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It was recently argued that the geometric optics mean path length of rays inside a refractive object under
Lambertian illumination is independent of the scattering strength of the medium [Savo et al., Science 358, 765
(2017)]. We here show that it is, in fact, different in the case of zero scattering. We uncover and explain the
role of trapped ray trajectories in creating this unexpected discontinuity from zero to low scattering. This allows
us to derive alternative analytic results for the zero scattering mean path length of simple refractive shapes. We
believe this work provides a fresh perspective on the study of path length inside refractive objects, with possible
applications in, for example, the study of scattering by large particles or the design of optical systems.
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Finding the mean chord length for a random distribution of
lines in a given object is a natural question in many areas of
physics. It is a seemingly complex task from a mathematical
perspective since one should consider the spatial and angular
distribution of lines as well as how they intersect the surface of
the object. For convex bodies the answer is, however, surpris-
ingly simple, given by the mean chord length theorem, which
has been known for more than a century [1]. It states that
the mean chord length 〈C〉 is independent of the shape of the
object and depends on only the ratio of volume V to surface
area � as 〈C〉 = 4V/�. Proofs from various perspectives have
been given [2–4]. It was only fairly recently shown that this
theorem can be generalized further to the study of random
walks in diffusive objects. The mean path length theorem [5]
states that the mean path length is still simply 〈L〉 = 4V/�;
this is independent of both shape and the scattering/diffusive
properties of the medium. The validity extends across many
fields as it is valid for any random walk inside an object and
is particularly relevant to geometric optics within a closed
scattering medium. One important condition for this theorem
is that the entrance point and initial direction are uniformly
and isotropically distributed, which in optics is equivalent to a
Lambertian illumination [2].

Path length distributions and mean path length are central
to the design of many optical systems where a ray optics
description can be used. They can be used for calculating
the optical properties of absorbing and scattering media [6,7],
refractive granular media in pharmaceutical powders [8], for
solar cell design [9–11], random lasing [12], and integrat-
ing spheres [13,14]. Ray tracing can also be combined with
diffraction effects to calculate the electromagnetic scattering
properties of large particles in models such as the geometric
optics approximation and physical optics model [15–20] or
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anomalous diffraction theory [21–23]. These models have, for
example, been applied to the study of ice crystals [17,18,20]
for climate modeling. The zero scattering mean path length
is directly related to the orientation-averaged absorption cross
sections of large absorbing particles [24–26]. Path length dis-
tributions have also been used to derive the scattering phase
function of an object analytically [27].

In most of these applications, the object has a different
refractive index than the surrounding medium. Rays are then
refracted at the boundary and may also be reflected internally
or externally, which may increase the path length of some
internal rays. Even then, it was argued recently [28,29] that
the mean path length invariance remains valid for scattering
samples and is simply modified by a factor s2:

〈L〉 = 4V

�
s2 (1)

for any three-dimensional (3D) convex body, independent
of the scattering properties of the sample. A justification of
Eq. (1) was given assuming a thermodynamic equilibrium
and equipartition [28,29] and following energy conservation
arguments drawing on the discussion in Ref. [30]. In this
Letter, we focus on the mean path length in the low-scattering
limit. The equipartition assumption and Eq. (1) also apply,
but we will show that the zero scattering case is different,
resulting in a discontinuous transition between low and zero
scattering for some geometries. This result is related to the
existence of trapped paths (similar to the whispering gallery
trajectories inside a sphere), which cannot be populated in the
strict absence of scattering. To further support this argument,
we have derived a number of analytic expressions for the zero
scattering mean path length inside simple two-dimensional
(2D) and 3D refractive objects. They demonstrate the dis-
continuity at zero scattering, and their derivations support
the physical interpretations in terms of trapped rays. Less
symmetric geometries are also studied using Monte Carlo ray-
tracing simulations [29], allowing us to discuss the generality
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FIG. 1. A light ray being refracted as it passes from medium 1
to medium 2. The darker region in medium 2 is not accessible from
rays entering from medium 1.

of this discontinuity, its sensitivity to imperfections, and its
relevance to applications.

