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Polygonal microcavities supporting whispering-gallery modes (WGMs) are widely investigated for opto-
electronic applications. Recently, polygonal microcavities with reduced symmetry of various types have been
realized in a large number of materials, while the corresponding theoretical analysis of WGMs was either absent
or done only for individual cavity shapes. We perform a systematic analysis of irregular polygonal microcavities
in general, allowing us to obtain deterministic conclusions on WGMs for all possible parameters of all types of
shape irregularities from a set of analytical equations and inequalities. We test the theory with several typical
irregular hexagonal microcavities that were experimentally reported, and we discuss the loss mechanism verified
by wave optics simulations. The results provide a powerful analyzing tool for experimentalists working on
irregular polygonal microcavities, and they constitute a significant extension to the scope of WGM theory.
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Whispering-gallery mode (WGM) is one of the most sig-
nificant mechanisms of light confinement leading to optical
microcavities of a very high quality factor (Q-factor). It is
found in a wide range of applications, including optical non-
linearity [1–3], frequency combs [4–7], microlasers [3,8–10],
sensors [11–15], optical isolators [16], etc. In addition to
the regular and deformed circular microcavities such as mi-
crodisks, microspheres, and microtoroids that enable a high
Q-factor, directional emission, and chaotic-WGM tunneling
[17,18], regular polygonal microcavities have been widely
investigated for unidirectional microlasers and waveguide-
integrated on-chip coherent light sources [19,20], among
which the regular hexagonal cavity is most intensively
studied, via either top-down [20] or bottom-up grown mi-
crostructures and nanostructures [21,22]. It is well known
that a regular hexagonal microcavity supports both hexagonal
and triangular WGM orbits, the former of which exhibits
pseudointegrable leakage. On the other hand, hexagonal cav-
ities with reduced symmetry also emerge in a large variety
of optical materials, usually as a natural result of bottom-
up grown methods. A large variety of irregular shapes can
be produced even within one process of fabrication, es-
pecially for those of perovskites [23–28], GaN microdisks
[29,30], In2O3 microwires [31], ZnO microfences [32], ZnO
microwires [33–35], ZnO microcombs [36], organic micro-
crystals [37–39], and silicon nanopillar quantum wells [40].
Nevertheless, the corresponding theoretical models of WGM
were either absent or restricted to the experimentally studied
cavity with fixed shape parameters. There remain, therefore,
questions regarding what kinds of shape irregularities allow
stable WGMs in general, and how the light confinement of
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a cavity changes with a continuous variation of the shape
parameters. These questions are especially important for N-
WGMs with N-sided polygonal photon trajectories (N is the
number of polygon sides) that reflect successively on every
adjacent side of the polygonal cavity, which in principle en-
able the maximum reflection angle and thereby the lowest
requirement of material refractive index to reach total internal
refraction (TIR). To answer such questions, one will require a
fully deterministic analysis of geometry for the entire sets of
shape variables of all types of irregularities, rather than induc-
tive conclusions drawn from specific sets of shape parameters.

In this Letter, we perform a systematic analysis on WGMs
in irregular polygonal cavities by direct analytical solutions
of geometry. We first derive the general criterion for the
existence of N-WGMs in an N-sided polygonal cavity with
arbitrary shape parameters, which is then applied to investi-
gate different types of irregular hexagonal microcavities, with
a focus on the formation and tuning of hexagonal WGMs in
an analytical way that covers all possible shape parameters.
We further explore the effect of the irregularity on the loss
mechanism, including the pseudointegral loss and directional
emission, which are closely related to the shape dependence
of the cavity Q-factor. The conclusions drawn by the analyt-
ical equations of geometry are confirmed by the results of
numerical simulations using the finite difference time domain
(FDTD) method. Our fully deterministic analytical approach
is necessary for obtaining better general knowledge of irreg-
ular polygonal microcavities, which would be significant for
extending the scope of the understanding of WGMs, and it
would provide a practical analyzing tool for experimentalists
working on irregular-shaped polygonal microcavities.

