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Two-loop virtual light-by-light scattering corrections to the bound-electron g factor
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A critical set of two-loop quantum electrodynamics corrections to the g factor of hydrogenlike ions is
calculated in the Furry picture. These corrections are due to the polarization of the external magnetic field by the
quantum vacuum, which is dressed by the binding field. The result obtained for the self-energy–magnetic-loop
diagrams is compared with the current state-of-the-art result, derived through a perturbative expansion in the
binding strength parameter Zα, with Z the atomic number and α the fine-structure constant. Agreement is found
in the Z → 0 limit. However, even for very light ions, the perturbative result fails to approximate the magnitude
of the corresponding correction to the g factor. The total correction to the g factor coming from all diagrams
considered in this work is found to be highly relevant for upcoming experimental tests of fundamental physics
with highly charged ions.
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Introduction. Measurements of the g factor of heavy hy-
drogenlike ions are projected at different facilities, such as
the ALPHATRAP Penning trap [1–3] and the HITRAP fa-
cility [4–6]. These measurements are forecast to match the
most precise measurements of the g factor so far [7,8], which
have an uncertainty of the order of 10−11. High-precision
calculations and measurements of the bound-electron g factor
can be combined to perform state-of-the-art determinations
of fundamental constants such as the electron mass me [8]
and the fine-structure constant α [9–11]. Furthermore, heavy
ions are an ideal testing ground for quantum electrodynamics
(QED) calculations in the presence of strong fields [7,12–15],
and measurements of their g factor were recently shown to
be a promising avenue in the search for physics beyond the
Standard Model [16].

The interpretation of upcoming experiments on heavy
hydrogenlike ions demands improvements in the theory, es-
pecially concerning the calculation of radiative corrections
to the g factor. The one-loop radiative corrections have been
calculated nonperturbatively [17–21] in the electromagnetic
binding parameter Zα, but the calculation of the two-loop
corrections has only been completed through orders (Zα)4

[22,23] and (Zα)5 [23,24]. Further progress of the two-loop
calculation should be sought in the nonperturbative approach,
especially for application to heavy ions. The nonperturbative
evaluation of all 29 nonequivalent two-loop diagrams con-
tributing to the g factor of a bound electron is one of the great
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challenges of present-day atomic QED theory. The results
presented in this work constitute an important step towards
the completion of this project.

A few years ago, the two-loop diagrams featuring two
vacuum polarization (VP) loops, as well as those featuring one
VP loop and one self-energy (SE) loop, were calculated [25]
in the free-fermion loop approximation. The challenging SE-
SE diagrams, which are expected to bring appreciably larger
contributions than those of the diagrams considered in the
present work, are currently being computed [26,27]. Several
VP-VP and VP-SE diagrams were not calculated in Ref. [25],
because they vanish in the free VP loop approximation. In
this work, we go beyond this approximation and calculate
these diagrams, and show that they must be taken into account
for heavy ions at the current level of experimental accuracy.
We also show that a perturbative calculation of the diagrams
examined here is insufficient even for very light ions.

Virtual light-by-light scattering. In a subset of the VP-VP
and VP-SE diagrams examined in Ref. [25], the photon from
the external magnetic field is attached to a VP loop. This is
called the magnetic loop (ML), and vanishes in the free VP
loop approximation [20,28]. All diagrams considered in this
work contain a ML and another loop, corresponding to either
another fermionic pair [electric-loop–magnetic-loop (EL-ML)
diagram, see Fig. 1(a); magnetic-loop-after-loop (MLAL) dia-
gram, see Fig. 1(b); and magnetic-loop-next-to-loop (MLNL)
diagram, see Fig. 1(c)] or to a virtual photon [self-energy–
magnetic-loop (SE-ML) diagrams; see Figs. 1(d) and 1(e)].
To the lowest contributing order, the fermion propagator in
the ML interacts twice with the Coulomb field of the nu-
cleus [17], so that Delbrück scattering is a subprocess of
the overall diagram. The only exception here is the MLNL
diagram, for which, to the lowest contributing order, the ML
fermion interacts once with the nuclear field and once with the
vacuum-polarized nuclear field. This process has never been
shown to be well approximated by light-by-light scattering,
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FIG. 1. The diagrams corresponding to the electric-loop–magnetic-loop (a), magnetic-loop-after-loop (b), and magnetic loop-next-to-
loop (c) contributions, and to the wave-function-type (d) and vertex-type (e) self-energy–magnetic-loop contributions to the g factor of a
bound electron. The double line represents the bound electron, internal wavy lines are intermediate photons, while the wavy line terminated by
a triangle denotes a photon from the external magnetic field. The SE-in-ML diagrams (α) and (β) vanish together with the MLAL diagram (b),
in the free-loop approximation, due to the properties of the Källén-Sabry potential. Diagrams (a), (c), (d), and (α) each have an equivalent
diagram; therefore, their contributions should be counted twice.

