver [58].

the light-matter coupling are observed. Owing to the large
value of |∂ Re ε(ω)/∂ω| at ω = ω̄l , the linewidth and the
amount of the peak shift in ρfull (ω) are narrower and smaller
than σext (ω). These problems can be solved by introducing
a permittivity modeled with the well-known Drude dielectric
function [58].

Figure 4 shows the calculated results for ρfull (ω), ρqs(ω),
and σext (ω) for Ag nanoparticles with different radii R. Here,
the permittivity of the metal is modeled with the Drude model
ε(ω) = ε∞ − ω2

p/ω(ω + iγ ) with the high-frequency limit
ε∞, the plasmon frequency ωp, and the damping term γ . The
parameters (ε∞, h̄ωp, h̄γ ) are assumed to be (1.00, 9.04 eV,
and 21.25 meV) as has been used to model the permittivity of
silver [58]. The energetic position of the peak in ρfull(�) is in
good agreement with the resonance energy extracted from the
peak position in σext (ω).

Figure 5 presents the calculated results for the electric-
field E(slm)

ω per plasmon for Al nanospheres with different
radii R.E(slm)

ω shows both near- and far-field behaviors that
are familiar for dipolar plasmon excitation [57]. The intensity
of E(slm)

ω is on the order of 106 V/m in the near-field region.
The results indicate that, when a quantum emitter (QE) with
a dipole moment dQE of several Debye is positioned near a
metal nanosphere, the QE-LSP coupling constant dQE · E(slm)

ω

is on the order of several hundred μeV, which is consis-
tent with the previously reported value [59]. We further note
that our theory can reproduce the spectra associated with the
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FIG. 5. Spatial distribution of electric-field E(slm)
ω (r) per plasmon for Al nanosphere with the radii R for (a) and (d) 30 nm, (b) and (e)

60 nm, and (c) and (f) 90 nm. Absolute values of the electric fields are plotted. The angular frequency ω is set at the resonance excitation
energy of (a) and (d) 5.67 eV, (b) and (e) 3.08 eV, and (c) and (f) 2.04 eV. The permittivity of Al is taken from Ref. [54].

coupling constant for a silver nanosphere reported in the pre-
vious study [60]. Figure 6 exhibits the frequency dependence
of the QE-LSP coupling constant. The QE with a dipole mo-
ment of 1 Debye is located at 5 nm from a surface of a metal
nanosphere with a radius of R = 50 nm. The metal permittiv-
ity ε(ω) is given by the Drude model with (ε∞, h̄ωp, h̄γ ) =
(6.00, 7.90 eV, and 51.00 meV). The results are compara-
ble with those reported in Fig. 8 of Ref. [60], which indicates
the validity of our methods.

It is noteworthy that the evaluation of E(slm)
ω is crucial

for investigating the interaction between the field and the
quantum emitters, playing an important role in determin-
ing Purcell effects associated with the emitter, governing
the threshold pumping rate for the lasing oscillations, and
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FIG. 6. (a) and (b) Frequency dependence of the coupling con-
stant for the quantum emitter and LSP modes (l = 1–3). The radius
of the metal nanosphere is 50 nm and the quantum emitter is
located 5 nm from the metal nanosphere. The permittivity ε(ω)
of the metal is given by the Drude model with (ε∞, h̄ωp, h̄γ ) =
(6.00, 7.90 eV, and 51.00 meV) [60].

many other properties [8,9,25,61]. Moreover, our theory al-
lows the quantitative analysis of E(slm)

ω in the far-field region,
which provides information on the energy emitted from ex-
cited LSPs. This indicates that our theory provides a useful
quantum electrodynamic platform for studying quantum plas-
monics and nano-optics.

Although LSPs in a metal nanosphere are dealt with in
this Letter, the developed scheme is extendable to general
cases. Geometries other than a nanosphere can be treated
using a suitable basis for expanding the electromagnetic
and harmonic-oscillator fields. Whereas the local permittiv-
ity is utilized above, an extension of the scheme to include
a wavelength dependence of a permittivity allows to ac-
count nonlocal effects observed for a very tiny particle
or a region very close to the metal surfaces [47,48]. The
microscopic model utilized in this Letter can describe op-
tical responses of not only metals, but also dielectrics as
carried out in the previous studies [33–35]. Although the
developed scheme cannot be applied directly to resonant
electric and magnetic responses of high-permittivity dielec-
tric particles reported in Refs. [62–65], an extension of
the present scheme is expected to be applicable to these
phenomena.

In conclusion, based on a microscopic model for the
medium, we developed a fully canonical quantization scheme
for the LSPs associated with a dispersive and absorptive metal
nanosphere interacting with the vacuum electromagnetic field.
The matter part of the Hamiltonian is first diagonalized with
the Fano technique to determine eigenmodes representing the
LSP modes in the quasistatic approximation. In the energy
region where the imaginary part Im ε(ω) of the permittivity
is much smaller than ω|∂ Re ε(ω)/∂ω|, the quasistatic LSP
modes are shown to be isolated from the reservoir. Then, using
Fano’s diagonalization method, eigenmodes of the total sys-
tem are obtained, wherein retardation and radiation effects are
incorporated into the LSP modes. The obtained eigenmodes
exhibit spectra in which radiation broadening and dynamic
depolarization lead to significant broadening and redshifting
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relative to that of LSPs in the quasistatic approximation. The
energetic position of the peak in the calculated spectra co-
incides with that obtained from the extinction spectra using
Mie theory, which means that the theory matches Maxwell’s
equations, including all multipoles for a nanosphere. The
calculated electric fields per plasmon demonstrate realistic
behavior in both near and far fields whereby the utility of the

developed theory in quantum plasmonics and nano-optics is
demonstrated.
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