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Reducing anomalous reflection from complex absorbing potentials: A semiclassical approach
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Numerical simulations are frequently required for quantum scattering problems and often face difficulties with
finite grids and unwanted, unphysical reflections. For decades, improved complex absorbing potentials (CAPs)
have been sought. Today, the rise of ultracold physics makes a solution essential as CAP errors increase at
lower energies. We present a method that provides a physical, semiclassical picture of how to improve CAPs
based on the behavior of classical trajectories. The method does not rely on the mathematical formalism often
required by existing methods and reduces the error associated with CAP-based calculation of the low-energy
scattering wavefunctions by up to several orders of magnitude relative to the standard Woods-Saxon approach,
as demonstrated via the distorted-wave Born approximation. This indicates the method may be applied to the
numerical simulation of collisions in the ultracold regime.

DOI: 10.1103/PhysRevA.103.L041301

Simulations of a wide variety of open systems [1] from
chemical reactions [2] to cold and ultracold collisions [3–5]
rely on complex absorbing potentials (CAPs or optical
potentials). Although CAPs are designed to absorb the wave-
function in a region of position space, they are known to cause
unphysical reflection effects in which low-energy components
of the wave packet move counter to the expected direction and
are not fully absorbed. This reflection problem has plagued
quantum scattering and wave-packet propagation simulations
for the past 30 years [6–9] and is especially troublesome
today in cold and ultracold systems given the proportion of
low-energy components of wave packets [3]. A solution to
this problem would enable the study of ultracold collisions
currently beyond reach due to the errors and computational
intensity associated with existing CAPs.

A multitude of CAPs have been developed, including
Woods-Saxon [10–12], linear negative imaginary [9,13], neg-
ative complex [7,14,15], energy dependent [16–19], channel
dependent [20], parametrized and optimized [18,20–24],
multihump imaginary [25], and wavefunction-ansatz based
[26–28]. These methods are beneficial to specific systems, but
face difficulties in the simulation of highly multidimensional
low-energy systems. Absorption of the long-wavelength
wavefunctions associated with low-energy systems often en-
tails simulation of a broad range of position space via a large
basis state or many grid points. Yet, the range of position
space that can be simulated is limited due to the “curse of
dimensionality” in which the size of the Hilbert space grows
exponentially with the number of degrees of freedom.

Our approach takes these concerns into account. The
method does not rely on mathematical formalism. Instead,
it provides a physical understanding of how to improve
CAPs based on classical trajectories and is straightforward to
implement.

Since reflection is greater at lower energies, we carefully
accelerate the particles with a negative real potential with
corrections before they reach the imaginary potential. This
reduces reflection while avoiding the need for added grid
points. To prevent reflection from the hybrid potential, we add
a term that ensures full absorption of particles with the lowest
energy under study. Therefore, the method “reels in” and traps
particles in the complex absorbing potential.

Our method relies on the disparate behavior of quantum
and classical particles in a CAP. Quantum particles artifi-
cially reflect due to impedance mismatch if either the real
or the imaginary part of the CAP changes too quickly rel-
ative to the particle’s wavelength (i.e., “quantum reflection”
occurs when the Wentzel-Kramers-Brillouin (WKB) approxi-
mation fails even if the energy is above any potential barriers
[29–31]). In the same potential, classical particles do not
reflect. This suggests unphysical reflection from CAPs is
reduced if quantum trajectories are made to behave more
classically. We use this insight to reduce error in CAP
simulations with semiclassical mechanics, which represent
wavefunctions in terms of a sum over classical trajectories, as
follows.

Semiclassically corrected complex absorbing potential. We
first reduce reflection from the imaginary, absorbing part of
the CAP. Since reflection from this part of the CAP occurs
due to impedance mismatch between the CAP and the particle,
reflection is expected to be greatest when the CAP is sharp
relative to the particle, i.e., when the particle has low mo-
mentum. Error is reduced by speeding up the low-momentum
components of the wave packet by slowly turning on a nega-
tive, real, smooth potential to the CAP [7,14]. The ideal real
potential does not itself cause any reflection, such that quan-
tum and classical trajectories behave equivalently. We find an
attractive Coulomb potential correction fits the bill, as shown
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below:

VCoul corr(x) = Vexp(x)VCoul(x),

Vexp(x) = V0

1 + e−α(x−x0 )
,

VCoul(x) = 1

(x − xC )
,

(1)

where Vexp is an exponential switching function of depth V0,
width α, and position x0, and VCoul is a Coulomb potential
of position xC . To avoid introduction of a singularity, the
Coulomb potential VCoul is situated beyond the upper limit of
the position space domain at xC � xmax.

