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Numerical simulation of quantum nonequilibrium phase transitions without finite-size effects
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Classical (1+1)-dimensional (D) cellular automata, as for instance Domany-Kinzel cellular automata, are
paradigmatic systems for the study of nonequilibrium phenomena. Such systems evolve in discrete time steps,
and are thus free of time-discretization errors. Moreover, they display nonequilibrium phase transitions which
can be studied by simulating the evolution of an initial seed. At any finite time, this has support only on a
finite light cone. Thus, essentially numerically exact simulations free of finite-size errors or boundary effects
are possible, leading to high-accuracy estimates of critical exponents. Here, we show how similar advantages
can be gained in the quantum regime: The many-body critical dynamics occurring in (1+1)D quantum cellular
automata with an absorbing state can be studied directly on an infinite lattice when starting from seed initial
conditions. This can be achieved efficiently by simulating the dynamics of an associated one-dimensional,
nonunitary quantum cellular automaton using tensor networks. We apply our method to a model introduced
recently and find accurate values for universal exponents, suggesting that this approach can be a powerful tool
for precisely studying nonequilibrium universal physics in quantum systems.

DOI: 10.1103/PhysRevA.103.L040201

Introduction. One of the most intriguing aspects of
nonequilibrium phase transitions (NEPTs) is the emergence of
universal behavior: systems with very different microscopic
details can display the same scaling laws at a macroscopic
scale, both for key stationary and dynamical quantities. As in
equilibrium, an understanding of such critical features comes
from their classification into universality classes [1–3]. Each
class groups systems with the same emergent behavior, as
identified by the values of parameters known as critical expo-
nents. However, in contrast to equilibrium settings, even the
simplest critical nonequilibrium systems, e.g., those featuring
absorbing state phase transitions in the directed percolation
(DP) universality class, are not analytically solvable and their
exponents cannot be determined exactly.

To overcome this problem, efficient numerical schemes for
simulating nonequilibrium many-body dynamics are required.
This concerns both continuous-time models, such as the con-
tact process [4], and discrete-time evolutions such as in the
paradigmatic Domany-Kinzel cellular automata (DKCA) [5].
To estimate the values of critical exponents with high preci-
sion, a particularly powerful approach is offered by studying
critical behavior in discrete-time systems following a local
perturbation of the absorbing state [4]. For instance, in the
DKCA, this is a state with a single occupied site, as shown in
Fig. 1(a).

The importance of such scenarios is twofold. First, numer-
ically exact simulations can be performed directly in the limit
of an infinite system, i.e., free of finite-size effects. This stems
from the fact that the information about the presence of a local
perturbation propagates with a strict light cone. Second, as

a consequence, critical exponents can be extracted directly
from such evolutions by considering only a finite portion of
the system; see Fig. 1(b). Put together, simulations of models
such as the DKCA have allowed for unprecedented accuracy
in the estimation of the critical exponents defining NEPTs in
classical systems, and thus underpin the general understand-
ing of out-of-equilibrium physics that results.

For quantum many-body systems (QMBSs), tracking the
evolution of an initial seed also provides access to key
universal quantities associated to NEPTs. However, the cor-
responding simulations in continuous [6,7] and discrete
time [8,9] pose significant challenges. Indeed, owing to
the substantial technical barriers present in studying out-of-
equilibrium QMBSs, understanding the critical behavior and
universality classes of even seemingly simple QMBSs dis-
playing NEPTs remains an outstanding problem [10–13].

In this paper, we introduce a method to study NEPTs in
QMBSs that builds on the advantages of classical seed simu-
lations. We show that the discrete-time dynamics of (1+1)D
quantum cellular automata (QCA) starting from a single seed
can be simulated efficiently without finite-size effects. While
the (unitary) (1+1)D QCA is represented by a 2D state, we
consider the associated (nonunitary) reduced evolution of a
1D row. To this end, we use a tensor network (TN) [14–24]
that grows dynamically, thus extending the range of appli-
cation for infinite-size TN methods [25–27] to the case of
NEPTs in QMBSs.