Mean path length in a refractive sample. We consider, as
shown in Fig. 1, a nonabsorbing convex body V2 embedded
in an outside medium V1 with refractive indices n2 > n1 and
define s = n2/n1 > 1. At this stage, we do not exclude the
possibility that medium 2 is a scattering medium. We study
the trajectory of light rays within the geometric optics approx-
imation, as they undergo stochastic refraction or reflection at
the interface. Consider a ray incident on the surface, with an
angle of incidence θ1 to the surface normal, and rotated by
φ around it. The ray may be refracted at an angle θ2 with a
probability T12(θ1) with sin θ1 = s sin θ2 (Snell’s law), while
the azimuthal angle φ is unaffected. By optical reciprocity,
the probabilities of transmission at complementary angles are
identical: T12(θ1) = T21(θ2). Similar laws apply to internal
rays hitting the object surface with internal θ ′

2 and external
θ ′

1 angles. Since n2 > n1, angles θ ′
2 above the critical angle

θc = asin(1/s) have zero transmission: there is total internal
reflection (TIR).

As for the mean path (or chord) length theorems, we as-
sume that the illumination of the object from the outside is
Lambertian. The surface irradiance is therefore uniform, and
the incident angles follow the probability distribution p(θ1) =
2 cos θ1 sin θ1 = sin(2θ1) (0 � θ1 < π/2) in three dimensions
[2]. Because Lambertian illumination maximizes entropy and
energy is conserved in the scattering process, the ensemble
of external rays reflecting and internal rays exiting must also
follow a Lambertian distribution (otherwise, entropy would
have been decreased). Then, since incident and outgoing rays
have the same distribution, for every internal ray making an
angle θ ′

2 < θc to the normal [and reflected with a probability
p2 = 1 − T21(θ ′

2)], there is an incident external ray that is
externally reflected at the Snell-matching θ ′

1 with the same
probability p1 = 1 − T12(θ ′

1) = p2; that is, there is a one-to-
one correspondence between these rays (see Sec. S.I in the
Supplemental Material [31] for more detail). This allows us
to ignore all internally reflected rays with θ ′

2 < θc in mean
path length calculations if we also ignore any reflection from
the outside (dashed rays in Fig. 1). These externally reflected
rays would normally have zero path length, but if they were
to transmit inwards, they would have exactly the path length
and angular distribution of the rays that reflect from the in-
side for θ ′

2 < θc. See also Sec. S.II for an explicit example
of this cancellation in simple geometries. This is a crucial

result for refractive objects, as it simplifies the calculations
dramatically. Note, however, that the contribution of rays with
θ ′

2 > θc (TIRs), whose distribution is not specified, must still
be accounted for.

This result also highlights that Eq. (1) for scattering media
assumes that these externally reflected rays with L = 0 are
included in the statistics, an important point that was not made
explicit in Refs. [28,29]. The mean path length not counting
L = 0 rays can be simply deduced as 〈LL>0〉 = 〈L〉/T̄12, where
T̄12 is the Lambertian-averaged transmission [32].

Following these considerations, we may express the mean
path length in the object as

〈L〉 =
∫

�

d�

�

∫
dφ

2π

∫ π
2

0
dθ1L(r, θ1, φ) sin(2θ1), (2)

where L(r, θ1, φ) denotes the total ray path length for a given
entry point r and incidence angles, including possible total
internal reflections until it reaches the surface with θ ′

2 < θc

(thanks to the cancellation between internal and external
reflections). In the absence of scattering and total internal
reflections, L then coincides with the chord length C. In the
presence of scattering L should be understood as an average
over all possible scattering paths, which renders this ray ap-
proach difficult.

We have applied this method to several standard geome-
tries in the nonscattering case and obtained analytical results
for simple shapes and numerical results for more complex
shapes. The most surprising outcome is that the zero scattering
mean path length 〈L0〉 is different (smaller) from the scattering
mean path length 〈L〉 for some geometries, which results in
a discontinuous transition at zero scattering. We first discuss
further this counterintuitive result as it will provide physical
insight into its origin and provide an alternative method of
calculating 〈L0〉 in special cases.

