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Nuclear deformation as a source of the nonlinearity of the King plot in the Yb+ ion
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We perform atomic relativistic many-body calculations of the field isotope shifts and calculations of corre-
sponding nuclear parameters for all stable even-even isotopes of the Yb+ ion. We demonstrate that if we take
nuclear parameters of the Yb isotopes from a range of the state of the art nuclear models, which all predict
strong quadrupole nuclear deformation, and then calculate nonlinearity of the King plot caused by the difference
in the deformation in different isotopes, the result is consistent with the nonlinearity observed in the experiment
[I. Counts et al., Phys. Rev. Lett. 125, 123002 (2020)]. The changes of nuclear rms radius between isotopes
extracted from experiment are consistent with those obtained in the nuclear calculations.
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In a recent paper [1], the nonlinearity of the King plot has
been observed. The authors state that the effect may indicate
physics beyond the standard model (SM), or that, within the
SM, they may come from the quadratic field shift (QFS).
Possible nonlinearity of the King plot in Yb+ was studied
theoretically in Ref. [2]. In the present paper, we show that it
is more likely that the observed nonlinearity of the King plot
is due to a significant nonmonotonic variation of the nuclear
deformation in the chain of isotopes. We perform nuclear
and atomic calculations of the field isotope shift (FIS) which
include nuclear deformation and demonstrate that the depen-
dence of the deformation on isotopes leads to a nonlinearity
of the King plot, which is consistent with the observations in
Ref. [1]. We show that the comparison of theoretical and ex-
perimental nonlinearities can be used to discriminate between
different nuclear models, favoring some and disfavoring oth-
ers.

It is well known from experimental nuclear rotational spec-
tra [3] and its theoretical interpretation [4,5] as well as from
the nuclear calculations presented below that all even-even
Yb isotopes studied in Ref. [1] have deformed nuclear ground
states with the parameters of the quadrupole deformation β ≈
0.3. In our previous paper [6], we demonstrated that nuclear
deformation may lead to a nonlinearity of the King plot.

Therefore, in the present paper we calculate FIS in even-
even Yb isotopes with accounting for nuclear deformation.
We treat Yb+ as a system with one external electron above
closed shells and use the correlation potential method [7].
This approach works well for Yb+ as demonstrated in our
earlier works [8–10]. We calculate the correlation potential
�̂ in the second order of the many-body perturbation theory.
Correlation potential is the nonlocal (integration) operator
responsible for the correlation corrections due to interaction
between valence electron and electrons in the core. Then we
use �̂ to calculate the states of valence electron (numerated

by v) in the form of the Brueckner orbitals (BO):

(ĤHF + �̂ − εv )ψBO
v = 0. (1)

Here ĤHF is the relativistic Hartree-Fock (HF) Hamiltonian
for the closed-shell core of Yb+,

ĤHF = cα̂i · p̂i + (β − 1)mc2 + Vnuc(ri) + Vcore(ri). (2)

In this expression, α and β are the Dirac matrices, Vnuc is
nuclear potential obtained by integrating nuclear charge den-
sity, Vcore is the self-consistent HF potential, and the index
i numerates single-electron states. This method is similar to
the many-body perturbation theory (MBPT) method used in
Ref. [1].

FIS is calculated by varying nuclear potential Vnuc in (2).
The results are presented in the form of expansion over the
change in nuclear momenta (see also Ref. [1]),

νFIS
a = Faδ〈r2〉 + G(2)

a δ〈r2〉2 + G(4)
a δ〈r4〉. (3)

Here νFIS
a is the change of the frequency of an atomic tran-

sition (numerated by index a) which is caused by the change
of nuclear size and shape between two isotopes; δ〈r2〉 is the
change of the nuclear rms radii squared, δ〈r2〉 = 〈r2〉2 − 〈r2〉1

and δ〈r4〉 = 〈r4〉2 − 〈r4〉1.
First term in Eq. (3) is the standard FIS; the other two

terms are corrections responsible for the nonlinearity of the
King plot. The term with G(2)

a is due to the second-order effect
in the change of the nuclear Coulomb potential called the
quadratic field shift (QFS) and the last term appears mainly
due to the relativistic effects in the electron wave function;
i.e., these terms represent different physical phenomena. On
the other hand, their effects on the isotope shift are similar.
It was suggested in Ref. [1] that 〈r4〉 and 〈r2〉 are related by
〈r4〉 = b〈r2〉2, where b is just a numerical constant, b = 1.32.
Extra care should be taken in calculating G(2) and G(4) inde-
pendently on each other. For example, they cannot be defined
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simultaneously in a fitting procedure. Therefore, we start the
calculations by eliminating the QFS term, i.e., by considering
FIS in the linear approximation. The change of the nuclear
Coulomb potential between two isotopes is considered as a
perturbation and is treated in the first order using the random
phase approximation (RPA). The RPA equations for core elec-
trons have the following form [7]:

