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We characterize entanglement subject to its definition over real and complex, composite quantum systems.
In particular, a method is established to assess quantum correlations with respect to a selected number system,
illuminating the deeply rooted, yet rarely discussed question of why quantum states are described via complex
numbers. With our experiment, we then realize two-photon polarization states that are entangled with respect
to the notion of two rebits, comprising two two-level systems over real numbers. At the same time, the
generated states are separable with respect to two complex qubits. Among other results, we reconstruct the
best approximation of the generated states in terms of a real-valued, local expansion and show that this yields an
incomplete description of our data. Conversely, the generated states are shown to be fully decomposable in terms
of tensor-product states with complex wave functions. Thereby, we probe paradigms of quantum physics with
modern theoretical tools and experimental platforms that are relevant for applications in quantum information
science and technology and connected to the fundamentals of the quantum description of nature.
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I. INTRODUCTION

The axiomatic formulation of quantum theory [1,2] re-
sulted in one of the most successful mathematical descriptions
of nature. But even quite subtle aspects of this theory defied
classical notions, which were thought to be universal, such as
locality. This resulted in objections—carefully constructed to
produce contradictions—that concerned the self-consistency
and completeness of quantum theory itself, as famously ex-
pressed in the seminal EPR paper [3]. Still, even the most
abstract debates about the fundamentals of quantum physics
led to profound insight and the emergence of previously in-
conceivable technologies. For example, the EPR paradox gave
birth to the notion of entanglement [4,5] that is recognized to-
day as a key resource for many practical quantum information
protocols [5,6].

Two core principles of quantum physics are (i) the for-
mulation of this theory in complex Hilbert spaces and
(ii) the composition of two quantum systems in terms of
tensor-product spaces [1,2]. The latter constitutes the basis
for the joint description of two or more quantum systems,
being essential for the notion of entanglement [7,8]. Less
frequently discussed, however, is the first principle which
states that wave functions can take complex values, an obser-
vation made by Schrödinger when introducing his equations
of motion [9]. In this context, it is worth reminding ourselves
that classical functions—e.g., densities, potentials, tempera-
ture distributions, etc.—are typically based on real values, and
the introduction of complex numbers to describe the state of
a quantum system was likely not a canonical choice. See also
the recent contributions [10,11] in this context, theoretically
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discussing that real Hilbert spaces would lead to measurable
contradictions.

In their work [12], Caves, Fuchs, and Rungta combined
those two seemingly harmless requirements of quantum
theory, (i) complex numbers and (ii) tensor products, to the-
oretically predict the existence of a state that is nonentangled
(i.e., separable [4]) when using complex Hilbert spaces but
entangled when restricting quantum physics to real numbers.
This Caves-Fuchs-Rungta (CFR) state reads

ρ̂ = 1
4 (σ̂0 ⊗ σ̂0 + rσ̂y ⊗ σ̂y), (1)

where −1 � r � 1 and r �= 0 and using the Pauli matrix σ̂y

and the identity σ̂0. The CFR state is defined over two two-
dimensional, real Hilbert spaces. Analogously to the notion of
a qubit—the basic unit of quantum information that is encoded
in a two-dimensional, complex Hilbert space, the concept of a
rebit—a quantum bit in real spaces—was thereby introduced,
too. Despite the intriguing property of being entangled (over
reals) and separable (in complex spaces) at the same time [12],
which is discussed later in detail, this state, which has been
theoretically proposed two decades ago, has not been exper-
imentally analyzed regarding its entanglement properties to
our best knowledge.

Exceeding fundamental questions, real Hilbert spaces,
specifically rebits, have been found to offer a versatile re-
source for quantum information processing. For instance,
rebit-based forms of universal quantum computing were de-
veloped [13,14]. And quantum simulators were shown to
benefit from employing real Hilbert spaces as well [15,16].
Furthermore, the relation of rebit entanglement to the states’
purity was studied [17], where the purity itself can be con-
sidered as a useful quantum resource [18]. In general, the
quantum resources that are connected to imaginary parts
of the density operator can be quantified rigorously [19].
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Moreover, while qubits can only share maximal entanglement
in pairs, this limitation holds, surprisingly, no longer true for
entanglement based on real numbers [20]. In fact, an arbitrary
number of rebits can be maximally entangled [20], being a
quite remarkable feature from a quantum communication per-
spective. Comprehensive investigations further revealed that
one can embed real, complex, and even quaternionic quantum
theories into a joint framework [21,22], being relevant for
dynamic [22] and thermodynamic considerations [14]. Using
such methods, it was also argued via quantum-dynamical
group representations and their symmetries that, among the
different theories based on distinct sets of numbers, the com-
plex version necessarily emerges as the preferred one [23,24].