Just like their classical counterparts—which include the
DKCA—(1+1)D QCA are free of time-discretization errors.
As such, our approach offers an extremely clean, flexible, and
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FIG. 1. Seed evolutions in a (1+1)D (quantum) cellular automaton. (a) Seed evolution of the classical Domany-Kinzel cellular automaton
at the critical site-DP point [3] performed directly on an infinite lattice. Occupied sites only fall inside the indicated light cone (dashed lines
and shaded region). (b) The total number of occupied sites, N (t ), is shown averaged over 1000 runs (solid black line). Even for relatively short
times, the universal power law can be seen (straight solid red line), and the observed exponent is in agreement with the expected value for 1D
DP: θDP = 0.314. (c) In a (1+1)D QCA, a 2D lattice is initiated in a product state with all empty sites apart from the first row, which encodes
the initial condition. The state |ψ (1)〉, obtained by updating the target sites in the subsequent row via the application of three-body unitary
gates, is shown. The operator G1 is the product of the applied gates, and thus |ψ (1)〉 = G1 |ψ (0)〉. (d) When (1+1)D QCA on an infinite lattice
display a strict light cone, the reduced dynamics of a row with seed initial conditions are fully captured by those of a finite-size reduced state,
ρ(t ). The size of this state grows proportionally with time. This allows for the dynamics of the underlying unitary (1+1)D QCA to be studied
via the corresponding nonunitary dynamics of ρ(t ) = �[ρ(t − 1)], free of finite-size effects.

efficient framework for studying NEPTs in quantum systems.
To demonstrate its potential, we apply it to previously studied
QCA [8]. The method introduced here allows for the accurate
estimation of critical exponents at significantly reduced com-
putational costs.

Single-seed dynamics in QCA. Similarly to the case of
classical cellular automata [28] [cf. Fig. 1(a)], the full infor-
mation about (1+1)D QCA is encoded in a two-dimensional
(tilted) lattice, as shown in Fig. 1(c). The horizontal dimension
represents space, while the vertical one provides a notion of
time [8,9,29,30]. Each lattice site is described by a two-level
system, with basis states |•〉 , |◦〉 denoting an occupied or an
empty site, respectively. The lattice is initialized with all sites
in the empty state, except for those in the zeroth row, which
encode the initial condition.

The evolution of this 2D lattice occurs via the action of
unitary operators (gates) on lattice sites. These gates act on
pairs of consecutive rows, such that at time step t , the “target”
row t is updated according to the state of “control” row, t − 1.
For concreteness, we consider a local update rule with three-
body gates, Gt,k , but the extension to gates with larger support
(implementing longer-range interactions) is immediate.

The gate Gt,k performs a controlled unitary operation on
the target site at (t, k), with controls at (t − 1, k−) and (t −
1, k+), where k− (k+) refers to the control site to the left
(right) of target site k. In order for the QCA to feature an
absorbing state, we impose a constraint on Gt,k : we assume
that target sites are not modified whenever the corresponding
control sites are both found in the empty state [8]. As such,
if a control row has all sites empty, no update takes place on
their targets.

The global update for the entire row, Gt , is then an ordered
product of the gates Gt,k , one per target site. In contrast to
classical systems, one must pay special attention to the order-
ing of the unitary quantum gates, as these do not commute in
general. As such, to preserve a physical notion of causality—a
concept which is also key to the definition of QCA in the field
of quantum information (QI) [31,32]—only those gate order-
ings giving rise to a strict light cone, reminiscent of quantum

systems that feature a Lieb-Robinson bound [33], will be
considered. Choosing specific gate orderings will certainly
affect details of the evolution dynamics, but are not expected
to impact universal features, such as critical exponents.

Due to the unitarity of the gates, the state of the 2D lattice
after t time steps is pure, |ψ (t )〉. It contains the full space-time
information of the QCA and can be used to compute unequal
time observables, such as time-correlation functions. How-
ever, here we focus on observables which can be computed
from the reduced state of the QCA on row t at time t . These
observables provide sufficient information to determine the
universality class of the considered model [3,4,8].

