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Finite-range effects in the two-dimensional repulsive Fermi polaron
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We study the repulsive Fermi polaron in a two-component, two-dimensional system of fermionic atoms
inspired by the results of a recent experiment with 173Yb atoms [N. Darkwah Oppong et al., Phys. Rev. Lett.
122, 193604 (2019)]. We use the diffusion Monte Carlo method to report properties such as the polaron energy
and the quasiparticle residue that have been measured in that experiment. To provide insight into the quasiparticle
character of the problem, we also report results for the effective mass. We show that the effective range, together
with the scattering length, is needed in order to reproduce the experimental results. Using different model
potentials for the interaction between the Fermi sea and the impurity, we show that it is possible to establish
a regime of universality, in terms of these two parameters, that includes the whole experimental regime. This
illustrates the relevance of quantum fluctuations and beyond mean-field effects to correctly describe the Fermi
polaron problem.
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The problem of a single impurity surrounded by a medium
has been studied in several quantum many-body systems since
its initial formulation [1,2]. For decades the impurity problem
has been studied in many fields: from condensed matter (cf.
[3–5], for example, for studies in helium), to neutron matter
[6], and, more recently, in atomically thin semiconductors
[7]. In some particular systems, the presence of impurities
is crucial to explain some of its physical properties, e.g., the
Kondo effect, originated by the presence of magnetic impu-
rities [8], and of Anderson’s orthogonality catastrophe [9],
in fermionic systems. Under some physical conditions, the
impurity coupled to the medium behaves as a quasiparticle
(polaron), whose properties differ drastically from those of
the impurity. For example, in the case in which the medium
is fermionic, it is called a Fermi polaron [10,11]

Ultracold atoms, due to their high tunability, constitute an
excellent platform for the investigation of the Fermi polaron.
Precisely for this reason, they have led to intense experimen-
tal and theoretical work in different geometries that include
one-dimensional (1D) [12–15], 2D [16–18], and 3D [18,19]
configurations. Incidentally, efforts have not been restricted
to studying the ground state, and recently studies have been
extended to finite temperature. In particular, a crossover from
the quantum Fermi polaron regime at low temperature to the
classical Boltzmann regime as temperature increases has been
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reported by means of radiofrequency spectroscopy [20] (cf.
[21,22] for theoretical works).

Interestingly, the interaction between the impurity and the
bath can be controlled by means of a Feshbach resonance.
This has allowed us to experimentally access the polaron
physics in different regimes employing two-component mix-
tures of ultracold gases with a very small concentration of
one of the components. This includes mixtures of two dif-
ferent hyper-fine levels of the same atomic specie [23] and
of different atoms [24–28]. While initially only alkali-metal
atoms were employed [19,29–33], the recent discovery of
orbital Feshbach resonance (OFR) in 173Yb [34–36] has made
it possible to study new physical phenomena in the quan-
tum degenerate regime, for example as spin exchange and
SU(N)-symmetric collisions [37–39]. This has motivated a
spectroscopic probe of the energies of the repulsive and at-
tractive branches of the polaron, and measurement of the
quasiparticle residue by driving Rabi oscillations (both in 2D
[17] and 3D systems [19,40]).

Previous diffusion Monte Carlo (DMC) calculations reveal
the existence of a universal regime in terms of the gas param-
eter na2

s for the 2D repulsive Fermi polaron, which stands for
values na2

s � 10−3 [16], with n the particle density and as the
2D s-wave scattering length. These results contrast with those
reported for an unpolarized 2D, two-component Fermi system
in which the universal regime stands for na2

s � 10−2 [41].
This reflects the enhanced relevance of quantum fluctuations
in a 2D Fermi polaron problem [42], which is a good testbed
to study the effect of impurity-bath correlations [43].

Remarkably, the energy of the 2D polaron and the quasi-
particle residue have been measured recently outside of the
universal regime by exploiting the OFR in 173Yb [17]. As
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a consequence, mean-field theory and its first perturbative
correction [the Lee-Huang-Yang (LHY) term], which are
functions of only the scattering length, are not sufficient to
accurately describe this problem. Thus, to provide a quan-
titative description of the experimental results of Ref. [17],
effective range effects, which go beyond the LHY correction,
must be taken into account. Here we study the repulsive 2D
Fermi polaron in terms of the Fermi momentum times the
scattering length kFas, which has a direct relationship with the
gas parameter kFas = √

4πna2
s , well outside the unitary limit.

(For a DMC study of the 2D Bose polaron, cf. Ref. [44].) We
restrict ourselves to a two-dimensional system to mimic the
conditions of the experiment in Ref. [17].