and hence the MLNL diagram is not considered in the present
work. For high Z , Zα approaches unity, and approximating
the contribution of the ML by the (Delbrück) light-by-light
scattering process could be insufficient. Nevertheless, this ap-
proximation has been found to be satisfactory even for heavy
ions [21] in the one-loop case, with a corresponding relative
error smaller than 5% for all Z � 92. This is in agreement
with the properties of the Coulomb corrections to Delbrück
scattering [21,29]. In what follows, we will make use of the
Delbrück-scattered vector potential, which is given [20] in
momentum space by

AML i(q) = 4π

q2

∫
dk

(2π )3 Mji(k, q)Aj (k), (1)

where we sum over repeated indices. Here A is the external
vector potential, given in momentum space by

A(k) = i

2
(2π )3[B × ∇k δ(k)], (2)

and by A(x) = (1/2)(B × x) in configuration space, with B
the homogeneous external magnetic field. Also, M is the (ten-
sor) Delbrück scattering amplitude, which is known in closed
form in the partial low-energy limit |k| → 0 corresponding to
a static, homogeneous magnetic field [20,21], and reads

Mji(k, q) = α λ̄3
e[δ ji(k · q) − qjki](Zα)2FD(λ̄e|q|), (3)

with the reduced Compton wavelength λ̄e = h̄/mec. The ex-
plicit expression for the Delbrück scattering function FD is
given in Ref. [21]. It is also helpful to write the expression of
the configuration-space Delbrück-scattered vector potential:

AML(x) = 1

2
(B × x)�ML

( |x|
λ̄e

)
, (4)

with the polarization function given by a Bessel transform of
the scattering amplitude:

�ML(u) = 4
α

π
(Zα)2 1

u2

∫ +∞

0
dz zu j1(zu)FD(z). (5)

The Delbrück-scattered vector potential (4) thus has the same
angular structure as the external vector potential.

Calculations. The calculations are carried out in the Furry
picture, where the nucleus-electron interaction is included
from the outset at all orders, and the wave functions of the

electrons are those of the hydrogenlike systems. The con-
tribution from the electric-loop–magnetic-loop diagram of
Fig. 1(a) to the g factor of the bound electron can be deduced
from the simpler ML diagram studied in Refs. [20,21,28].

We write the EL-ML correction to the g factor as

�gEL−ML
a = −8

3

1

λ̄e

∫ +∞

0
dr r3 �ML

(
r

λ̄e

)

× [ga(r)δVP fa(r) + δVPga(r) fa(r)], (6)

where ga and fa are the radial parts of the Dirac-Coulomb
spinor ψa [30]. The EL potential is approximated [17] by the
Uehling potential and the Uehling-corrected radial wave func-
tions are δVPga and δVP fa. For this diagram, the radial wave
functions are computed numerically for finite-size nuclei. To
achieve this, the electron is confined in a radial cavity and
the dual kinetic balance approach [31] is used to generate nu-
merical spectra and radial wave functions. In our calculations,
the nucleus is considered to be a homogeneously charged
sphere and the resulting Uehling potential is computed using
analytical expressions given in Ref. [32].