Mathematically, the reduced state is given by �(t ) =
Tr′(|ψ (t )〉 〈ψ (t )|), where Tr′ is the partial trace over all sites
with the exception of those in row t . The evolution of �(t )
describes the discrete-time dynamics of a 1D system. Corre-
sponding to the classical case where irreversible 1D CA can
be simulated by reversible (1+1)D CA [34], the dynamics of
�(t ) are, in general, nonunitary. Since gates act solely on con-
secutive rows, the evolution of �(t ) can be defined iteratively
as

�(t ) = Trt−1
[
Gt�(t − 1) ⊗ |�t 〉 〈�t |G†

t

]
, (1)

where |�t 〉 is the t th row configuration with all empty sites
and Trt−1 indicates the trace over the sites where �(t − 1) is
defined.

Turning now to dynamics ensuing from a single-seed ini-
tial condition, we set �(0), i.e., the zeroth row of the 2D
lattice, to be �(0) = σ+

seed |�0〉 〈�0| σ−
seed, where σ+ = |•〉〈◦|

and σ− = (σ+)†, in such a way that the seed site (at the center
of the initial row) is occupied. Clearly, for this choice of the
initial state, �(0) factorizes as �(0) = ρ◦ ⊗ ρ(0) ⊗ ρ◦, where
the matrix ρ◦ indicates an infinite tensor product of empty
states, while ρ(0) = |•〉〈•| has support only on a single site.

The most striking consequence of the existence of a strict
light cone is that for dynamics starting from a state with finite
nontrivial support such as the single seed, at any time, �(t )
can be factorized as �(t ) = ρ◦ ⊗ ρ(t ) ⊗ ρ◦. Here, ρ(t ) has
support only on a finite set of sites, Lt , with size Lt = |Lt |.
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FIG. 2. Reduced dynamics of the (1+1)D QCA. (a) To evolve
ρ(t − 1) → ρ(t ) through the map �, we begin via an MPO repre-
sentation of ρ(t − 1), shown here for t = 2. Empty sites are then
added at locations where gates act nontrivially. This operation defines
the state 	t−1. We have depicted these states here using the standard
diagrammatic notation for TNs [14,22]. In this notation, tensors are
represented by shapes with a number of legs corresponding to their
order. Each tensor corresponding to operators in a local Hilbert space
must have two legs for the “physical” indices, here represented by a
solid black circle. Other “virtual” legs which join the shapes (solid
black lines) encode correlations between these, and we denote the
trivial legs (indicating no correlations) as dashed lines. (b) The gates
are then applied in MPO form to update the state. By tracing out the
sites of row t − 1, indicated diagrammatically by removing physical
legs, the exact TN representation of ρ(t ) is obtained. Approximating
this by an MPO allows the scheme to be iterated.

Consequently, the entire reduced dynamics of the (1+1)D
QCA can be captured without finite-size effects through the
evolution of ρ(t ) = �[ρ(t − 1)], where � is the map that
implements this update; see Fig. 1(d).

In general, starting from any ρ(t − 1) and for any gate or-
dering, the reduced dynamics can be implemented via Eq. (1)
as follows. First, ρ(t − 1) is mapped into �(t − 1) by attach-
ing an infinite product of empty sites in row t − 1 to the left
and right of Lt . Second, row t is included in a product state
of all empty sites. Third, the gates are applied via Gt before,
finally, the sites of row t − 1 are traced out.

For orderings with strict light cones, this procedure simpli-
fies since sites outside the support Lt are in the absorbing state
and, thus, only a finite number of gates in Gt act nontrivially.
Therefore, the map � can be implemented by considering
only a finite number of extra empty sites and gates (see, also,
Fig. 2). In addition, for any given t , Lt � Lt−1 + v for some
fixed integer v determined by the gate and the ordering. In
what follows, we show how � can be expressed in terms of a
finite TN that updates a matrix product operator (MPO) rep-
resentation for ρ(t − 1) into an MPO representation of ρ(t ).
This enables efficient numerical simulations of the dynamics
of ρ(t ), allowing us to investigate universal aspects of the
QCA, directly in the infinite lattice limit.