(ĤHF − εc)δψc = −(δVN + δVcore )ψc, (4)

where δVN is the difference between nuclear potentials for the
two isotopes, index c numerates states in the core, and δVcore is
the change of the self-consistent HF potential induced by δVN

and the changes to all core functions δψc. Equations (4) are
solved self-consistently for all states in the core with the aim
of finding δVcore. The FIS for a valence state v is then given by

νFIS
v = 〈

ψBO
v

∣∣δVN + δVcore

∣∣ψBO
v

〉
. (5)

Apart from eliminating the QFS, an important advantage of
using the RPA method (where the small parameter, i.e., the
change of the nuclear radius, is explicitly separated) is the
suppression of a numerical noise. Nonlinearity of the King
plot is extremely small and direct full scale calculations of
the change of the atomic electron energy due to a tiny change
of the nuclear radius (i.e., without the separation of the small
parameter) may lead to a false effect in the King plot non-
linearity (see below). After FIS is calculated for a range of
nuclear parameters, the constants Fa and G(4)

a are found by
fitting the results of the atomic calculations by formula (3)
(without G(2)) by the least-square-root method.

To calculate G(2), we use the second-order perturbation
theory

G(2)
a =

∑
n

〈a|δVN + δVcore|n〉2

Ea − En
/δ〈r2〉2. (6)

Here δVN is the change of nuclear potential between two
isotopes. Summation goes over complete set of the single-
electron basis states, including states in the core and
negative-energy states. To include the core-valence correla-
tions, one can use BO for single-electron states a and n. Again,
the perturbation theory is used instead of the direct calculation
of the change of the electron energy due to the tiny change of
the nuclear radius to suppress numerical noise.

Instead of the direct summation over electron states in
Eq. (6), one can first solve the RPA equation for the valence
state a

(ĤHF + �̂ − εa)δψBO
a = −(δVN + δVcore )ψBO

a , (7)

and then use

G(2)
a = 〈

δψBO
a

∣∣δVN + δVcore

∣∣ψBO
a

〉
/δ〈r2〉2. (8)

We obtain the same results using Eqs. (6) and (8). This pro-
vides a test of the numerical accuracy.

Nuclear deformation. The quadrupole nuclear deformation
β provides a measure of the deviation of the nuclear den-
sity distribution from spherical shape so that nuclear radius
rn(θ ) in the θ direction with respect of the axis of symmetry
is written as rn(θ ) = r0(1 + βY20(θ )). Electron feels nuclear
density averaged over the nuclear rotation (see, e.g., Ref. [6]).

TABLE I. Calculated parameters of formula (3) for the FIS in
two transitions of Yb+; a stands for the 6s1/2-5d5/2 transition and b
stands for the 6s1/2-5d3/2 transition. Case 1 corresponds to deformed
nuclei, while case 2 corresponds to spherical nuclei.

Tran- F G(2) G(4)

Case sition (GHz/fm2) (GHz/fm4) (GHz/fm4)

1 a −17.6035 0.02853 0.01308
b −18.0028 0.02853 0.01337

2 a −18.3026 0.02853 0.01245
b −18.7201 0.02853 0.01273

We calculate the average density by integrating the deformed
density over θ .

To determine the values of F and G(4) parameters in
Eq. (3), we first vary the nuclear root-mean-square (rms)
charge radius rc and the quadrupole deformation parameter
β in the range determined by the nuclear theory (see be-
low): 5.234 fm � rc � 5.344 fm and 0.305 � β � 0.345, and
then fit the F and G(4) parameters by the formula (see also
Refs. [6,11])

νFIS = Fδ〈r2〉 + G(4)δ〈r4〉 (9)

to the results of atomic calculations of FIS for different rc

and β. The values of F and G(4) parameters defined in such
a way are presented in Table I. The table also gives the values
of the G(2) parameters calculated using (6) and (8). Note that
FIS for the d states of Yb+ is about two orders of magnitude
smaller than FIS for the 6s states and in QFS small matrix
elements for the d states appear in the second order while
in the calculations of F are in the first order. Therefore, the
relative difference in the G(2) parameters for the s-d3/2 and
s-d5/2 transitions is much smaller than the relative difference
for the F parameters. Note that nonlinearities of the King
plot are sensitive to the tiny differences in the ratios Fa/Fb,
G(2)

a /G(2)
b , and G(4)

a /G(4)
b [see Eq. (11) and discussion below

it]. Therefore, we keep four digits for G(2) and G(4) to avoid
the effect of rounding on the nonlinearity.

