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Quantum jamming: Critical properties of a quantum mechanical perceptron
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In this Letter, we analyze the quantum dynamics of the perceptron model: a particle is constrained on an
N-dimensional sphere, with N → ∞, and subjected to a set of randomly placed hard-wall potentials. This model
has several applications, ranging from learning protocols to the effective description of the dynamics of an
ensemble of infinite-dimensional hard spheres in Euclidean space. We find that the jamming transition with
quantum dynamics shows critical exponents different from the classical case. We also find that the quantum
jamming transition, unlike the typical quantum critical points, is not confined to the zero-temperature axis, and
the classical results are recovered only at T = ∞. Our findings have implications for the theory of glasses at
ultralow temperatures and for the study of quantum machine-learning algorithms.
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Introduction. Constraint satisfaction problems [1] (CSPs),
born in computer science, have taken a prominent role also in
statistical mechanics. Methods from the theory of disordered
systems have been proposed to shed light on the possible
origin of their computational difficulty [2–6] and inspire effi-
cient algorithms [7] to solve them. While problems defined in
terms of discrete variables map naturally to spin glasses, CSPs
with continuous variables have shown a deep connection with
structural glasses [8–13].

A notable example of a CSP with continuous variables
is the sphere-packing problem [14,15]. Sphere systems have
gained plenty of attention among the glass physics com-
munity, and their jamming transition has been incorporated
into the framework of glassy theory [11]. In this context,
the perceptron, another CSP with continuous variables, has
been recognized as the simplest mean-field model present-
ing a jamming transition in the same universality class of
high-dimensional sphere systems [14–17]. Exactly solvable
models have always played an important role in increasing
our understanding of the physics of glasses, both qualitatively
and quantitatively. Furthermore, the perceptron has several
applications in learning protocols [18–20] and constitutes the
building block of deep neural networks.

Recently, partly motivated by the technological progress in
quantum computation [21], many authors have been looking
at ways to use quantum dynamics to speed up the solution of
the classical problems. In the case of discrete-variable CSPs,
a growing body of literature has investigated the impact of
quantum dynamics on the spin-glass transition [22–27], and
it has been found that disordered quantum systems display
a plethora of new phenomena, such as many-body localiza-
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tion [28–38]. The study of CSPs with continuous variables
endowed with quantum dynamics, surprisingly, has not re-
ceived the same kind of attention so far, but it promises to be
equally far-reaching. For instance, in view of the connection
to structural glasses, it might provide clues for the anomalous
(i.e., non-Debye) behavior of thermodynamic quantities in
glasses at ultralow temperatures. These phenomena, such as
CV (T ∼ 0) ∼ T [39–41], are indeed naturally explained in
terms of quantum mechanics [42,43], but no firm results or
solvable toy models exist (see, for example, [44] for a critical
view).

The purpose of this Letter is to address the jamming transi-
tion deep in the quantum regime [45] through the perceptron
model. We show that quantum mechanical effects change the
nature of the critical phase radically. We find that, for any
h̄ �= 0, the critical exponents are different from the classical
ones and independent of the temperature. We also find that
CV (T ∼ 0) ∼ e−�/T at small T , while at higher temperatures
the specific heat has a power-law behavior. Remarkably, the
latter result, valid in the deep quantum regime, resembles the
semiclassical results of Refs. [46,47], connecting the physics
on the two sides of the jamming transition [48].

Model. The perceptron model can be formulated as a
particle living on an N-dimensional sphere, subjected to a
set of randomly placed obstacles. The vector X represents
the position of the particle on the sphere (X 2 = N), and
the obstacles are represented by the N-dimensional vectors
ξμ = (ξμ

1 , . . . , ξ
μ
N ), where μ = 1, . . . , M = αN and ξ

μ
i are

independent and identically distributed. Gaussian random
variables with zero mean and unit variance. For each obstacle,
one defines the constraint

hμ(X ) = 1√
N

ξμ · X − σ > 0, (1)
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FIG. 1. Finite-dimensional representation of the perceptron
model at σ = 0, N = 3, M = 4. Each constraint is represented by
a plane passing through the origin and cuts the sphere in half. The
particle can move in the allowed (light orange) region on the sphere.
The jamming transition is reached when the number of obstacles is
such that (with probability 1 in the N, M → ∞ limit) there is no light
orange volume left anymore.

and the cost function is V = ∑M
μ=1 v(hμ(X )). We are inter-

ested in the hard-wall potential case in which v(h) = 0 if
h > 0 and v(h) = ∞ if h < 0; hence, all the constraints must
be satisfied (see Fig. 1). The limits N, M → ∞ are taken,
eventually, keeping α ≡ M/N finite.