Transition between the low- and zero-scattering regimes. To
understand how this discontinuous transition arises, we will
attempt to connect the two different approaches for the scat-
tering (thermodynamic) and nonscattering (ray optics) cases.
Specifically, we here derive the mean path length 〈L〉 in the
low-scattering limit from 〈L0〉 using a ray-optics argument. At
the center of this discussion is the existence of trapped rays.
These undergo successive TIRs and cannot escape, similar to
propagating modes in an optical fiber or whispering gallery
modes in dielectric spheres. Note that these trajectories may
be repeating (as the optical modes) or chaotic. Because of
reciprocity, these rays cannot be excited from outside in the
ray optics framework and therefore are irrelevant to 〈L0〉.1 But
if scattering is present, then there is a probability that some
rays are scattered into and out of trapped trajectories. For very
low scattering, this probability is small, and one might expect
that it does not affect the mean path length. However, trapped

1Note that arbitrarily long path lengths may still exist, for example,
in the 2D ellipse, where rays that refract in at almost the critical angle
at the tips will undergo a large number of total internal reflections
before inevitably refracting out. In terms of the elliptical billiard
table [33], the rays would enter at a trough on the phase portrait that
touches the line at the critical angle. However, these are not strictly
trapped.
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rays exhibit very long path lengths because scattering is low.
It is this product of a small probability by a large path length
that may result in a finite, nonzero contribution to 〈L〉 even in
the limit of zero scattering but not for zero scattering, hence
the discontinuity.

To be more quantitative, we denote the scattering coeffi-
cient α and assume that the scattering mean free path lα = 1/α

is much greater than 〈L0〉. For simplicity, we will here con-
sider special cases where the probability of scattering into a
trapped trajectory, denoted PT , is independent of the position
of the scattering event. A more general case is discussed
in Sec. S.III. The average probability of a ray scattering is
α〈L0〉 � 1. Since the average path length for nontrapped rays
is of order 〈L0〉, scattering into them results in negligible
changes to path length (of order α〈L0〉2). In contrast, a ray
will escape a trapped path only if it is scattered again, which
results in an average path length lα � 〈L0〉 for trapped rays.
Moreover, scattering may occur into another trapped path with
probability PT , which increases the path length by lα again
until the next scattering event. Summing, we obtain the mean
path length for trapped rays as

〈LT 〉 = lα + PT lα + P2
T lα + · · · = lα

1 − PT
. (3)

〈LT 〉 � 〈L0〉, but this is compensated by the small probability
α〈L0〉PT of scattering into a trapped trajectory. We can now
add this contribution to 〈L0〉 to obtain the low-scattering mean
path length:

〈L〉 ≈ 〈L0〉 + [α〈L0〉PT ]〈LT 〉 = 〈L0〉
1 − PT

. (4)

This derivation provides an explanation for the discontinuity
at zero scattering, which is due to the second term, related
to trapped trajectories. Equation (4), moreover, provides a
simple method of deducing 〈L0〉 analytically for objects where
PT is independent of position and angle, which includes many
objects with faceted sides. An important special case is for
objects where no trapped rays can be supported (PT = 0), for
which 〈L0〉 = 〈L〉. Among these are objects with a refractive
index smaller than the embedding medium (s < 1). The con-
sideration of trapped paths also suggests a link between this
problem and the theory of “billiards” in classical mechanics
[33]. In particular, ergodic shapes will also automatically have
PT = 0 (since every ray samples the entire phase space) and
therefore 〈L0〉 = 〈L〉.

Analytic results. To further illustrate this discussion, we
now provide a collection of analytic results that we have
derived for 〈L0〉 in simple 3D and 2D geometries. The main
3D geometries that we considered are summarized in Fig. 2,
where their parameters are defined. The advantage of these
ideal geometries is that the derivations illustrate how concepts
such as trapped rays affect the mean path length. The derived
〈L0〉 as a function of s for all 3D geometries are summarized
and compared to the scattering case in Fig. 3. To calculate
〈L0〉, we use Eq. (2), rewritten in terms of the inside angle as

〈L0〉 = s2
∫

�

d�

�

∫
dφ

2π

∫ θc

0
dθ2L(r, θ2, φ) sin(2θ2). (5)

FIG. 2. Main geometries considered in this work: (a) the 2D strip
and 3D slab, (b) the circle and sphere, (c) the infinite cylinder, and
(d) the cube and cuboid. We also treat the square, rectangle, and
infinite square rod.