With the aim of extending the regime of universality, in
this Letter we study the 2D Fermi polaron problem with a
model in which the two-body potential is constructed tak-
ing into account both the s-wave scattering length and the
effective range. We fix both quantities to values compatible
with the experiment of Ref. [17]. We perform our calculations
with two different model potentials, detailed below, in order
to check if the scattering length and the effective range are
sufficient to quantitatively describe the system in the regime
of kFas considered. A similar approach has been carried out
in other systems, where good agreement with experimental
results has been found; see, for example, Refs. [45–47] for
results regarding quantum droplets in Bose-Bose mixtures.
Our results show that the explicit consideration of the finite
range of the interaction allows for an excellent agreement
with experimental data. Interestingly, we observe a regime
of universality in terms of the two scattering parameters that
covers the experimental regime of Ref. [17] for the 2D Fermi
polaron.

Our microscopic approach is based on the DMC method.
DMC allows us to accurately describe the ground state of
quantum systems both in the dilute and in the strongly cor-
related regimes. Starting from a variational ansatz, the initial
wave function �T (R) is propagated in imaginary time keep-
ing its nodal surface constant. In this way, one keeps the
Fermi sign problem under control, leading to a statistical
representation of the best possible wave function within a
nodal surface constraint [the fixed-node approximation (FN)
[48]]. As a consequence, FN-DMC produces variational re-
sults whose quality is related to the accuracy of the model
nodal surface. The trial wave function is taken as the usual
Jastrow-Slater ansatz, consisting of a product of a Jastrow
factor �J (R), which is symmetric to the exchange of parti-
cles, times an antisymmetric part �A(R), which is taken to
be a Slater determinant of plane waves, which is accurate
enough for the low densities considered in this work [41].
Here, R = {r1, . . . , rN↑ , r↓} is the set of all N↑ + 1 particle
coordinates, and R↑ accounts only for the coordinates of the
N↑ particles of the bath. The Jastrow term is chosen as a
product of two-body correlation functions, which are taken
as the ground-state wave function of the two-body problem
at short distances matched with a phononlike long-range term
[16]. The propagator that we employ is accurate up to second
order in the imaginary time step. Off-diagonal estimators have
an additional bias related to the choice of �T (R). To correct
this, up to first order in the trial wave function, we use the
extrapolated estimator technique [16]. The error bars of our

TABLE I. Parameters of the interaction potentials (SWSC, SC)
that reproduce the experimental values of a3D and reff

3D.

R0(a3D) R1(a3D) U0[h̄2/(ma2
3D)] U1[h̄2/(ma2

3D)]

SC 0 2.40593 0 0.425291
SWSC 0.91627 2.29069 0.62099 0.576351

results account for this source of error, statistical Monte Carlo
uncertainty, the bias originated from the finite imaginary time
step, and finite-system size effects. A more detailed descrip-
tion of the method and the trial wave function can be found in
the Supplemental Material [49].

It is worthwhile to remark that a similar attempt has been
made recently with the aim of extending the current state-
of-the-art theory. In Ref. [18], the authors present a model
that, by effectively including finite-range effects, is able to
reproduce the Rabi oscillations both from the 3D [19] and 2D
[17] Fermi polaron experiments. On the other hand, although
the quasiparticle residue that they report improves previous
theoretical results, it is not able to match the experimental
ones. In addition, some controlled numerical results (without
considering effective range effects) have been presented in the
literature for the Fermi polaron (cf., for example, Ref. [50] for
the resonant Fermi polaron and Refs. [51–54] for diagram-
matic Monte Carlo studies of the Fermi polaron).

To describe the 2D Fermi polaron, we study a system of
N = N↑ + 1 particles composed by a Fermi sea of N↑ non-
interacting fermions and a spin ↓ impurity, all with the same
mass m. The Hamiltonian of the N-particle system reads

Ĥ = − h̄2

2m
∇2

↓ − h̄2

2m

N↑∑
i=1

∇2
i +

N↑∑
j=1

V int (r↓ j ), (1)

where r↓ j ≡ |r↓ − r j | is the distance between a bath particle
at r j and the impurity position r↓. The two-body potential
V int (r) models the interaction of the polaron with the bath.
We use two different models: The first one is a square-well-
soft-core (SWSC) potential, which reads