It was shown in Ref. [1] that 〈r4〉 ≈ b〈r2〉2, where b is just a
numerical constant, b = 1.32 [1]. We found that the situation
is different in deformed and spherical nuclei. By calculating
〈r4〉 in both cases, we found that the results can be fitted with
high accuracy by the formula

〈r4〉 = [
b0 + b1(r2

c − r2
0 ) + b2(β − β0)

]
r2

c , (10)

where r0 = 5.179 fm and β0 = 0.305. For deformed nuclei
b0 = 1.3129, b1 = −0.0036, b2 = 0.1, while for spherical nu-
clei b0 = 1.2940, b1 = −0.0038, b2 = 0.

To study the nonlinearity of the King plot, we need total
isotope shift (including mass shift) for two transitions a and
b. Then, using Eq. (3), one can write for the isotope shift
between isotopes i and j

νbi j

μi j
= Fb

Fa

νai j

μi j
+

(
Kb − Fb

Fa
Ka

)
+

(
G(2)

b − Fb

Fa
G(2)

a

)δ〈r2〉2
i j

μi j

+
(

G(4)
b − Fb

Fa
G(4)

a

)δ〈r4〉i j

μi j
. (11)
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TABLE II. The deviations from the linearity of the King plot (in parts of 10−6). The comparison between experiment [1] and calculations
in different nuclear models.

Nuclear model

Isotope pair Expt. BETA FIT NL3* DD-ME2 DD-MEδ DDPC1

168,170 −0.192 0.642 −0.206 −0.037 −0.084 −0.511 −0.080
170,172 0.270 −0.607 0.281 −0.159 −0.467 0.546 −0.222
172,174 −0.489 −3.05 −0.523 −0.200 −0.028 0.392 −0.198
174,176 0.411 3.03 0.448 0.387 0.551 −0.406 0.472

Here νbi j is the total isotope shift for the transition b which
is related to FIS [see formula (3)] by νbi j = νFIS

bi j + Kbμi j , K
is the electron structure factor for the mass shift, and μ =
1/mi − 1/mj is the inverse mass difference. The meaning of
all other parameters in (11) is the same as in (3). The first
line of Eq. (11) corresponds to the standard King plot, and
the second and third lines contain the terms which may cause
the King plot nonlinearities. To calculate isotope shift and
build King plot using (11), we use the calculated parameters
F, G(2), G(4) from Table I, the values of K and μ from Ref. [1],
and the values of the change of nuclear parameters δ〈r2〉i j and
δ〈r4〉i j which come from several nuclear models (see below).

To study these nonlinearities, we use the least-square fitting
of Eq. (11) by the formula ν ′

b = Aν ′
a + B, where ν ′ = ν/μ.

The relative nonlinearities are calculated as 
ν ′
b/ν

′
b, where


ν ′
b is the deviation of the isotope shift ν ′

b from its linear fit.
To do the fitting and making King plot, we need to know the
change of nuclear parameters δ〈r2〉 and 
β between the iso-
topes of interest. We use nuclear calculations for this purpose
using a range of nuclear models. They include the empirical
model named BETA, the parameters of which are determined
from experimental data, the hypothetical model (labeled as
FIT), the parameters of which are defined by the fit of nuclear
parameters to experimental FIS and the deviations of King
plot from nonlinearity, and the fully self-consistent covariant
density functional theory (CDFT) with several functionals
such as DD-ME2, DD-MEδ, NL3*, and DD-PC1 [12,13]. Nu-
clear parameters of the Yb isotopes with even neutron number
obtained in these models are presented in the Supplemental
Material [14].

Using the parameters coming from these models, we cal-
culate FIS, build the King plot, find its deviations from the
linearity, and compare the results to the experimental data
from Ref. [1]. The results are presented in Table II and Fig. 1.
One can see that the values of the experimental and theoretical
nonlinearities are of the same order of magnitude for all nu-
clear models. The FIT model presents almost perfect fit of the
experimental data for both isotope shift and the nonlinearities.
For some models (e.g., BETA, FIT, NL3*, DDPC11) there is a
strong correlation between experimental and theoretical data.
This means that the nuclear deformation is an important effect
which has to be included into the analysis.

The origin of nonlinearity in the King plot in deformed nu-
clei could also be understood from nuclear theory perspective.
The single-particle states are twofold degenerate in deformed

1We label the CDFT model by employed functional.

nuclei and the increase of neutron Fermi level with increas-
ing neutron number leads to the change of the occupation
of the pairs of different single-particle states, emerging from
different spherical subshells, located in the vicinity of neutron
Fermi level. These pairs contribute differently to the charge
radii and deformations of the nucleus. As a consequence, both
charge radii and deformations obtained in the CDFT calcula-
tions as a function of neutron number show some staggering
with respect of averaged smooth trend (see the Supplemental
Material [14]). The situation is different for the Ca+ ions in
the chain of 40–48Ca isotopes [15] since they do not show sig-
nificant nonlinearities in the King plot. This is because these
nuclei are spherical and they are built by the occupation of
mostly neutron f7/2 subshell with increasing neutron number.