The positions xC and x0 are chosen to lie just beyond and
just before the imaginary potential to define a narrow speedup
area near the absorbing region. An intermediate value is used
for the width parameter α so that the Coulomb potential
switches on slowly while the overall correction remains negli-
gible in the interaction region. One way to select the depth V0

is to determine the badlands condition [29,30,32–34], which
ensures the accuracy of the semiclassical approximation, in
the absorbing region. This provides a way to verify that the
Coulomb potential yields the required acceleration while re-
ducing the need for convergence calculations.

The three-dimensional Coulomb potential is shown to
yield the same behavior classically and quantum mechanically
through consideration of its Hamiltonian [35]

H = p2

2m
+ Ze2

r
, (2)

where p is the momentum, Z is the atomic charge, e is the
electron charge, and r is the distance between the colliding
particles. This Hamiltonian can be mapped to the Hamiltonian
of a system of harmonic oscillators,

H =
4∑

i=1

(
P2

i

8m
− EX 2

i

)
+ Ze2, (3)

via extension of Cartesian space (x, p) to four dimensions and
regularization with the Kustaanheimo-Stiefel transformation
[36]

r =
√√√√ 4∑

i=1

x2
i =

4∑
i=1

X 2
i , Pi =

∑
j=1,4

p j
∂x j

∂Xi
, dτ = dt

r

(4)

x1 = X 2
1 − X 2

2 , x2 = 2X1X2, (5)

x3 = X 2
3 − X 2

4 , x4 = 2X3X4, (6)

where t and τ are the time and pseudotime, respectively [35].
Since the quantum pseudotime propagator is semiclassically
exact for harmonic oscillators, and the Coulomb potential
and the system of harmonic oscillators are equivalent, the
Coulomb potential is accurately treated with the semiclassical
pseudotime propagator as well. This propagator depends only
on quantities derived from classical trajectories such that the
quantum and classical results are equivalent, and therefore
reflection free, at all energies [35,37,38].

We then address reflection from the switching potential
Vexp(x) that, unlike the Coulomb potential, is not guaranteed

to be reflection free. If the gradient of the switching function
with respect to the position is too great relative to the particle
wavelength, impedance mismatch arises from the real part
of the potential that corresponds to the switching function,
which leads to reflection from the real part of the potential.
A traditional way to get rid of this error would be to broaden
the switching function, but this would increase the amount of
position space needed to simulate the CAP, which would in
turn increase the cost of the simulation. Instead, we correct
the CAP locally by adding a term that ensures that semiclas-
sical and quantum amplitudes are equal at a given energy of
interest, E .

Specifically, an adaptation of the strategy used by Maitra
and Heller [39] is used to make the WKB wavefunction an
exact solution of the Schrödinger equation:

0 =
(

− h̄2

2m

d2

dx2
+ Vcorr CAP(x, E )

+ VWKB corr(x, E ) − E

)
ψ±

WKB(x). (7)

Here Vcorr CAP is the Coulomb-corrected CAP of the form

Vcorr CAP(x) = Vuncorr CAP(x) + VCoul corr(x), (8)

where Vuncorr CAP is the uncorrected CAP, VCoul corr is the
Coulomb correction [Eq. (1)], and VWKB corr is the “WKB
correction” determined as follows:

VWKB corr(x, E ) = −h̄2

[
5

32m

(
V ′

corr CAP(x)

E − Vcorr CAP(x)

) 2

+ V ′′
corr CAP(x)

8m(E − Vcorr CAP(x))

]
. (9)

Note the scattering potential VPES is not included in the WKB
corrections, as reflection from this potential is physical and
only artificial reflection from the CAP should be eliminated.

Although these perturbations can cause small reflections
at energies other than E , they ensure the solution faces no
impedance mismatch from either the real or imaginary poten-
tial at the specific energy of concern given the reflection-free
nature of the semiclassical WKB solution, as discussed below.

We consider the WKB solution for a general potential
energy surface V [40–43] as

ψ±
WKB(x) = 1√|p(x, E )| exp

(
± i

h̄

∫ x

dx′ p(x′, E )

)
, (10)

where p(x, E ) =
√

2m(E − V (x)), x, m, and E are the mo-
mentum, position, reduced mass, and energy, respectively.
The WKB solution is given by two classical quanti-
ties: the square root of the classical probability density
provides the prefactor and the classical action provides the
argument of the exponent. As in the Coulomb case, since the
WKB solution depends only on the classical trajectories that
do not reflect, it cannot reflect in the absence of a barrier.