TNs for seed evolutions on infinite lattices. For the sake of
clarity, we now specify a gate ordering. We choose an alternat-
ing leftmost-rightmost ordering, where first the leftmost target
site is updated, then rightmost, then the second leftmost, and
so on. Generalization to other gate orderings is possible (see
the Supplemental Material [35] for a discussion of another
example). The alternating leftmost-rightmost ordering leads
to the lowest possible increase in Lt , i.e., v = 1, and thus has
minimal computational cost.

It is convenient to represent ρ(t ) as an MPO. The map �,
which connects two MPOs with different supports, can then
be understood in terms of a TN; see Fig. 2. At any given time,
ρ(t − 1) is represented as an MPO [cf. Fig. 2(a)] with maxi-
mum bond dimension χ . To find the representation for ρ(t ),

with our choice of the ordering, we first expand ρ(t − 1) by
introducing a single empty site at both boundaries and t + 1
empty sites (the target sites) representing the subsequent row.
This defines a new state 	t−1, with the same nontrivial part. At
this point, we can apply all the gates acting nontrivially on the
QCA, as shown in Fig. 2(b). This is achieved by representing
gates as three-site MPOs and applying these to the previous
TN for 	t−1. To obtain a TN for ρ(t ), we then trace out all
sites related to row t − 1. An exact representation of ρ(t ) as an
MPO can be achieved by factorizing the tensors in row t − 1
and contracting them into those of row t . However, such an
operation will, in general, lead to an exponential growth of the
bond dimension χ with time, making numerical simulations
infeasible. To avoid this, the last step of the update consists in
constructing an approximate MPO for ρ(t ). There are several
strategies for approximating ρ(t ) using an MPO with fixed
χ . For TNs, a natural approach is to first map the MPO into
a matrix product state (MPS), apply standard approximation
methods available for MPS [14,18], and, finally, map the MPS
back into an MPO [35].

Critical exponents for (1+1)D QCA. To demonstrate the
potential of the method introduced here, we consider the
(1+1)D QCA defined by the local gate,

Gt,k = exp
[−i�

(
Ut−1,(k−,k+ )Pt−1,(k−,k+ )σ

+
t,k + H.c.

)]
. (2)

This gate implements a generalized rotation of the target by an
angle �, conditioned on the controls by a two-body projector,

Pt,(k−,k+ ) = 1t,(k−,k+ ) − |◦◦〉〈◦◦|t,(k−,k+ ) . (3)

This dynamics thus has the absorbing state |... ◦ ◦...〉, which
follows from Pt,(k−,k+ ) |◦◦〉t,(k−,k+ ) = 0 [29]. In order to control
the degree of quantum correlations [8], we introduce the two-
body unitary

Ut,(k−,k+ ) = exp
(−iω

[
σ z

t,k−σ
y
t,k+ + σ

y
t,k−σ z

t,k+

])
, (4)

where σ y = −i |•〉〈◦| + i |◦〉〈•| , σ z = |•〉〈•| − |◦〉〈◦|. When
ω = 0, no entanglement is created in �(t ) and it is always
separable. As ω is increased, �(t ) can become entangled,
before again becoming separable when ω = π/2.

This particular (1+1)D QCA was studied previously for
ω = 0 [29] and with ω > 0 [8]. In the first case, the separabil-
ity of �(t ) allowed for the universality class to be established
as 1D DP, via a mapping to the site-DP critical point of the
DKCA. For ω > 0, TNs were used to find bounds on the
critical exponent α, associated to the decay of the average
particle density when starting from homogeneous—all sites
occupied—initial conditions [3]. These exponents were also
found to be consistent with 1D DP. However, the accuracy
of the estimates was limited by the computational difficulty of
the simulation. This was found to depend strongly on the value
of ω, and cases where Ut,(k−,k+ ) generated significant entan-
glement were particularly challenging. As such, simulations
with values such as ω = 1 led to rather loose bounds on the
estimate of α.