The classical system (recovered for h̄ = 0) is independent
of the temperature and presents two phases, determined by
whether there is or is not any volume left by the intersection
of the M constraints. More specifically, one has to consider the
limit of the set W ≡ ⋂M

μ=1{X ∈ RN : X 2 = N ∧ hμ(X ) > 0}
as N, M → ∞: in the satisfiable (SAT) phase, a position X
for the particle satisfying all the constraints can be found with
probability 1. In the unsatisfiable (UNSAT) phase, instead,
W becomes empty, and the CSP problem has no solution.
The sharp SAT-UNSAT transition is induced by increasing the
constraint density α up to αc(σ ).

The features of the SAT-UNSAT transition depend on
σ [15]. For σ > 0, the constraints {hμ >0} force the particle X
to be closer than some distance to each obstacle; thus, the al-
lowed region is convex. The free energy has a single minimum
and the replica-symmetric (RS) solution is everywhere stable.
On the contrary, when σ < 0, the constraints are satisfied if
the particle is away from each obstacle. The allowed region
is non-convex and can be composed of disconnected islands.
The SAT-UNSAT transition falls within a phase where the
landscape is rugged and marginally stable. For our purposes,
we will concentrate only on the value σ = 0 at the border of
the RS stable region, for which the jamming point corresponds
to αc(0) = 2. In this way, we can reach the jamming point
within the RS ansatz but capture the physics of the glassy
phase (σ < 0).

The model is quantized by imposing the canonical commu-
tation relations [X̂i, P̂j] = ih̄δi j . The Hamiltonian reads

Ĥ = P̂
2

2m
+

M∑
μ=1

v(hμ(X̂ )). (2)

Methods. We wish to compute the quenched disorder
average of the free energy F = −β−1ln Z , Z = Tr(e−βH ). Fol-
lowing the lengthy but straightforward procedure in [46,49],
which introduces replicas a, b = 1, . . . , p (with, eventually,
p → 0), the quenched free energy within the RS ansatz
is expressed in terms of the Edwards-Anderson order pa-
rameter q = N−1〈X a(t ) · X b(s)〉 (for a �= b and any t, s),
the correlation function of a single replica G(t − s) =
N−1〈X a(t ) · X a(s)〉 − q, and a Lagrange multiplier μ to en-
force the spherical constraint. G(t ), q, and μ need to be found
self-consistently. To this purpose, it is convenient to introduce
a one-dimensional, β h̄-periodic auxiliary process with the
same autocorrelation function

〈•〉r = 1

Z0

∮
Dr e− 1

2

∫∫ β h̄
0

dt
β h̄

ds
β h̄ r(t )G−1(t−s)r(s)• (3)

(Z0 is a suitable normalization). Then, the quenched free en-
ergy in the RS approximation, per dimension and per replica,
reads [50]

−β f = 1

2

∑
n∈Z

ln Gn + q

2G0
− βm

2

∑
n∈Z

ω2
nGn

− βμ

2

[∑
n∈Z

Gn − (1 − q)

]

+ αγq 
 ln 〈e−β
∫ β h̄

0
dt
β h̄ v[r(t )+h]〉r, (4)

where we denoted the Fourier transform by

•(ω) ≡
∫ β h̄

0

dt

β h̄
e−iωt • (t ), •n ≡ •(ωn), (5)

with ωn ≡ 2πn/β h̄ being the Matsubara frequencies and γq 


•(h) ≡ ∫ ∞
−∞

dh√
2πq

e−h2/2q • (h). It is also convenient to define
the self-energy

�(ω) = β−1G−1(ω) − mω2 − μ (6)

and fix �(0) = 0.
As said before, the extremization of (4) with respect to

Gn, q, μ gives rise to a set of self-consistency equations
(see [49]). To solve them we have implemented an iter-
ative method, together with a Monte Carlo sampling for
the calculation of 〈•〉r (for an analog calculation in the
Sherrington-Kirkpatrick model see [51–54]).

Results. As a first result, we obtain the value of the order
parameter q as a function of α, β; it is plotted in Fig. 2 against
the classical counterpart qcl(α), obtained at h̄ = 0 [15]. Unlike
the quantum case, qcl(α) is independent of the temperature
and goes to 1 for α → αc = 2, with the critical exponent
κcl = 1 (valid for σ � 0, while for σ < 0 one has κcl =
1.41574 . . . [15]): [1 − qcl(α)] � 1

4 (2 − α). The value of q
for h̄ > 0 is always larger than the classical one, and this can
be easily understood: the ground state of a quantum particle in
a billiard is more concentrated than a flat distribution on the
billiard table because of the Dirichlet boundary conditions on
the walls. Moreover, it becomes more concentrated the larger
the aspect ratio of the billiard is, namely, if one of the sides is
larger than the others. Quantitatively, one finds q > qcl already
at the lowest order in α. Indeed, from the self-consistency
equations [49], q = α〈r0〉2

v(h=0) + O(α2), where the average
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FIG. 2. Edwards-Anderson order parameter as a function of the
constraint density α for various temperatures. From bottom to top:
infinite-temperature classical dynamics (red dotted line) to finite-
temperature quantum dynamics (β = 2, 4, 8). The O(α), β = ∞
results are shown as dashed black lines (while the horizontal black
line is a reference for the value q = 1). Notice how, as soon as
α � 1, the temperature dependence of q is effectively lost (it is
∼e−cβ/(2−α)2

).