Because of the fundamental and application-based impor-
tance of entanglement in real Hilbert spaces, criteria to detect
and quantify the corresponding kind of entanglement have
been developed [12]. This includes uncertainty relations for
rebit entanglement [25] and negativities of distributions that
resemble phase-space quasiprobabilities [26,27]. In addition,
measurement and reconstruction approaches have been the-
oretically studied in this context [28,29]. Still, despite the
progress in detecting rebit entanglement, experiments which
complement such theoretical works are missing to date.

In this contribution, we experimentally realize CFR states
and devise and apply a characterization framework to ac-
cess entanglement over complex and real Hilbert spaces.
Our theoretical tools includes a construction of entanglement
witnesses and the representation of entanglement in terms
of so-called entanglement quasiprobabilities and a remain-
ing, locally nondecomposable element. Our experiment uses
a state-of-the-art single-photon source with a computational
basis in the horizontal and vertical polarization. By producing
mixtures of circularly polarized light, we are then able to
implement rebit states with high similarities to the targeted
CFR states. Our witnesses reveal a close-to-maximal rebit en-
tanglement. Conversely, the entanglement quasiprobabilities
yield a separable decomposition of the produced state in terms
of tensor-products of complex qubits. Furthermore, it is shown
that a rebit description of the state is incomplete with an al-
most maximally nondecomposable contribution, constituting
the origin of the rebit-only entanglement under study. There-
fore, we experimentally implement and characterize a unique
form of quantum correlation that depends on the choice
of numbers.

II. THEORY

Suppose {|0〉, . . . , |d − 1〉} is the computational basis for
Alice’s (d = dA) and Bob’s (d = dB) subsystem. In our ex-
periment, we have dA = dB = 2, with |H〉 = |1〉 and |V 〉 =
|0〉 for horizontal and vertical polarization, respectively. A
separable state over real Hilbert spaces is defined in terms
of a classical joint probability P(a, b), where P(a, b) � 0
and

∑
a,b P(a, b) = 1, and tensor-product states, |a〉 ⊗ |b〉 =

|a, b〉 = |ab〉 with |a〉 ∈ RdA and |b〉 ∈ RdB , as

ρ̂R-sep. =
∑
a,b

P(a, b)|a, b〉〈a, b|, (2)

analogously to complex Hilbert spaces [4]. Whenever the state
cannot be written in this form, it is inseparable, i.e., entangled,

in the bipartite scenario studied here. The CFR state in Eq. (1),
which can be also expressed as

ρ̂ = q

2
(|L, L〉〈L, L| + |R, R〉〈R, R|)

+ 1 − q

2
(|L, R〉〈L, R| + |R, L〉〈R, L|)

= 1

4

⎛
⎜⎝

1 0 0 1 − 2q
0 1 2q − 1 0
0 2q − 1 1 0

1 − 2q 0 0 1

⎞
⎟⎠, (3)

where 0 � q = (r + 1)/2 � 1, is a two-rebit mixed state with
a real-valued density matrix in the computational basis. Par-
ticularly, it is a statistical mixture of complex tensor-product
states with circular polarization, |R〉 = (|1〉 + i|0〉)/

√
2 and

|L〉 = (|1〉 − i|0〉)/
√

2, thus clearly C separable. The task
now is to find applicable criteria to prove R entanglement.