Here, we study the dynamics of this (1+1)D QCA starting
from an initial seed state and using an alternating leftmost-
rightmost gate ordering. To test our method, we consider
the challenging ω = 1 case, using ω = 0 for comparison.
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FIG. 3. Critical behavior. (a) The evolution of the total number of occupied sites, N (t ), is shown for t ∈ [1, 100] for various values of �.
This includes five intermediate values close to the critical point—as indicated by the almost linear behavior in the log-log plot—and two values
(the bottom-most and top-most lines) further from the critical point, illustrating the NEPT from a state of zero particles to one with a diverging
number. In ascending order from the lowest line, the values of � are 0.98, 0.995, 0.996, 0.997, 0.998, 0.999, 1.01. The inset shows θ (t ) for the
central five values. From these, the flattest curve provides the estimate for the critical point, �c = 0.997 ± 0.01, and exponent, θ = 0.307 ±
0.017. The shaded region represents the error [35]. The estimated value of θ is consistent with that of 1D DP, indicated by the dotted green
line. χ is the maximum MPO bond dimension used. (b) Corresponding plots for ω = 1 with � = 1.015, 1.03, 1.032, 1.034, 1.035, 1.04, 1.05.
These produce the estimates �c = 1.034 ± 0.02 and θ = 0.32 ± 0.03, also consistent with 1D DP.

We focus on the total number of occupied sites at time t ,

N (t ) =
∑

k∈Lt

Tr[n̂kρ(t )], (5)

where n̂k is the operator n̂ = |•〉〈•| at a given site. At the
critical �, this average value is expected to display a universal
power-law behavior with critical exponent θ , N (t ) ∼ t θ [see
Fig. 1(c)]. We can thus use N (t ) both to determine the critical
point �c for each ω and to estimate the value of θ , as shown
in Fig. 3.

For fixed ω, we take several values of � and simulate ρ(t )
up to t = 100 for different χ , the two highest of which are
shown in Fig. 3. We then calculate the effective exponent,
θ (t ) = log2 [N (t )/N (t/2)], which converges to a constant for
power-law behavior and provides an approximation for the
exponent θ at criticality. Using the highest value of χ available
and taking the curve for which θ (t ) is closest to a constant, we
estimate the critical value �c as well as the exponent θ . Errors
due to finite χ are estimated via the difference of curves with
alternative χ values. For errors associated to the estimation
of the critical point, values of θ extracted from curves with
� ≈ �c are used. For both ω = 0 and ω = 1, the errors due
to the estimate of �c are far larger than those attributable to
finite χ . As such, the errors stated in Fig. 3 correspond to those
induced by the estimate of the critical point [35].

For ω = 0 and ω = 1, the estimated values of θ were
θ = 0.307 ± 0.017 and θ = 0.32 ± 0.03, respectively. Both
are consistent with 1D DP. Since the errors on these estimates
are dominated by the resolution of the grid used to find �c,
they can be reduced easily by finer searches. This is in stark
contrast to the homogeneous case. Not only are the overall
errors there larger due to the presence of finite-size effects,
but it is the error due to finite χ that limits the accuracy [8].

Conclusions and outlook. We have introduced a general
scheme for the simulation of seed evolutions in (1+1)D
QCA with an absorbing state. This allows for the study
of quantum NEPTs free of finite-size effects. This method

can be used to provide an accurate estimate of the critical
exponents related to the universal dynamics of these mod-
els. Owing to the universality of continuous NEPTs, the
method introduced here can be more broadly applied well
beyond the particular considerations of QCA to the study
of out-of-equilibrium quantum many-body systems with ab-
sorbing states. Furthermore, by considering systems with
trivial (infinite-temperature) steady states, it can easily be
extended to the study of systems without absorbing states
as well.

Nonetheless, QCA are also of interest in their own right.
Not only can they be considered as computational models
and analyzed from the perspective of QI [31,36–38], but, as
they are quantum many-body systems, their emergent physical
properties can be intriguing [39]. In this regard, our method,
along with (1+1)D QCA more generally, may be rather use-
ful as it allows for the explicit study of emergent behavior
in QCA—including nonunitary QCA, far less studied than
their unitary counterparts [9,32,40,41]. Applying these tools
to characterize nonequilibrium universality classes will poten-
tially provide general insights into the relationships between
the computational properties of QCA and their collective
many-body behavior.
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