〈•〉v(h=0), when β → ∞, indicates the expectation value over
the ground state of a harmonic oscillator with a wall in the
origin. This problem is easily solved, and one finds q = 8

π
α +

O(α2), which should be compared with qcl = 2
π
α + O(α2).

Figure 2 shows that the quantum order parameter q de-
pends on the temperature T = 1/β for α � 1 and then, with
increasing α, becomes independent of T through a crossover.
From the classical calculation, we expect that the typical lin-
ear size of the allowed region for the particle on the sphere
vanishes as � ∼ √

1 − qcl ∼ √
2 − α for α → 2. Thus, as

soon as the energy gap to the first excited state becomes larger
than the temperature, i.e., roughly when h̄2

m(1−qcl )
∼ h̄2

m(2−α) �
T , the quantum dynamics is effectively at zero temperature,
and the order parameter q becomes independent of T . More-
over, in the following we will show that the gap, deep in the
quantum regime, grows even faster than (2 − α)−1 when α →
2. Since the quantum dynamics recovers the classical dynam-
ics only when the de Broglie wavelength λT ∼ h̄/

√
mT 

�, on approaching jamming, quantum mechanics dominates.
Hence, for any T, h̄, m, as α → 2, one eventually enters a
quantum critical regime, where quantum mechanics controls
the dynamics and defines, among other things, novel critical
exponents. The classical result is recovered only by taking the
limit T → ∞ before α → 2.

The value of the critical exponent κ regulating the relation
(1 − q) ∼ (2 − α)κ in the quantum regime can be extracted
by looking at the low-temperature, large-α data. As usual, a
sufficiently large number of Trotter slices S must be taken,
and it increases as α → 2, making the numerical simulations
more demanding. However, fortunately, the asymptotic region
is reached already at α � 1. The data in Fig. 3 clearly show
that the critical exponent of the quantum theory is not the
classical one, κcl = 1, and it departs more and more from it as
the number of Trotter slices is increased. We have performed
a log-log fit to extract such a critical exponent in the region

FIG. 3. Edwards-Anderson order parameter close to the critical
point α = 2. From top to bottom, increasing the number of Trotter
slices S = 4, 8, 16, 32 for sufficiently large β, the slope increases.
For reference, the classical value of the slope [from (1 − q) ∼ (2 −
α)] is shown as the diagonal dotted black line. The inset shows the
values of the slope with their errors and its extrapolation to S → ∞
to the value κ = 2.0 ± 0.1, quoted in the text.

of α ∈ [1, 1.7]. Extrapolating S → ∞, we find κ = 2.0 ± 0.1
(Fig. 3).

That κ > 1 in the quantum case can be understood also
from a simple variational calculation [49]. Using in the scal-
ing region α → 2 the (uncontrolled) approximation G−1

n =
βm(ω2

n + h̄2/4m2)/(1 − q), we were able to solve explicitly
the self-consistency equations for β → ∞, finding κ = 3/2.
The value κ � 2 from the Monte Carlo simulations presum-
ably comes once the true behavior of �(ω) is considered.

The internal energy per degree of freedom u (see [46,49])
is independent of β, like q, already at α � 1. Extrapolating its
behavior for an infinite number of Trotter slices, the internal
energy diverges as u ∼ h̄2

m(2−α)2 for α → 2. This can be, again,
interpreted in terms of reduced volume and the uncertainty
principle and confirms the previous result, κ � 2.

We have just shown that, at fixed temperature, in the quan-
tum regime the critical properties of the system are determined
by the ground state, and the gap to the first excited state
grows as � ∼ h̄2

m(1−q) for α → 2. This implies that, if we
focus on frequencies ω  �/h̄ or times t � h̄/�, there is
no dynamics. In order to see some dynamical behavior one
should consider G(ω � �/h̄). As shown in Fig. 4, at these
large frequencies the form of the self-energy �(ω) changes
significantly. Indeed, at any α < 2, the self-energy is an an-
alytic function of ω2 in a neighborhood of the origin ω = 0
(inset of Fig. 4). As α → 2, this behavior becomes extended
to increasing values of ω. At larger frequencies, however,
�(ω) develops a linear behavior. Moreover, for any α < 2,
limω→∞ �(ω) = 0, as can be seen from its definition [49].
Performing a log-log fit, we find that the constant contribu-
tion to the autocorrelation function scales as βμ ∼ (1 − q)δ ,
where δ � −0.9. From a quadratic fit of �(ω) at small ω,
the coefficient of the quadratic term results instead almost
independent of (1 − q).