The contribution from the magnetic-loop-after-loop dia-
gram of Fig. 1(b) is computed by another modification to
the ML diagram. At the free-loop level, the MLAL diagram
vanishes, along with the SE-in-ML diagrams [see Figs. 1(α)
and 1(β)] [25]. This is due to the low-momentum properties
of the (Källén-Sabry) fourth-order VP tensor [33], in the same
way that the vanishing of the simpler one-loop ML diagram at
the free-loop level [17,20] is due to the low-momentum prop-
erties of the (Uehling) second-order VP tensor. Hence, the
lowest nonvanishing contribution from the highly challenging
SE-in-ML diagrams features a six-photon light-by-light scat-
tering process, and is out of the scope of the present work.
The first nonvanishing contribution from the MLAL diagram
comes from adding two interactions with the Coulomb field
of the nucleus, on the outermost free loop, while keeping the
innermost loop free (we call this the scarecrow diagram; see
Fig. 2). The diagram wherein the Coulomb photons interact
with the innermost loop and the outermost loop is free, has
a vanishing contribution. Hence at the lowest nonvanishing
order in the VP loops, the contribution of the MLAL diagram
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FIG. 2. The “scarecrow” diagram represents the lowest nonvan-
ishing term that contributes to the magnetic loop-after-loop diagram
given in Fig. 1(b).

is given by

�gMLAL
a = −8

3

1

λ̄e

∫ +∞

0
dr r3 �MLAL

(
r

λ̄e

)
fa(r)ga(r), (7)

where the photon interacting with the bound electron has
gone through two VP loops and is described by the MLAL
polarization function,

�MLAL(u) = 4

(
α

π

)2

(Zα)2 1

u2

×
∫ +∞

0
dz zu j1(zu)FD(z)IVP(z). (8)

Here the one-loop photon VP function is given by [25]

IVP(z) = z2
∫ 1

0
dτ

τ 2
(
1 − τ 2

3

)
4 + (1 − τ 2)z2

. (9)

The MLAL contribution (7) to the g factor is then computed
for pointlike nuclei.

The contribution from the wave-function-type self-energy–
magnetic-loop diagram of Fig. 1(d) can be split into a
reducible contribution, wherein the intermediate state in the
bound-electron propagator between the SE loop and the ML
is the ground state a = 1s, and an irreducible contribution,
wherein a sum over all intermediate states, excluding the
ground state, is performed in that propagator. The irreducible
contribution �gSE−ML

a(irr) is computed in the same way as the
EL-ML diagram: As is the case of the EL, the SE loop does
not modify the angular dependence of the wave function of the
bound electron, so that, if in Eq. (6), the VP-corrected wave
functions are replaced with the SE-corrected wave functions
δSE fa and δSEga, we straightforwardly obtain the irreducible
correction to the g factor due to the SE-ML diagram. The irre-
ducible contribution was computed with SE-corrected wave
functions obtained with the method presented in Ref. [34].
The reducible contribution, on the other hand, is given by

�gSE−ML
a(red) = �gML

a

ga(D)
�gSE

a(red), (10)

where ga(D) is simply the Breit-Dirac value for the bound-
electron g factor [35]. Both the reducible contribution to the
one-loop SE correction �gSE

a(red) [19] and the ML correction
�gML

a [20] to the g factor have been investigated previously,
therefore, we can directly compute the reducible contribution
(10) to the two-loop correction for pointlike nuclei. There
is a potential further reducible contribution to the SE-ML

diagram, coming from the energy derivative of the elec-
tron propagators in the ML, which vanishes because these
free propagators do not depend on the energy of the bound
electron.

Let us finally turn to the contribution from the vertex SE-
ML diagram of Fig. 1(e). As was the case for the simpler
vertex SE one-loop correction [19], we need, for renormaliza-
tion purposes, to split this diagram into a zero-potential part
(whereby the propagator of the electron under the SE loop is
taken to be that of the free electron) and a many-potential part
(whereby the electron interacts any nonzero number of times
with the Coulomb field of the nucleus under the SE loop).
The zero-potential term can be treated analytically to a large
extent. After renormalization, its general expression is given
by

�gSE−ML(0)
a(ver) = 2

μa λ̄e B

∫
dp

(2π )3

∫
dp′

(2π )3 ψ̄a(p)