V int (r) =
⎧⎨
⎩

−U0, 0 < r < R0,

U1, R0 < r < R1,

0, R1 < r < ∞,

(2)

with all the parameters (R0, R1, U0, and U1) being positive.
The second model is a soft-core (SC) potential, which can
be considered a limiting case of the previous one by setting
R0 and U0 to zero, and thus it is uniquely described by U1

and R1. The values of the parameters of Eq. (2) are reported
in Table I. These values are chosen so that the potential
reproduces the experimental results from Ref. [35], which
corresponds to setting a3D = 1878a0 and reff

3D = 216a0, with
a0 the Bohr radius [35,55]. In Ref. [35], a second value is re-
ported for the effective range, which is smaller (reff

3D = 126a0),
but we checked with DMC that experimental data are only
reproduced by choosing the larger value, reff

3D = 216a0. See the
Supplemental Material [49] for further details concerning the
interaction models employed.

One of the most relevant quantities in the study of the
polaron is the polaron energy, which is in fact the chemical
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FIG. 1. Polaron energy in units of the bath Fermi energy EF =
2h̄2πn/m. The red dashed line corresponds to the mean-field pre-
diction of Eq. (4), and the orange solid line corresponds to the
experimental results reported in Ref. [17]. Symbols are DMC results:
circles correspond to the HD model reported in Ref. [16], and squares
and triangles correspond to results obtained using the SWSC and SC
potentials, respectively. Dashed lines joining the symbols are guides
to the eye.

potential of the impurity. Within the DMC framework, it can
be evaluated by means of the energy difference,

εp = [E (N↑, 1) − E (N↑, 0)]V , (3)

where E (N↑, 0) is the energy of the N-particle pure system,
and E (N↑, 1) is the energy obtained when the impurity is
added, keeping the volume constant. Within the mean-field
approximation, the polaron energy is given by

εMF = 4π h̄2n

m ln
(
c0na2

s

) , (4)

with c0 a free parameter [56] that is related to the energy scale
of the system. Following previous works [16,41,57], we fix it
so that the choice for the energy scale corresponds to that of

the free Fermi system (EF = h̄2k2
F

2m = 2h̄2πn/m), which results
in c0 = e2γ π/2 � 4.98, where γ � 0.577 is Euler’s gamma
constant.

To benchmark the present results, we compare our DMC
energies for the SWSC and SC models to those obtained
with a hard-disk (HD) potential (from Ref. [16]) and to the
mean-field prediction (4). While the hard-disk potential shares
the same scattering length with the SWSC and SC potentials,
its effective range is different and cannot be imposed in the
construction of the model, as the HD potential has only one
free parameter: the diameter of the disk.

We report in Fig. 1 our DMC results for the polaron energy
corresponding to the SWSC and SC potentials. In the same
figure, we include the mean-field prediction, the HD model
results [16], and the experimental results of Ref. [17]. As
can be seen in the plot, both mean-field theory and the HD
model fail to reproduce the experimental data. As mentioned
previously, mean-field theory cannot accurately reproduce the
experimental results because the system resides at gas pa-
rameters outside the universal regime. The HD model is also

FIG. 2. Quasiparticle residue Z as kFas. Orange circles corre-
spond to the experimental results reported in Ref. [17]. Green circles,
squares, and triangles are results for the hard-disk of Ref. [16] and for
the SWSC and SC models described in the text, respectively. The red
point corresponds to a calculation with the soft disk potential with a
small effective range. Dashed lines are guides to the eye.

unable to provide the experimental energy because it only
reproduces the experimental 3D scattering length, not the
effective range. On the other hand, our two present models,
in which both scattering length and effective range are fixed
at the same time, show good agreement between them and
with the experimental measurements [17]. Therefore, the di-
mensionless parameter kFas is not the only relevant quantity
to quantitatively describe the system, and, to this end, finite
range effects need to be included. Moreover, the independence
of the specific shape of the potential, when both scattering
length and effective range are reproduced, hints at a universal
behavior in these two quantities for the range of kFas values
shown in the figure.