We start from the most general model of an N-sided poly-
gon shown in Fig. 1(a), where an N-WGM makes a trajectory
of a closed loop of an N-sided polygon. Following the loop,
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FIG. 1. Schematic geometry of an N-sided polygon and a bent
hexagon. (a) An N-sided polygon denoted by black lines. The blue
solid line represents the trajectory of light (ray) incident from the red
point and propagates in a counterclockwise direction. ci is the length
of the ith side of the cavity. �i is the distance between the reflection
point of the ray at the ith side and one end of the ith side. We take
the side from which the ray enters the cavity as i = 1. (b) A bent
hexagon (black solid lines) and its corresponding regular one (black
dashed lines).

a light ray starting at a certain point [red spot in Fig. 1(a)]
with an initial angle γ1 between the side and the ray (which
is complementary to the reflection angle, and is referred to as
“ray angle” hereafter) should return to the same point after
reflecting at each side of the polygon, while the reflection
law of light requires equal reflection angles (and thereby their
complementary angles) at each side of the polygon. Geometry
thereby gives the following relations:

γi+1 = γ ′
i = π − ϑi − γi, (1a)

γ1 = γ ′
N = π − ϑN − γN , (1b)

where i = 1, 2, 3, . . . , N . The ith internal angle is ϑi, and
γi (γ ′

i ) is the reflecting (incident) ray angle between the ray
trajectory and the ith [(i + 1)th] side of the polygon, counting
from the ray starting point as shown in Fig. 1(a). Applying
Eq. (1a) on all sides of the polygon yields

γN = π − γ1 −
N−1∑
i=1

(−1)i−1ϑi, N is even, (2a)

γN = γ1 +
N−1∑
i=1

(−1)i−1ϑi, N is odd. (2b)

Applying the boundary condition Eq. (1b) yields

N∑
i=1

(−1)i−1ϑi = 0, N is even, (3a)

π −
N∑

i=1

(−1)i−1ϑi = 2γ1, N is odd. (3b)

If we temporarily ignore the requirement of TIR at every
side of the polygon, Eq. (3a) reveals that polygonal cavities
with an even number of sides show a strong constraint for the
possibility to support N-WGMs: the sums of odd-numbered
and even-numbered internal angles of the polygon must be
equal. Therefore, one can easily judge whether it is possi-
ble for a hexagonal cavity to support 6-WGMs without any
specific analysis by such a criterion. For example, in the

bent hexagonal cavity [41] that exhibits two slightly slanted
sides due to material strain [shown in Fig. 1(b)], ϑ1, ϑ3, and
ϑ5 increase while ϑ2, ϑ4, and ϑ6 decrease compared to the
regular hexagon, which clearly does not satisfy the criterion
of Eq. (3a). Therefore, none of the hexagonal cavities bent in
this way support 6-WGMs, regardless of the details of the bent
angle and side lengths. Such a conclusion is thoroughly deter-
ministic compared to the ray-tracing method using a Poincaré
surface of section (PSOS) [22] or optical wave simulation,
which has to be applied with specific shape parameters.

Nevertheless, it should be noted that Eqs. (3a) and (3b)
are necessary rather than sufficient conditions to judge the
existence of N-WGMs, despite its simplicity and straight-
forwardness. Indeed, these two equations are derived merely
from the requirement of equal incident and reflection angles
on each side, but this simply misses the fact that the reflecting
points should be geometrically on the sides instead of on their
extension lines. This additional condition requires us to take
into consideration the length of each side in the geometry. In
the triangle enclosed by the light ray and any two adjacent
sides, the triangular relation yields

�i+1 sin γ
′
i = (ci − �i ) sin γi, (4a)

�1 sin γ
′
N = (cN − �N ) sin γN , (4b)

where �i must satisfy

0 < �i < ci, (5)

in which ci and �i are defined in Fig. 1(a). Combining the
side constraint Eq. (4a) and the angle constraint Eq. (1a) while
applying the boundary conditions for both, i.e., Eqs. (4b) and
(1b), yields the final expressions

cN sin

[
π −

N−1∑
i=1

(−1)i−1ϑi − γ1

]

−
∑

L

cL sin

[
L−1∑
i=1

(−1)i−1ϑi + γ1

]

+
∑

M

cM sin

[
π −

M−1∑
i=1

(−1)i−1ϑi − γ1

]
= 0, N is even,

(6a)

cN sin

[
N−1∑
i=1

(−1)i−1ϑi + γ1

]

−
∑

L

cL sin

[
π −

L−1∑
i=1

(−1)i−1ϑi − γ1

]

+
∑

M

cM sin

[
M−1∑
i=1

(−1)i−1ϑi + γ1

]

− 2�1 sin γ1 = 0, N is odd, (6b)

where L = N−1, N−3, . . . ; M = N−2, N−4, . . . .

Using Eqs. (6a) and (6b) constrained by Eq. (5), one can
deterministically analyze any irregular polygonal microcav-
ity for its N-WGMs. This method is extremely suitable for
polygons with an even number of sides, such as hexagons, by
performing the following steps:
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(i) By substituting the shape parameters of the cavity into
Eq. (6a), we directly obtain the value of the initial ray angle
γ1 in a deterministic way.