× �R(p, p′) · AML(p − p′)ψa(p′), (11)

with μa the magnetic projection quantum number, and the
Delbrück-scattered vector potential AML given by Eq. (1).
The four vectors p and p′ share the same time component
fixed by the energy εa of the reference state: p = (εa/c, p),
p′ = (εa/c, p′), while �R is the UV-finite part of the free
vertex function, studied in detail in Ref. [30]. Performing
three of the four angular integrals in Eq. (11) analytically,
the zero-potential term in the vertex diagram can be cast as
a quadruple integral (a double radial integral, one remaining
angular integral, and an integral over a Feynman parameter
present from the outset in �R), to be performed numerically
for pointlike nuclei. The many-potential term, on the other
hand, is computed in configuration space, and is treated in
a very similar way to the corresponding term in the one-
loop SE correction [19,26]: The bound and free electronic
Green’s function are expanded in partial waves according to
the absolute value |κ| of the Dirac angular momentum. As can
be seen from Eq. (4), the angular structure of the Delbrück-
scattered vector potential (1) is identical, in configuration
space, to that of the external vector potential (2), meaning that
the only modification to the calculation concerns the radial
integrals. As was the case for the one-loop SE correction,
the many-potential term in the vertex diagram features an
infrared divergence, that is rigorously canceled by a diver-
gence in the many-potential, reducible contribution [19] [in
contrast to the approach of Ref. [19], we do not separate the
(finite) one-potential term here]. We computed the sum of the
many-potential terms of the reducible and vertex contributions
to the SE-ML correction, which is readily finite because of
that cancellation. The partial wave summation is truncated at
|κ| = 20, with the remaining terms estimated through least-
squares inverse polynomial fitting.

Results. We present numerical results for seven specific hy-
drogenlike ions, with the nuclear charges Z = 1, 2, 14, 20,

54, 82, 92. The contributions from all diagrams are summa-
rized in Table I.

The EL-ML and irreducible SE-ML corrections were com-
puted for finite-size nuclei, with the nuclear radii [36] taken
from Ref. [37]. The MLAL correction, as well as the re-
ducible and vertex SE-ML corrections, were computed for
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TABLE I. Numerical values of the two-loop magnetic-loop correction �g(2L−ML)
a to the g factor of hydrogenlike ions (a = 1s) for several

nuclear charges Z . We give separately the contribution �gEL−ML
a from the electric-loop–magnetic-loop diagram, the contribution �gMLAL

a

from the magnetic-loop-after-loop diagram, and the irreducible �gSE−ML
a(irr) , zero-potential vertex+reducible �gSE−ML(0)

a(ver+red) and many-potential

vertex+reducible �gSE−ML(1+)
a(ver+red) contributions from the SE-ML diagrams. The total correction is given in the last column. Results are given in

units of 10−6, and powers of 10 are given between square brackets.

Z �gEL−ML
a �gMLAL

a �gSE−ML
a(irr) �gSE−ML(0)

a(ver+red) �gSE−ML(1+)
a(ver+red) �g(2L−ML)

a

1 3.9(1) [−14] 3.7 [−14] −8.6(8) [−14] −3.0928(1)[−11] −2.600(250)[−11] 4.92(2.50)[−12]
2 2.58(1) [−12] 2.34 [−12] −8.9(5) [−12] −9.4430(8)[−10] −7.926(6) [−10] 1.477(8) [−10]
14 3.60(1) [−7] 2.42 [−7] −1.920(8) [−6] −9.2140(1) [−6] −8.856(6) [−6] −9.60(10) [−7]
20 3.189(3) [−6] 1.941 [−6] −1.662(3) [−5] −4.2219(1) [−5] −4.457(3) [−5] −1.384(4) [−5]
54 1.4344(26)[−3] 6.019(1) [−4] −5.3135(50)[−3] −1.0331(1) [−3] −3.3842(24) [−3] −5.628(6) [−3]
82 2.0982(8) [−2] 6.845(3) [−3] −5.5379(20)[−2] −4.0125(94)[−3] −2.0833(22) [−2] −8.851(3) [−2]
92 4.5676(38)[−2] 1.3648(11)[−2] −1.0570(5) [−1] −1.1957(43)[−2] −3.4565(31) [−2] −9.290(8) [−2]

pointlike nuclei. The uncertainty of the EL-ML correction is
dominated by that on the nuclear radii. The uncertainty of the
MLAL correction is given by the estimated finite-nuclear-size
correction [38]. The uncertainty of the SE-ML correction is
dominated by numerical convergence and, for high Z (Z = 54,
Z = 82, and Z = 92; see Table I), by nuclear size corrections.