The behavior of �(ω) defines the effective dynamics of
the theory, and its analytical properties around the origin
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FIG. 4. Self-energy �(ω) at α = 1.7, β = 1/23 as a function
of the Matsubara frequency ω for an increasing number of Trotter
slices (accessing higher and higher frequencies). We see that �(ω)
develops a linear ω behavior (black dotted line) for intermediate ω’s
while retaining its analyticity in terms of ω2 around the origin for any
q < 1 (inset). The inset shows �(ω) at small ω’s for α = 1.5, β = 8.

determine the low-temperature behavior of thermodynami-
cal observables. Both the analyticity of �(ω) around ω = 0
and the independence of β of all the observables, including
the internal energy u, show that the specific heat is nonan-
alytic in T when α → 2. More precisely, our findings show
that CV (T ∼ 0) ∼ e−�/T due to the presence of the gap.
However, since �(ω) ∼ |ω| at not-so-small ω, the specific
heat presents a power-law behavior at high enough temper-
atures, i.e., CV (T > Tcutoff ) ∼ T γ . Since � → ∞ as α → 2,
Tcutoff → ∞ too.

The linear dispersion �(ω) ∼ |ω|, observed in the critical
regime, reminds us of the result of [46], where the authors
perform a semiclassical analysis to investigate the UNSAT
phase with soft potentials. In [46], they sent h̄ → 0 with h̄/T
kept fixed, while in our study h̄ is kept finite. They found
the linear dispersion �(ω) ∼ |ω| in the neighborhood of the
origin ω = 0, implying a power-law behavior of CV (T ) at
small T near the jamming point. The similarities between
the two results are surprising since the regimes considered
are different and suggest that the linear dispersion �(ω) ∼
|ω| might be a universal feature of quantum models near
jamming.

Conclusions. We have investigated the quantum perceptron
with hard-wall potentials as a model for jamming. We have
studied the replicated, quenched free energy in the RS approx-
imation, finding a quantum critical point corresponding to the
classical jamming point αc = 2 at σ = 0. Usually, quantum
critical points are confined and influence the physics around
T = 0 [55]. We instead found that the quantum jamming crit-
ical point exists for any temperature, and the classical results

are recovered only by taking T → ∞ before α → αc: it is the
classical critical point to be confined to T = ∞. We found
quantum critical exponents different from the classical ones
and an exponentially small CV (T ) at small T . The dispersion
relation G(ω)−1 ∼ |ω| for frequencies higher than the gap, but
not asymptotically large, implies a power-law specific heat for
T > Tcutoff , where Tcutoff diverges at the critical point. This
shows a surprising connection of our findings with those of
the semiclassical analysis in [46], where a different region
of parameters was considered, which deserves to be further
investigated.

An appealing extension of this work would be to consider
soft potentials having a finite v′ ≡ ∂v/∂r|r=0 [56], as in the
case of structural glasses. Employing soft potentials, it is
possible to access the UNSAT phase deep in the quantum
regime. We do expect that the quantum jamming transition
will turn into a crossover (like the classical one does), but
the same phenomenology outlined in this Letter should be
observed as long as the change in the potential on length scales
O((1 − q)1/2) is large with respect to the gap � ∼ (1 − q)−1.
This means that for (1 − q) � (v′)−2/3 or α � 2 − c(v′)−1/3,
the physics is dominated by the hard-wall quantum jamming
critical point. The robustness with temperature of the quantum
critical point, shown in our results, implies that the quantum
character of the system even with soft potentials cannot be
neglected. Therefore, our findings suggest that the standard
approaches used to study glassy systems at ultralow tem-
peratures, which add quantum effects on top of the classical
landscape [57–59], might be inadequate.

Another interesting extension of this study would be to
move to the regions with σ �= 0. The case σ > 0 is studied
in learning protocols. Here, the same methods adopted in our
study can be implemented, and one can directly investigate
the effects of quantum dynamics. In the region σ < 0,
instead, it is also necessary to solve the self-consistency
equations in the replica symmetry-breaking framework. As
the allowed volume becomes clustered, quantum effects
may play a double role: for low disorder, tunneling may
help the particle to explore many disconnected flat regions
and speed up the search for solutions (which happens in the
quantum random-energy model [33,37,38]); for high disorder,
Anderson localization may take place, breaking ergodicity
and changing significantly the classical phase diagram. The
interplay of these behaviors, which is hard to guess, deserves
a complete investigation.
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