(ii) Applying Eq. (1a) we obtain all the ray angles γi, and
then using Eq. (4a) we obtain the position of all reflecting
points �i expressed as a function of �1.

(iii) Finally, we substitute all �i (expressed by �1) into
Eq. (5) to obtain N corresponding inequalities of �1, the
intersection of which gives the condition that �1 has to meet
to allow the existence of N-WGMs. In particular, there are
cases in which �1 unconditionally satisfies (violates) all these
N inequalities, corresponding to an irregular-shaped cavity
supporting N-WGMs with all (none of) the possible shape
parameters.

It should be noted that in step (i), shape parameters can
be given as variables instead of fixed values, indicating the
ability of reaching a global conclusion about a certain type
of irregularity instead of only specific cases. The advantage
of this method is to allow very straightforward analysis of
an irregular-shaped hexagonal cavity without going into the
complicated details of geometrical calculations each time.

We now focus on several types of irregular hexagonal mi-
crocavities. In particular, if a hexagon shows shape variations
only in side length while all the internal angles ϑi remain
2π/3, Eq. (1a) reduces to

γi + γi+1 = π

3
, (7)

meaning that the ray angles of 6-WGMs of such an irregular-
ity can either be exactly π/6 or can be alternately two values,
γ1 and π/3 − γ1, where γ1 can be obtained from Eq. (6a).

The first type of irregularity in which we are interested is
the “elongated hexagon,” as it is called in this context, which
has two parallel sides longer than the other four. As illustrated
in Fig. 2(a), the lengths of the long and short sides of the
elongated hexagon are denoted as a and b, respectively. After
substituting all shape parameters, Eq. (6a) yields γ1 = π/6,
and thus one concludes all ray angles γi = π/6 from Eq. (7),
which is the same for regular hexagonal cavities. We express
all values of �i by �1 using Eq. (4a), and we obtain a group of
six inequalities of �1 from Eq. (5). The intersection of these
six inequalities yields the conditions for 6-WGMs to exist,
which can be written as

b < a < 2b, (8a)
a − b < �1 < b. (8b)

It is a very special geometry that the existence of 6-WGMs
depends on the position of the reflection point rather than
merely the shape parameters, which leads to a specific chan-
nel of leakage in addition to the pseudointegrable loss. In
Fig. 2(a) we draw a hexagon satisfying Eq. (8a), in which
the blue solid line and the red dashed line correspond to the
hexagonal optical loops satisfying Eq. (8b), while the green
dotted line portrays the light trace violating Eq. (8b), which
leaks out near the corner of the hexagon at normal incidence
and results in directional emission. In reality, although closed
hexagonal loops can form in the regime of Eq. (8b), the
optical wave can dynamically tunnel to directional leaking
channels violating Eq. (8b). In particular, when the de-
gree of elongation increases, i.e., when the value of (a−b)

FIG. 2. Schematic geometry of an elongated hexagonal cavity
and 6-WGMs in it. (a) Elongated cavity with a ratio η = 0.6 and
its 6-WGMs. The blue solid line represents light incident from the
middle point of the long side. The red dashed line (green dotted line)
represents light incident from a nonmiddle point meeting (violating)
the criterion of Eq. (8b). (b) Cavity Q-factor of the 46th mode order
simulated by the FDTD of cavities with a different ratio η. Wave
optics simulations of 6-WGM of the 46th mode order in elongated
hexagons with (c) η = 1, (d) η = 0.9, and (e) η = 0.6.

becomes larger, the chance for a−b < �1 decreases, leading
to greater directional leakage. This can be clearly identified
from FDTD simulations as shown in Figs. 2(c)–2(e), where
the directional leakage overwhelms the pseudointegrable loss
with an increased degree of elongation. Therefore, the slightly
elongated hexagonal cavities could serve as tunable direc-
tional emitting lasers by varying the side length ratio η = b/a.
Figure 2(b) shows that the Q-factor decreases continuously
with an increased degree of elongation (or a decrease of ratio
η), due to the increased directional leakage. The Q-factor
herein is generally low (hundreds) due to the relatively low
material refractive index (n = 1.8) that we set for simulation,
which allows us to focus on the hexagonal modes by avoiding
triangular modes.

When the degree of elongation increases to violate
Eq. (8a), 6-WGMs do not exist as Eq. (8b) cannot be met
anymore. It should be noted that in such a regime, a different
hexagonal mode with multiple reflections on the parallel long
sides can survive at some specific shape parameters [36],
which is nevertheless beyond the scope of our interest.