We start with the simplest case of an infinite slab of width
a [Fig. 2(a)]. In this case, L(r, θ2, φ) depends on only θ2.
Moreover, since we can ignore probabilistic reflections and it
is not possible to excite TIRs from the outside, L is the same
as the chord length, so we have L = a/ cos θ2, and the mean

FIG. 3. Comparison of the s dependence of the zero-scattering
mean path length 〈L0〉 for 3D objects for which analytical expres-
sions were derived. All values are normalized to the mean chord
length 〈C〉 = 4V/�. The scattering case 〈L〉 = s2〈C〉 is shown as a
dashed line.
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is calculated as

〈
L0

slab

〉 = 2as2(1 − cos θc) = 2as2

(
1 −

√
1 − 1

s2

)
. (6)

This could also have been deduced from Eq. (4) since the
trapping probability is uniform: PT = cos θc. 〈L0

slab〉 decreases
with s (see Fig. 3) and is less than the mean path length for a
slab with scattering, 〈Lslab〉 = 2as2.

For a sphere of radius a [Fig. 2(b)], L(r, θ2, φ) again de-
pends on only θ2, and it is not possible to excite TIRs from
the outside, so we have L = 2a cos θ2 (the chord length) and,
integrating Eq. (5),

〈
L0

sphere

〉 =4a

3
s2

[
1 −

(
1 − 1

s2

)3/2]
. (7)

This expression appears, for example, in the absorption cross
section for large weakly absorbing spheres [19,25]. For com-
parison, the mean path length for a sphere with scattering is
〈Lsphere〉 = (4/3)as2. We cannot here use Eq. (4) because the
probability of trapping PT depends on position: trapping is
more likely for scattering events close to the sphere surface.

For the cube [Fig. 2(d)], there are three regimes depending
on s. First, we can show that for s � √

3/2, no trapped rays
exist; hence, PT = 0, and〈

L0
cube(s �

√
3/2)

〉 = 〈Lcube〉 = 2

3
as2. (8)

For s �
√

2, we may use Eq. (5); the problem is simplified
by the fact that all rays exit the opposite face of the cube.
Some will totally internally reflect on an adjacent face [see
Fig. 2(d)], and some will exit straight through, but in both
cases, the path length is given as L = a/ cos θ2; therefore, we
obtain

〈
L0

cube(s �
√

2)
〉 = 2as2

(
1 −

√
1 − 1

s2

)
. (9)

In the intermediate case,
√

3/2 < s <
√

2, calculating 〈L0
cube〉

via Eq. (5) is rather technical (see Sec. S.IV). We present in
Sec. S.V a simpler derivation using Eq. (4), which applies
because the trapping probability PT is again independent of
the location of the scattering event. Both result in〈

L0
cube(

√
3/2 < s <

√
2)

〉
= 4as2

π

(
sin−1(s2 − 1) −

√
1 − 1

s2
sin−1(2s2 − 3)

)
.

(10)

A similar derivation can be carried out for a cuboid with edges
a, b, c, and the results are the same with the transformation:

a → 3abc

ab + bc + ca
, (11)

i.e., rescaled by the relative factor V/� for each shape. The
cases of an infinite circular cylinder [Fig. 2(c)] and an infinite
square rod are also derived and discussed in Secs. S.VI and
S.VII.

Finally, 2D objects can be treated with a similar approach.
We have obtained analytic expressions for 〈L0〉 for an infi-
nite strip, a circle, a square, and a rectangle. The results and

FIG. 4. Comparison of the s dependence of the zero-scattering
mean path length 〈L0〉 for less symmetric objects. All values are
normalized to the mean chord length 〈C〉, and the scattering case
(〈L〉) is shown as a solid line. (a) Two-dimensional objects: ellipse
and stadium of aspect ratio 2 and Pascal’s limaçon of polar equation
r(θ ) = b + a cos θ , with b/a = 3. (b) Three-dimensional objects:
same as 2D objects with symmetry of revolution around z.

derivations are provided in Sec. S.VIII, along with a graphical
summary. The conclusions are similar to those for 3D objects.