For detecting C entanglement, measurable entanglement
criteria are indeed available, resulting in the notion of entan-
glement witnesses [30,31]; see also the review [32]. Applying
the same optimization approach as established in Ref. [33]
for complex numbers, we can directly formulate separability
constraints for observables L̂ in real Hilbert spaces as

g(R)
min � 〈L̂〉R-sep. = tr

(
ρ̂R-sep.L̂

)
� g(R)

max, (4)

where g(R)
min and g(R)

max are the maximal and minimal expectation
value for R-separable states. The latter bounds can be ob-
tained by solving so-called separability eigenvalue equations,

L̂a|b〉 = g(R)|b〉 and L̂b|a〉 = g(R)|a〉, (5)

with L̂a = (〈a|⊗1̂B)L̂(|a〉⊗1̂B) and L̂b = (1̂A⊗〈b|)L̂(1̂A⊗|b〉),
providing the sought-after bounds g(R)

min = min g(R) and g(R)
max =

max g(R). See the Supplemental Material (SM) for a deriva-
tion [34]. If the expectation value 〈L̂〉 exceeds either bound
in Eq. (4), R entanglement is certified. Similarly to the or-
dinary eigenvalue problem that yields optimal expectation
values, our R-separability bounds are determined through
the maximal and minimal separability eigenvalues from
Eq. (5). See Ref. [33] for detailed discussions for the related
C-entanglement witnesses construction and, for example,
Refs. [35,36] for their experimental applications.

For instance, this approach can be used to obtain Clauser-
Horne-Shimony-Holt-type inequalities [37] when choosing
observables like L̂ = Lzσ̂z ⊗ σ̂z + Lxσ̂x ⊗ σ̂x [31]. (See, e.g.,
Ref. [11] for a recent Bell-type inequality as well.) Then,
Eq. (5) can be easily solved (see the SM [34]) and results
in the separable bounds g(R)

max = max{|Lz|, |Lx|} and g(R)
min =

−g(R)
max that correspond to separability eigenvectors |a, b〉 in

which the local components are in horizontal, vertical, diag-
onal [|D〉 = (|0〉 + |1〉)/

√
2], and antidiagonal [|A〉 = (|0〉 −

|1〉)/
√

2] polarization, which are all in R2. Bell states can
maximally violate these bounds, and the corresponding max-
imal and minimal (ordinary) eigenvalues are gmax = |Lz| +
|Lx| = −gmin, exceeding their separable counterparts. How-
ever, this choice of L̂ does not make a distinction between C
entanglement and R entanglement because g(R)

min = g(C)
min and

g(R)
max = g(C)

max hold true.
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A more viable choice would be an even simpler observable,
L̂ = σ̂y ⊗ σ̂y, which has a real-valued matrix representa-
tion. The ordinary eigenvalue equations, complex separability
eigenvalue equations [33], and real separability eigenvalue
equations [Eq. (5)] can be also straightforwardly solved [34].
This yields gmax = g(C)

max = 1 and g(C)
min = gmin = −1 as bounds

to the expectation values 〈L̂〉 of general and C-separable
states, thus not allowing for witnessing C entanglement. Note
that these bounds are obtained for products of circularly po-
larized states, |L〉 and |R〉, with a complex expansion in the
computational basis.

In contrast, for R-separable states, the reduced opera-
tors (e.g., L̂a) in Eq. (5) vanish since we find that L̂a =
(〈a|⊗σ̂0)σ̂y ⊗ σ̂y(|a〉⊗σ̂0) = 〈a|σ̂y|a〉σ̂y = 0 σ̂y holds true for
all |a〉 ∈ R2. This yields g(R) = 0, thus g(R)

min = 0 = g(R)
max. Con-

sequently, whenever

〈σ̂y ⊗ σ̂y〉 �= 0 (6)

is measured, R entanglement is verified, but C entanglement
is not. For example, for the CFR states in Eq. (1), we expect
〈σ̂y ⊗ σ̂y〉 = r, which constitutes a maximal violation of the
R-separable bound zero for r = ±1—likewise, q ∈ {1, 0} for
Eq. (3). It is worth outlining that, for higher-dimensional
systems (dA, dB > 2), any L̂ that is a linear combination of ten-
sor products of skew-symmetric operators (i.e., α̂ ⊗ β̂, with
α̂ = −α̂T ∈ RdA×dA and β̂ = −β̂T ∈ RdB×dB ) can be applied
in a similar manner.

In summary, we introduced a generally applicable method
to construct measurable witnesses for R entanglement [cf.
Eqs. (4) and (5)] and to tell such quantum correlations from
C-entangled states apart. Moreover, this approach can be
straightforwardly generalized to multipartite systems, too, as
done for complex Hilbert spaces in Ref. [38].