As anticipated, for instance, in Ref. [25], and as was
confirmed in Ref. [24] in the perturbative approach, all correc-
tions obtained here are reliably smaller than the SE-VP [25]
and VP-VP [27] corrections from which the ML is absent,
especially at low and intermediate Z . Nevertheless, for high
Z , the calculated corrections are large enough to be above the
experimental uncertainties of state-of-the-art measurements
of the g factor of bound electrons. Indeed the uncertainty
reported in the most precise measurements of the g factor
[7,8] is of the order of 10−11. Although these measurements
were only performed on lighter ions such as carbon (Z = 6)
and silicon (Z = 14), it is expected that, in the framework
of the ALPHATRAP project [2], g-factor measurements on
heavier ions will be performed at comparable levels of ac-
curacy, meaning that the contributions computed here should
be taken into account in an accurate interpretation of these
experiments.

At the opposite end of the nuclear charge landscape, we
note that our results for the SE-ML contribution approach the
prediction of the perturbative approach on Ref. [24] for Z →
0, but that these perturbative results have limited relevance due
to large higher-order contributions, which are not captured by
the approach of Ref. [24]. This is shown in Fig. 3, where our
results for low Z for the SE-ML diagrams [Figs. 1(d) and 1(e)]
are parametrized according to

�gSE−ML =
(

α

π

)2

(Zα)5FSE−ML(Z ). (12)

In Ref. [24] the leading term in the function FSE−ML(Z ) is
given by FSE−ML(Z ) = (7/432)π � 0.0509. However, our nu-
merical results show that a linear term is necessary to capture
the behavior of the SE-ML correction to the g factor, even at
very low Z:

FSE−ML(Z ) = a5 + a6(Zα), (13)

with the values of the coefficients a5 = 0.0505(3) and a6 =
−0.769(4) obtained through a least-squares numerical fit. We
thus confirm the result of Ref. [24] through our result for

FSE−ML(Z = 0). Our numerical results do not suggest any log-
arithmic terms at the order (Zα)6, but we cannot exclude the
presence of a logarithm with a numerically small coefficient.
We find, however, a large a6 coefficient, which induces a 50%
contribution to FSE−ML(Z ) already at Z = 4.

Discussion. The two-loop corrections computed here are
of the same order of magnitude as the uncertainty in
the finite nuclear size correction, as can be checked from
Refs. [37,39–41]. As a result, they are arguably mostly
relevant within the framework of the “specific” weighted dif-
ference between the g factor of H-like and Li-like ions, which
allows for the approximate cancellation of nuclear size correc-
tions [9,10,42]. For the very heavy Li-like ions of relevance
here, these two-loop diagrams can be reasonably well evalu-
ated in the single-electron framework of the present work.

Conclusion. Two-loop QED corrections to the bound-
electron g factor involving the magnetic loop were calculated
for the first time in the Furry picture. The calculated correc-
tions deviate significantly from the perturbative results [24]

FIG. 3. Numerical values (red dots) of the SE-ML contribution
to the g factor of hydrogenlike ions for low nuclear charges, as
parametrized through Eq. (12). The error bars (orange) have been
artificially magnified by a factor of 4 in order to be visible, except
for Z = 1 where the actual error bar is shown. Our results are fitted
(black line) according to Eq. (13), with the shaded gray region around
the line corresponding to the uncertainty on the fit parameters. The
agreement with the perturbative result (green line) of Ref. [24] is
manifest. However, it is seen that the SE-ML contribution markedly
departs from the prediction of Ref. [24] even at very low Z .
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and are substantially larger than projected experimental un-
certainties for heavy hydrogenlike ions, of relevance for tests
of QED, searches for new physics, and the determination of
fundamental constants.
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