Application to physical systems. To investigate the gen-
erality of these results, we now consider less symmetric
geometries, for which numerical calculations (Monte Carlo
ray tracing [29]) can be used to derive 〈L0〉. Figure 4 sum-
marizes these results. We consider explicitly in Fig. 4(a) 2D
shapes with different refractive indices and decreasing sym-
metries: ellipse, stadium, and a convex limaçon. The latter two
do not show any discontinuity within our numerical accuracy,
i.e., 〈L0〉 = 〈L〉, even at high refractive index, which suggests
that the probability of scattering into a trapped trajectory is
zero. Note that trapped rays may still exist [such as the one
depicted for the stadium in Fig. 4(a)], but they correspond
to unstable orbits with vanishingly small probabilities of
being scattered into. The situation is different for ellipses
where a larger number of rays may be trapped, in agreement
with the theory of elliptical billiards [33]. Interestingly, cor-
responding 3D objects with symmetry of revolution all show
〈L0〉 < 〈L〉, likely because of the trapped trajectories in the
planes perpendicular to the revolution axis. It would be inter-
esting to further link these results to the theory of classical
billiards, chaos and ergodicity, but that is outside the scope of
this Letter.

Figure 4 overall suggests that the mean path length dis-
continuity is a special property of geometries with higher
symmetry. These special shapes are, nevertheless, commonly
used as model systems in many applications. As an example,
ice crystals are often taken as high-symmetry objects to derive
their optical properties for atmospheric models [17,18,20].
Within the geometric optics approximation [17,19], the ab-
sorption cross section Cabs of weakly absorbing objects is
directly proportional to the zero-scattering mean path length.
The expressions we obtained (and more that could be de-
rived using the same approach) can then be used to derive an
analytic expression. For example, for a 5-μm-wide ice cube
at λ = 1 μm (s = s′ + is′′ = 1.3 + 1.6 × 10−6i), we find that
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the analytic prediction

〈Cabs〉 ≈ 4πs′′

λ

〈
L0

cube(s′)
〉

≈ 16as′2s′′

λ

(
sin−1(s′2 − 1) −

√
1 − 1

s′2 sin−1(2s′2 − 3)

)

(12)

agrees within ±10% with numerical calculations. This ap-
proach is valid for particle sizes much larger than the
wavelength but smaller than the characteristic absorption
length, i.e., 1 � (2π/λ)a � (1/s′′). Together with the ap-
proximate extinction cross section 〈Cext〉 ≈ 3a2, these provide
simple analytical inputs for atmospheric models over a large
size range, replacing the time-consuming ray tracing simula-
tions otherwise required. This approach could be generalized
to more realistic ice crystal shapes and to other weakly ab-
sorbing atmospheric aerosols.

Apart from such applications, while the zero scattering
discontinuity is interesting from a fundamental point of view,
we should also consider its relevance to real physical sys-
tems. First, all physical media are imperfect and should
exhibit a small, but nonzero, scattering coefficient. Second,
surface imperfections are unavoidable, be they roughness or
a small deviation from ideal shapes (likely to make the ob-
ject nonconvex). Third, the ray optics description is only an
approximation, and wave effects can affect reflection and
refraction, in particular resulting in a small probability of
out-coupling during TIR events, which would preclude the

existence of strict trapped trajectories. Because of these ef-
fects, one could argue that the zero scattering discontinuity is
irrelevant and the general formula [Eq. (1)] applies instead.
However, one should also consider that any physical medium
has a nonzero absorption coefficient. This small absorption
negates the contribution of extremely long-lived trapped rays
for low scattering, so that the relevant experimental mean
path length is, in fact, the zero scattering one, as long as
the scattering is smaller than the absorption coefficient. This
argument is developed more qualitatively in Sec. S.IX.

Conclusion. We have examined how shape affects the mean
path length of rays in nonscattering refractive objects, pro-
viding the theoretical groundwork to derive the mean path
length analytically and applying it to simple shapes. Crucial
to being able to derive these results was the fact that all prob-
abilistic reflections below the critical angle can be discounted
if they are ignored from both the inside and outside. We
believe that some other geometries will be able to be treated
using the same approach. These analytic results also highlight
explicitly the discontinuous transition from nonscattering to
scattering media and demonstrate that it is due to the exis-
tence of trapped trajectories that cannot be occupied without
scattering.

We believe this work is an important contribution to the
resurgent study of path length invariance in media. The
derived analytic expressions will also be useful in other the-
oretical contexts where mean path length, or path length
distributions, are studied, as refractive nonscattering objects
are central to many applications.
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