Furthermore, it was shown that any C-separable state and
C-inseparable state too can be fully expanded in terms of
a pseudomixture of tensor-product states when allowing for
P(a, b) < 0 in the definition of separability [39], defining the
notion of entanglement quasiprobabilities [40] that have been
recently experimentally reconstructed for Bell states [41]. In-
terestingly, the construction of such quasiprobabilities is also
based on equations of the form of Eq. (5) when replacing L̂
with the density operator ρ̂, which also allows one to find the
best separable decomposition [42,43]. For real Hilbert spaces,
where ρ̂ = Re(ρ̂), the quasiprobability method was derived in
Ref. [27]. However, already for two rebits, a full decomposi-
tion of general R-inseparable states ρ̂ is not possible in such a
generalized local form. Rather, a residual component can exist
that cannot be decomposed in terms of any linear combination
of tensor products of rebit states [27]; specifically, we have

ρ̂ =
∑
a,b

P(a, b)|a, b〉〈a, b| + ρres.σ̂y ⊗ σ̂y, (7)

proving the incompleteness of a local—even when including
quasiprobabilities—description of R-inseparable rebit states.

Local decompositions can be reconstructed from data using
the approach in Ref. [41]. This algorithm is based on the
observation that general two-qubit and two-rebit states ρ̂ can

be recast into the so-called standard form [44],

ρ̂std. = ρ0σ̂0 ⊗ σ̂0 + ρzσ̂z ⊗ σ̂z + ρxσ̂x ⊗ σ̂x + ρyσ̂y ⊗ σ̂y,

(8)

which is diagonal as an expansion in terms of tensor products
of Pauli operators. This is achieved through local operations,

ρ̂ =
(
Â ⊗ B̂

)
ρ̂std.

(
Â ⊗ B̂

)†

tr
[(

Â ⊗ B̂
)
ρ̂std.

(
Â ⊗ B̂

)†] , (9)

thus not affecting separability. Importantly, for real and com-
plex numbers, the local operations Â ⊗ B̂ are also real and
complex maps, respectively. This follows from diagonaliza-
tion techniques when computing the standard form from data;
see the SM [34] for technical details.

For the CFR state in Eq. (1), which is already in standard
form, we expect a C-separable decomposition as given
in Eq. (3). For a local decomposition over R, however,
the analytical formula in Ref. [27] predicts local states
|a, b〉 ∈ {|HH〉, |HV 〉, |V H〉, |VV 〉, |DD〉, |DA〉, |AD〉, |AA〉}
with probabilities P(a, b) = 1/8, which only resolve the
(normalized) identity part of the CFR state, σ̂0 ⊗ σ̂0/4. And
the nondecomposable, residual component is rσ̂y ⊗ σ̂y/4
[i.e., ρres. = r/4 in Eq. (7)]. In general, the best local
approximation ρ̂ ′ = ∑

a,b P(a, b)|a, b〉〈a, b|, including cases
P(a, b) � 0 and P(a, b) < 0, of two rebit states in standard
form, Eq. (8), has a Hilbert-Schmidt distance to the full
density operator that is given by [27]

‖ρ̂ − ρ̂ ′‖ = 2|ρy|. (10)

Since physical states obey |ρy| � 1/4, we have a maximal
difference of 1/2. In fact, this value is expected for CFR states
with q ∈ {0, 1} (likewise, r = ±1).

The ability to reconstruct best local decomposition of the
state is relevant for our experimental application because it
allows us to quantify the degree of incompleteness of an
R-local description as described above, in addition to the
aforementioned witnessing of R entanglement. It is further
worth recalling that one expects a zero distance for complex
Hilbert spaces since all states are C local, i.e., fully decom-
posable as a pseudomixture of tensor-product states [39].