To better characterize the Fermi polaron, we evaluate prop-
erties that are related to its quasiparticle character. First, we
study the quasiparticle residue Z , which is defined as the
overlap between the wave function of the system, featuring an
interacting impurity, and the wave function of a pure system
with a noninteracting impurity with zero momentum, k = 0
[52]. Formally, it reads

Z = |〈�NI|φ〉|2. (5)

For the calculations presented here, �NI = |FS + 1〉, which
stands for a Fermi sea (FS) with an added noninteracting
impurity with zero momentum. Following previous works
[16,58,59], we evaluate the quasiparticle residue from the
long-range asymptotic behavior of the one-body density ma-
trix when the interacting polaron moves in the Fermi bath. In
our DMC implementation, this is obtained from the following
estimator:

Z = lim
|r′

↓−r↓|→L/2

〈
�T (R↑, r′

↓)

�T (R↑, r↓)

〉
. (6)

In Fig. 2, we show DMC results for Z using the SWSC,
SC models. Again, we benchmark our results in the weakly
interacting regime with a HD model. In the same figure, we
include the experimental results of Ref. [17] for this quantity.
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For values of kFas < 0.2, we find that the results of the three
models coincide, in agreement with the universal regime for
this observable, as reported in Ref. [16]. However, as kFas is
increased, the results of the SWSC and SC models, for which
the effective range and scattering length are fixed simultane-
ously, show good agreement with the experimental data of
Ref. [17] and a clear discrepancy with the HD short-range
model. These results reinforce those for the polaron energy,
and they highlight the importance of going beyond the usual
mean-field prescription in order to provide an accurate de-
scription of the 2D Fermi polaron. For completeness, in the
same plot we also include a point in which the quasiparticle
residue is evaluated for an SC model with a small effective
range. As can be seen from the figure, in this case the short-
range SC model does not reproduce the experimental results
and seems to be in good agreement with the HD model. In
Ref. [16], it was already shown that the HD model is in
agreement with the T-matrix results of Ref. [60], assuming a
short-range model, up to values of the gas parameter kFas ∼ 1.

To provide further insight into the description of the Fermi
polaron as a quasiparticle, we evaluate its effective mass. This
mass corresponds to that of a quasiparticle, formed by the
impurity “dressed” by the medium, which propagates freely.
In the DMC algorithm, the effective mass can be obtained
by evaluating the long imaginary-time asymptotic behavior of
the diffusion coefficient of the impurity throughout the bath
[5,61],

m

m∗ = lim
τ→∞

1

4τ

D↓
s (τ )

D0
, (7)

with D0 = h̄2

2m corresponding to the free-particle diffusion
constant, and D↓

s (τ ) = 〈[r↓(τ ) − r↓(0)]2〉 the mean-squared
imaginary-time displacement of the impurity in the medium.
The effective mass of the polaron can be experimentally ac-
cessed through its low-momenta excitation spectrum,

εp(k) = εp(k = 0) + h̄2

2m∗ k2 + O(k4), (8)

with εp(k) being the polaron energy corresponding to a state
with momentum k, and εp(k = 0) is the ground-state polaron
energy, as defined in Eq. (3). Unfortunately, we are not aware
of any measurement of m∗ in this range of densities to com-
pare with.

We present in Fig. 3 our DMC results for the effective mass
of the polaron. Similarly to previous reported quantities, we
show results for the SWSC and the SC models. As can be seen
from the figure, both models agree within the statistical error,
coming from the MC sampling, for kFas � 1. As expected, the
effective mass increases as kFas approaches 1 and the contri-
bution of polaron-medium correlations is enhanced. However,
the observed increase of the effective mass with kFas is less
pronounced than that predicted by T-matrix theory [60].

In conclusion, inspired by a recent experiment with 173Yb
[17], we have addressed the two-dimensional repulsive Fermi
polaron problem by means of the DMC technique. The ex-
perimental results of Ref. [17] are outside of the universal
regime in terms of the gas parameter [16]. With the aim of

FIG. 3. Inverse effective mass of the polaron as a function of the
the Fermi momentum kFas. Squares and triangles are results for the
SWSC and SC potentials, respectively. The dashed line is a guide to
the eye.

reproducing them, we include, through the two-body poten-
tial, information of the effective range of the impurity-bath
interaction. Our results for the polaron energy and the quasi-
particle residue show agreement between two different model
potentials with the same scattering length and effective range,
and they are in good agreement with the experimental results.
This hints at the existence of a universal regime in terms of
two parameters: the Fermi momentum and the effective range.
This assertion seems to be confirmed when the effective mass
of the polaron is evaluated.

Therefore, we have shown that the employment of ab initio
quantum Monte Carlo techniques can offer insight into the po-
laron problem once the universality limit is surpassed. Similar
results have been shown recently in the formation of droplets
in Bose-Bose mixtures [45] and in the description of dipolar
droplets of dysprosium atoms [62]. In addition to the static
properties discussed in this paper, a proper inclusion of the
s-wave effective range into an underlying density functional
might also affect the dynamics [47,63,64]. We strongly be-
lieve that the observation of many-body effects, going beyond
the simple mean-field approach, will stimulate further theoret-
ical and experimental work.
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