The second type of irregular shape that has been exper-
imentally demonstrated to support WGMs is a “shortened
hexagon,” as it is called in this context, which has alternately
long (length = a) and short (length = b) sides while keeping
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FIG. 3. Schematic geometry of a shortened hexagonal cavity and
its 6-WGMs. (a) Light ray orbits of 6-WGMs. The blue solid line
and the red dashed line represent orbits reflecting at the middle point
and somewhere else on each side, respectively. (b) γ1 and nmin as a
function of η. (c) Light ray orbits with a slight deviation from the
proper reflection angle. (d) Cavity Q-factor as a function of mode
order for three different η = 0.4, 0.7, and 1. Field distribution of (e)
traveling and (f) standing WGMs of the 51th order. The simulated
cavity exhibits η = 0.6 and n = 1.8.

equal internal angles (i.e., 2π/3), as illustrated in Fig. 3(a).
Contrary to the situation of an elongated hexagon, the short-
ened hexagon shows very different details of light trajectory.
By substituting all shape parameters into Eq. (6a) [herein we
suppose that the beam starts from one of the short sides, as
shown in Fig. 3(a)], we obtain

sin (γ2 j )

sin (γ2 j−1)
= sin (γ ′

1)

sin (γ1)
= b

a
= η, (9a)

γ2 j−1 + γ2 j = π

3
, (9b)

where j = 1, 2, 3, with Eq. (7) taken into consideration, indi-
cating that there are two alternate values of ray angles (thereby
reflection angles) corresponding to the reflection point on the
short and long sides, respectively, determined by η, which is a
different characteristic from regular and elongated hexagons
whose reflection angles are all fixed at π/3. The group of
six inequalities of �1 obtained from Eqs. (4a) and (5) are
all naturally satisfied provided 0 < �1 < b, meaning the exis-
tence of 6-WGMs regardless of shape parameters. As shown
in Fig. 3(a), a shift of the reflection point positions on the
sides (red dashed line versus blue solid line) does not break
the closed hexagonal orbits, in sharp contrast to an elongated
hexagon. According to Eq. (9a), the relation between η and γ1

is plotted in Fig. 3(b), and a clear monotonous trend can be
recognized. In particular, the ray angle γ1 = π/6 [or γ1/π =
1/6; see Fig. 3(b)] when η = 1, meaning that the model

reduces to a regular hexagon. On the other hand, the maximum
of γ1 approaches π/3 [or γ1/π = 1/3; see Fig. 3(b)] when
η reduces to zero, where the hexagon becomes a triangle
whereas 6-WGMs no longer exist. TIR requires the material
refractive index n to satisfy n > 1/ sin(π/2 − γ1) (supposing
the hexagonal structure is surrounded by air), and the required
minimum refractive index nmin is plotted as a function of η

in Fig. 3(b). It is clearly shown that for all possible values
of η, the value of nmin is always less than 2, which is the nmin

required by 3-WGMs and D3-WGMs. Although the shortened
hexagon needs to work at a higher refractive index than the
regular one, its 6-WGMs still win the triangular WGMs in
terms of the nmin requirement, therefore photonic devices can
be well constructed with materials having a refractive index
less than 2 by choosing the corresponding η.

Such a shortened hexagonal cavity bridges the regular
hexagonal (η = 1) and regular triangular (η = 0) cavities.
Though different in the characteristic of reflection angles, the
shortened hexagon shows the same mechanism of pseudointe-
grable loss as the regular one [42]. As illustrated in Fig. 3(c),
a tiny deviation from the proper reflection angle of π/2 − γ1

leads to a successive shift of the reflection point on the short
side during each round trip of the light ray, which eventually
leaks out when the reflection point shifts to the corner. In a
cavity with a given circumference, C = 3(a + b), a smaller
value of b increases the pseudointegrable loss as a light ray
with a certain deviation from the proper reflection angle takes
a shorter circulation time to come to the corner and leak out.
This is verified by the Q-factor, which decreases with the
reduction of η, as shown in Fig. 3(d). The leakage mechanism
is further revealed by field distribution analysis, as shown
in Figs. 3(e) and 3(f). The traveling WGM exhibits major
emission from the corners of the hexagon [Fig. 3(e)], while the
standing WGM can be viewed as a linear superposition of two
counterpropagating traveling WGMs [Fig. 3(f)]. We note that
the total leakage is also dependent on the ratio between the
cavity size and the optical wavelength C/λ, which determines
the mode order. With increasing (decreasing) mode order, the
confined light is more raylike (wavelike), giving rise to less
(more) uncertainty of the reflection angle and thereby leading
to smaller (larger) pseudointegrable loss, as seen in Fig. 3(d).