III. EXPERIMENT

To experimentally demonstrate two-rebit entanglement
(see Fig. 1 for the experimental layout), we use a highly ef-
ficient waveguide-based parametric down-conversion source
[45,46], producing a |V H〉 photon pair. For this purpose, a
type-II phase-matched periodically poled potassium titanyl
phosphate waveguide is pumped by a femtosecond laser pulse
with a central wavelength of 770 nm. The two generated,
down-converted photons at 1540 nm telecom wavelength are
separated by a polarization beam splitter (PBS). Vertically
polarized photons are then rotated to horizontal polarization,
which yields horizontally polarized photons in both arms,
|HH〉. A first combination of one half-wave plate (HWP) and
one quarter-wave plate (QWP) can be used in both arms to
access all kinds of polarization product states. Here, by setting
the angles of QWPs at ±45◦ (HWPs are at 0◦), we produced
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FIG. 1. Setup outline. A laser (Ti:sapphire) pumps a photon-pair
source (ppKTP). Signal and idler photons are separated with a polar-
izing beam splitter (PBS). Combinations of half- and quarter-wave
plates (HWP and QWP, respectively) allow for polarization rotations.
The first HWP-QWP rotation prepares circularly polarized light in
both arms. The second QWP-HWP rotation, together with PBSs and
single-photon counters, allows for a joint polarization analysis of
Alice’s and Bob’s photons.

all four combinations of left- and right-circularly polarized
photon pairs, {|LL〉, |LR〉, |RL〉, |RR〉}.

After that, second combinations of HWPs and QWPs,
together with PBSs, allow for a full state polarization tomog-
raphy [47]. This polarization-resolved measurement with four
superconducting nanowire single-photon detectors provides
access to all thirty-six coincidence probabilities in the z, x,
and y bases for both Alice’s photon and Bob’s photon. We
recorded for each of the four produced polarization states and
each of the three detector polarization settings per subsystem
≈100 000 events, resulting in ca. 3.6 million data points,
demonstrating the high stability of our setup. Combining the
data in which both photons have the same circular polarization
and those with different circular polarizations leaves us with a
randomization that realizes the CFR states for the parameters
q = 1 and q = 0 in Eq. (3), respectively. Equivalently, one
could directly produce CFR states by randomly changing the
wave plates, resulting in the same mixture though. Another
proposal exists to generate mixed states in which mixing is
realized by tracing over other degrees of freedom [48].

IV. RESULTS

Figure 2 shows the reconstructed real and imaginary parts
of the two produced rebit states. For both states, the contri-
bution of the imaginary part is negligible. Specifically, the
largest amplitude of an imaginary part is for both states
about 20 times smaller than for the real part. Furthermore,
the overlap with the targeted two-rebit states exceeds 99%,
proving the reliability of the realized state generation. Simi-
larities of states ρ̂ and ρ̂ ′ are quantified through the correlation
coefficient S = tr(ρ̂ρ̂ ′)/[tr(ρ̂2)tr(ρ̂ ′2)]1/2, which is directly
accessible through our measurement and one for ρ̂ = ρ̂ ′.

We can now apply the rebit entanglement criterion in
Eq. (6). For the experimentally realized states, we then find
a highly significant certification of rebit entanglement,

0 �= 〈σ̂y ⊗ σ̂y〉 =
{

0.9634 ± 0.0006 for q = 1
−0.9631 ± 0.0006 for q = 0,

(11)

FIG. 2. Real (left) and imaginary (right) part of reconstructed
density matrix of CFR states in Eq. (3) for q = 1 (top) and q = 0
(bottom). The imaginary part is close to zero, thus resembling the
desired two-rebit state. In fact, the similarities with the targeted CFR
states are (99.639 ± 0.011)% and (99.667 ± 0.011)% for the top and
bottom state, respectively. The absolute uncertainty for all depicted
matrix elements is below 0.0008 (see the SM [34] for details).

being close to the maximal violations, ±1. Thus, R entangle-
ment has been experimentally verified.

What is left is demonstrating that the CFR states realized
do not exhibit bipartite qubit entanglement. In addition, we
are going to show that the rebit entanglement does indeed
originate from the nondecomposability of the produced state
in terms of local ones.

For this purpose, we decomposed the state in terms of sepa-
rable states for the complex and real scenarios, see Fig. 3. It is
worth mentioning that Eq. (9) transforms tensor-product states
in a local manner, |a′〉 ∝ Â|a〉 and |b′〉 ∝ B̂|b〉, which are used
in the plot. The complex cases in Fig. 3 describe the states as a
balanced and non-negative mixture of two states with circular
polarization for Alice and Bob [Eq. (3)], up to negligible con-
tributions from other polarizations. By comparison, the best
local approximation in the two-rebit case is a uniform mixture
of diagonal and antidiagonal as well as horizontal and vertical
basis states, which confirms the theoretical predictions.