This approach offers a way to interpret CAP methods
physically. In one dimension, where the Coulomb potential
is not reflection free, wavefunctions are nonetheless accu-
rately modeled with semiclassical WKB wavefunctions at
long range; the WKB assumptions only fail within a finite
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FIG. 1. Left: Real (orange solid line) and imaginary (blue dashed line) parts of the uncorrected Woods-Saxon complex absorbing potential
Vuncorr CAP [Eq. (11)] for parameters Vd = 0.0145 a.u., xm = 2000 a.u., and xw = 8.0 a.u. Right: Real (orange solid line) and imaginary (blue
dashed line) parts of the corrected complex absorbing potential Vcorr CAP [Eq. (8)] with WKB corrections VWKB corr [Eq. (9)] (magnified in inset)
defined at energy E = 10−6 a.u. (≡ 316 mK). Here we used V0 = 1.0 a.u., α = 0.005 a.u., x0 = 2000 a.u., and xC = 4100 a.u.

distance from the center of the Coulomb potential [30,44].
On the surface, the WKB corrections have similar form to
those based on complex smooth exterior scaling [16,17,19]
and Jost functions [45–47]. Yet, they differ significantly in
that here corrections rely on classical trajectories. Physically,
the corrections ensure wavefunctions behave classically (and
therefore do not reflect) in the absorbing region of the poten-
tial, which promotes unit transmission through the CAP at that
energy.

Distorted-wave Born approximation. Now we consider the
addition of the semiclassical corrections to a common form of
complex absorbing potential, the Woods-Saxon potential [12],
which is defined as follows:

Vuncorr CAP(x) = i

(
Vd − Vd

1 + e
(x−xm )

xw

)
. (11)

In order to demonstrate how well the corrections reduce
reflection, we employ potential parameters Vd , xm, and xw,
which control the depth, position, and width, respectively.
We choose parameters that artificially yield a CAP with a
sharp onset and a small absorbing region to encourage much
reflection at low energy as a benchmark. The parameters of
the Coulomb correction are chosen so that the particles speed
up before they reach the imaginary potential, thus reflect-
ing negligibly. Here a broad Coulomb potential correction
is employed; however, the length of the CAP region could
be further reduced provided it sufficiently accelerates the
particle away from the WKB correction region. The afore-
mentioned badlands condition [29,30,32–34] may provide a
way to quantify how much the Coulomb correction can re-
duce the required length of the simulated grid in CAP-based
calculations. The WKB correction parameters are set at the
lowest required energy, where the most reflection is expected.
The resulting uncorrected and corrected CAPs are shown in
Fig. 1.

We first investigate the reflection from the corrected CAP
in a free particle collision of reduced mass m = 1 a.u., since

in that system the only reflection is artificial as there is no
physical reflection from the system potential energy surface
VPES = 0. The method is then applied to a realistic system
to demonstrate the method’s applicability to ultracold colli-
sions. We determine the degree of transmission in a neutral
potassium-potassium collision, modeled by the the Morse po-
tential:

VPES(x) = De(1 − e−a(x−xe ) )2 − De, (12)

where De = 0.0200725 a.u. is the dissociation energy [48,49],
xe = 7.47576 a.u. is the equilibrium interatomic distance

[50], a =
√

4mE2
ZPE/(2De) is the Morse potential parameter,

EZPE = 0.000209592 a.u. is the zero-point energy [50], and
m = 35635.9 a.u. is the reduced mass.

To evaluate the degree of reflection from the CAP at each
energy, the proportion of the scattered wavefunction [the
reflection coefficient R(E ′)] is calculated according to the
expression

R(E ′) = σrefl(E ′)
σtrans(E ′) + σrefl(E ′)

, (13)

where σrefl(E ′) is the reflection probability and σtrans(E ′) =
1 is the transmission probability. Since the WKB solution
exactly solves the Schrödinger equation when WKB correc-
tions are used and by assumption the difference between the
WKB-corrected potential and the original potential is small,
the distorted-wave Born approximation is used to evaluate the
scattering cross section perturbatively as follows [39,51–53]:

σrefl(E ′) = m2

h̄2

∣∣∣∣∣
∫ ∞

−∞
dx U (x, E , E ′)

e(2i/h̄)
∫ x dx′ p(x′ )

p(x)

∣∣∣∣∣
2

, (14)

where here the momentum p is approximated as
√

2mE
for energies |E − V (x)| < 10−9 a.u. to avoid numerical in-
stability. Here the perturbation U (x, E , E ′) transforms the
Hamiltonian exactly solved by the WKB wavefunction at
energy E into the Hamiltonian of the potential under
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FIG. 2. The corrected CAP [Eq. (8)] (orange solid line with
circles) significantly reduced reflection for the free-particle collision
as compared to the uncorrected CAP [Eq. (11)] (gray dashed line)
and the WKB corrected CAP [Eq. (9)](blue solid line with triangles)
defined at energy E = 10−6 a.u. (equivalent to 316 mK, marked
with arrow). Quadrature was performed in the position space region
x ∈ [0, 4000] a.u. with 216 equal grid points.

study at energy E ′. We calculate the reflection coefficient
for three different CAPs: the uncorrected CAP Vuncorr CAP,
the WKB corrected CAP Vuncorr CAP + VWKB corr (similar to
Refs. [16,46]), and the fully corrected CAP Vcorr CAP. For
realistic scattering systems, we determine the degree of artifi-
cial reflections from the CAPs via calculation of the error in
the transmission coefficient 1 − R(E ′) relative to that of the
physical scattering potential VPES. We evaluate the reflection
coefficient at low energy, where reflection is expected to be
highest, and over several magnitudes of energy, given the
energy uncertainty inherent in wave-packet dynamics.

As expected, the corrected CAP successfully reduced re-
flection by several orders of magnitude at low energies relative
to the uncorrected CAP in the absence of real, physical reflec-
tion, as illustrated in Fig. 2. At the lowest energy considered,
E ′ = E , the uncorrected CAP reflected nearly all the wave-
function and the WKB corrections completely eliminated
reflection. The addition of Coulomb potential corrections re-
duced reflection by an order of magnitude relative to WKB
corrections alone at all energies tested.

The form of the reflection coefficient of the WKB corrected
CAPs (blue solid line with triangles and orange solid line
with circles) can be understood with a physical picture that
relates classical and quantum behaviors. At the energy of the
WKB corrections, the particle behaves classically, and there is
no reflection. As the energy increases, the corrections are no
longer exact and quantum reflection reemerges until reflection
reaches a maximum. Finally, reflection decreases again as the
system approaches the classical limit.

The corrections also significantly improved the accuracy of
the calculated transmission coefficient for the realistic model
of a low-energy collision shown in Fig. 3. The WKB correc-
tions eliminated error at the lowest energy under consideration
(10−11 a.u. ≈ 3.16 μK), and the addition of the Coulomb cor-
rection further reduced error to near zero at all energies under
study.
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FIG. 3. For the benchmark ultracold collision calculation
[Eq. (12)], the corrected CAP [Eq. (8)] (orange solid line with circles,
V0 = 1 a.u., α = 0.5 a.u., x0 = 200 a.u., xC = 410 a.u.) determined
the transmission coefficient with higher accuracy than the uncor-
rected CAP [Eq. (11)] (gray dashed line, Vd = 0.0145 a.u., xm =
375 a.u., and xw = 0.1 a.u.) and the WKB-corrected CAP [Eq. (9)]
(blue solid line with triangles, fixed at energy E = 10−11 a.u. ≈
3.16 μK as indicated by an arrow). Quadrature was performed for
212 equally spaced grid points in the position space region x ∈
[0, 400] a.u.

This semiclassical method reduces the error associated
with artificial reflections in CAPs by orders of magnitude
at low energy. Using a physical picture of reeling in low-
momentum particles and eliminating reflection at the lowest
energy of interest was found to be more accurate than the
WKB approach alone. This result indicates the method may
be used to simulate real systems such as ultracold collisions,
where existing solutions are inaccurate and/or expensive.
Since this CAP absorbs the wavefunction over a broad range
of energy, it may prove to be useful for absorbing multi-
dimensional wave packets, which reach the CAP wall with
widely different proportions of the total energy. The method
also decreases the amount of position space that must be
simulated with the use of local corrections, which would be
especially beneficial in highly multidimensional systems that
face the curse of dimensionality. This indicates the method
shows promise for simulation of systems previously beyond
reach.
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