Finally, we discuss the irregularity that Song et al. [43]
have conceived as an intermediate shape for the theoretical
demonstration of the strong coupling of triangular superscar
modes in regular hexagons, although still with neither experi-
mental demonstration nor theoretical studies of 6-WGMs. The
proposed cavity, called a “shifted cavity” in this context, is
illustrated in Fig. 4(a). The cavity is constructed by simply
shifting the topmost side of a regular hexagon [black solid line
in Fig. 4(a) with side length a] either upward or downward
[red dashed line in Fig. 4(a)] by a distance δ, leading to
unchanged internal angles and three different values of side
lengths: a, a − 2δ/

√
3, and a + 2δ/

√
3, as shown in Figs. 4(b)

and 4(c). Similar to the two types of cavities discussed above,
a deterministic analysis performed by Eqs. (4a)–(6b) yields
the conditions for supporting 6-WGMs in the case of the
upshifted topmost side,

tan (γ1) =
√

3

3
+ 4δ

9a
, (10)
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FIG. 4. Image of 6-WGMs in a shifted hexagon. (a) Schematic
geometry of a shifted hexagon with the upshifted and downshifted
topmost side represented by a red dashed line. The blue solid line
and the red dashed line in (b) the upshifted hexagon and (c) the
downshifted hexagon represent light incident from the midpoint and
somewhere else on the side. Green arrows denote the movement of
the upshifted and downshifted topmost side in (b) and (c), respec-
tively. Parts (d) and (e) are wave optics simulation figures of an
upshifted hexagon with δ = 0.1 μm and a downshifted hexagon with
δ = 0.5 μm, respectively. The material refractive index is n = 1.8,
side lengths a are equal to 2 μm, and optical modes are of the 47th
order in (d) and (e).

and in the case of the downshifted topmost side,

0 <
δ

a
<

3
√

3

10
, (11a)

tan (γ1) =
√

3

3
− 4δ

9a
, (11b)

3
√

3a + 2δ

3
√

3a − 4δ

(
a − 2√

3
δ

)
− a

(
2 − 3

√
3a + 2δ

3
√

3a − 4δ

)

< �1 <
3
√

3a + 2δ

3
√

3a − 4δ

(
a − 2√

3
δ

)
. (11c)

Equation (10) indicates that the upshifted hexagon sup-
ports 6-WGMs regardless of shape parameters, similar to the
shortened hexagonal cavity, while the downshifted hexagon
has a constraint on the shape parameters by Eqs. (11a)
and (11c), similar to the elongated hexagon. Considering
Eq. (7), the values of the reflection angles are the same
for the upshifted and downshifted cases. Nevertheless, they
show dramatic differences in the leakage of the modes.
The upshifted hexagon unconditionally supports 6-WGMs,
while the downshifted hexagon, fulfilling Eq. (11a), is con-
ditional regarding the reflection point position �1 on the
long side, expressed by Eq. (11c), which yields directional
emission like the elongated hexagonal cavity. The FDTD
simulation in Figs. 4(d) and 4(e) clearly demonstrates this
difference.

Finally, the limitations of geometrical optics should be
noticed, especially for discussing the loss mechanism. Al-
though 6-WGMs are permitted in the shortened and upshifted
hexagonal cavity regardless of the position of the reflection
point, the pseudointegrable and boundary wave loss become
very significant when the lengths of the short sides reduce to
a certain extent, therefore in reality well-confined 6-WGMs
cannot cover the whole range of the allowed shape parame-
ters by geometrical optics. Unlike regular polygonal cavities,
whose overall size versus optical wavelength determines the
optical loss, the short sides of the investigated irregular cavi-
ties matter.

In conclusion, we developed a general method of deter-
ministic analysis for WGMs of polygonal microcavities with
irregular shapes, which provides an easy and straightforward
mathematical tool for a large group of experimentalists work-
ing on such microcavities. The method is tested in various
types of irregular hexagons, allowing fast determinations of
the existence of 6-WGMs and predicting the particular fea-
tures of each type, which agree well with the wave optics
simulations and the previously reported experimental results.
The proposed idea of deterministic analysis is not constrained
to N-WGMs, but it can also be applied to obtain corre-
sponding analytical equations for other types of modes (e.g.,
triangular WGMs in a hexagon) in any type of irregular polyg-
onal microcavity. With the fact that theoretical conclusions
have been drawn mainly on regular polygonal cavities in the
past, it is essential to realize that polygonal cavities with re-
duced symmetry can also be described by “regular” equations
and investigated in a systematic way beyond specific shape
parameters.
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[11] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang,
Exceptional points enhance sensing in an optical microcavity,
Nature (London) 548, 192 (2017).
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