To assess how well the best local approximations found de-
scribe the states produced, one can determine the distance of
the directly reconstructed state ρ̂ (Fig. 2) and the density op-
erators ρ̂ ′ = ∑

a′,b′ P(a′, b′)|a′, b′〉〈a′, b′| of the best separable
approximations according to Fig. 3. We obtain the distances

‖ρ̂ − ρ̂ ′‖ =
{

0.000 ± 0.004 for q = 1
0.000 ± 0.004 for q = 0 (12)

for the complex case. This value is zero within the numerical
precision used (10−9), showing that the complex state is fully
described through linear combinations of tensor products of
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FIG. 3. Reconstructed distributions P(a′, b′) for the best local decomposition in terms of tensor-product states |a′, b′〉 for Alice and Bob;
see text for details. Plots correspond to CFR states with q = 1 and q = 0 for complex and real Hilbert spaces, as indicated by labels. For an
improved visibility, a five standard-deviation error margin is depicted as black bars [34].

local states. By contrast, the real-valued scenario yields

‖ρ̂ − ρ̂ ′‖ =
{

0.483090 ± 8×10−6 for q = 1
0.482749 ± 8×10−6 for q = 0,

(13)

which is close to the maximal value 1/2 as the result of a sig-
nificant nondecomposable, residual component [cf. Eqs. (7)
and (11)]. This experimentally demonstrates that tensor prod-
ucts of states over real numbers are incomplete for the
decomposition of CFR states.

Therefore, we successfully characterized a two-rebit state
that is a statistical mixture of product states over complex
Hilbert spaces but inseparable and locally nondecomposable
for real Hilbert spaces. This was achieved by preparing mix-
tures of two-photon states with circular polarizations that
results in a density matrix with vanishing imaginary parts in
the computational basis of horizontal and vertical polariza-
tion. The witnessing shows close to maximal violations of a
separability constraint for real vector spaces. Conversely, in
terms of complex spaces, a non-negative decomposition of
the generated state in terms of tensor-products is achieved,
demonstrating two-qubit separability.

V. CONCLUSION

We introduced and applied theoretical methods to char-
acterize and compare entanglement that is defined over real
and complex Hilbert spaces. By realizing two-rebit states,
we addressed the open problem of an experimental charac-
terization of an interesting form of entanglement. That is,
we demonstrated that the produced CFR states are separable
and inseparable at the same time, depending on the choice
of the number system. Moreover, we reconstructed the actual
decomposition in terms of tensor-product qubit states and
falsified the possibility of a decomposition via factorizable
rebit states.

With high statistical significance, we certified the theoret-
ically predicted properties of the states produced. First, we
showed that the similarities with the targeted two-rebit states
are well above 99%. And a witnessing condition revealed a
rebit entanglement close to optimum. Furthermore, we recon-
structed the optimal decomposition of the mixed-state density

operators in terms of tensor-product states, which has previ-
ously only applied to almost perfectly pure states [41], such
as Bell states which are entangled with respect to both real
and complex numbers. Thereby, we quantified that the best
decomposition of the produced states in terms of product
rebit states is close to the maximally possible distance to the
actually produced two-rebit state.

From a fundamental perspective, our demonstration shows
that quantum physics in composite systems does indeed re-
quire complex Hilbert spaces for a complete description of
the underlying states. Conversely, imposing a world with real-
valued multipartite wave functions would be incomplete [11].
On the more practical side, our analysis also demonstrates
the importance of nontrivial phases in quantum information
protocols that employ entangled states. While much atten-
tion is devoted to producing entangled states with uniformly
distributed amplitudes of Schmidt coefficients, such as Bell
states for two qubits, our findings imply that phases between
multiple entangled states can be valuable as well. Namely,
when focusing on real-valued expansions alone, one effec-
tively restricts oneself to an incomplete scenario with real
numbers and ignores the additional resources that are offered
by a complex-valued description [19].

Our techniques employed here have been generalized to
multipartite entanglement beyond qubits in complex spaces.
Similar generalizations (for witnessing [38] and quasiprob-
abilities [27]) can be adopted in the future when analyzing
entanglement in real spaces with multiple subsystems and
higher dimensionalities, e.g., as deemed useful in multipar-
tite quantum communications with many partners and large
encoding alphabets [20]. Therefore, our studies open a path
towards characterizing previously untapped nonlocal quantum
coherence properties for applications in quantum technology.
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