Quadratic field shift. Reference [1] argues that QFS is the
main source of the nonlinearity of the King plot. However,
their calculations only provided an upper limit on the nonlin-
earity since the results of CI (configuration interaction) and
MBPT calculations were very different. From our point of
view, the problem with the calculations in Ref. [1] is that
they have not separated a small parameter, the change of the
nuclear radius, and obtained FIS from the small difference in

FIG. 1. The deviations from linear King plot in experiment (solid
red circles) and theory. Theoretical deviations caused by nuclear
deformation are shown as blue crosses, and those by QFS are shown
as blue triangles. All theoretical numbers correspond to the FIT
nuclear model.
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TABLE III. The deviations from the linearity of the King plot δ

due to the quadratic field shift. The comparison between experiment
[1] and calculations using the δ〈r2〉 values which fit the experimental
isotope shift [1]. The deviation δ is shown as a function of νa/μ [see
Eq. (11)].

Expt. QFS

νa/μ δ νa/μ δ

Isotope pair 1011 kHz u 10−6 1011 kHz u 10−6

168,170 −0.311 −0.192 −0.351 −0.017
170,172 −0.299 0.270 −0.337 0.020
172,174 −0.236 −0.489 −0.272 0.013
174,176 −0.231 0.411 −0.267 −0.016

the energies of the atomic transitions calculated for different
nuclear radii. This is certainly a good approach for the calcu-
lation of FIS but it is not good enough to calculate a very small
nonlinearity which is extremely sensitive to numerical noise.

Our results presented earlier indicated that QFS gives a
much smaller contribution to the nonlinearity of the King plot
than the upper limit presented in Ref. [1]. To test this result,
we performed FIS and QFS calculations by a different method
assuming that all isotopes have spherical nuclear shape (β =
0). The main motivation for using RPA method in the case of
nuclear deformation is the minimization of numerical noise
which comes from extra integration over directions. There
is no such problem for spherical nuclei and the procedure
is less complicated. FIS in this case may be found from the
direct variation of the nuclear radius in the nuclear Coulomb
potential. We perform HF and BO calculations for a range
of nuclear charge rms radii from 〈r2〉 = (5 fm)2 to 〈r2〉 =
(6 fm)2 and present the results by the same formula (3) (see
Table I). As in case of deformed nuclei, the QFS parameter
G(2) is found from the perturbation theory calculations. The
values of F and G(4) are slightly different.

The same equation (11) and the same procedure were used
to find the nonlinearities of the King plot. The results are
presented on Fig. 1 and Table III. As one can see, the non-
linearity caused by QFS is an order of magnitude smaller than
the observations. It is also much smaller than the nonlinearity
caused by the variation of the nuclear deformation.

We also performed another test calculation using constant
value β = 0.3 instead of β = 0. Again, without variation of β

the nonlinearity of the King plot is small.
The change of nuclear rms charge radius. Formula (3) with

parameters F, G(2), G(4) from Table I can be used to find the
change of the nuclear rms charge radius between isotopes by
fitting experimental FIS. The values of the δ〈r2〉 correspond-
ing to the best fit (the FIT model) are presented in Table IV as
case A and compared with other data.

It is widely assumed in the atomic community that FIS is
described by a variation of a single parameter 〈r2〉, i.e., the
change of higher nuclear momenta are ignored. On the other
hand, it is claimed in Ref. [1] that inclusion of the variation
of 〈r4〉 (which is also proportional to δ〈r2〉) can change δ〈r2〉
extracted from the FIS experimental data by about 7%. The
term with δ〈r4〉 is also included in our analysis above. It is
important to check what happens if this term is excluded. To

TABLE IV. The changes of nuclear rms charge radius (δ〈r2〉,
fm2) extracted from the isotope shift measurements. Case A of the
present work corresponds to formula (3) while case B corresponds to
formula (12).

Ref. [1] This work

Isotope pairs CI MBPT Ref. [16,17] A B

(168,170) 0.156 0.149 0.1561(3) 0.138 0.137
(170,172) 0.146 0.140 0.1479(1) 0.130 0.129
(172,174) 0.115 0.110 0.1207(1) 0.102 0.101
(174,176) 0.110 0.105 0.1159(1) 0.097 0.096

do this, we perform different fitting of the RPA results. Instead
of using (9), we use the expression in which the change of
nucleus is reduced to the variation of 〈r2〉,

νFIS = Fδ〈r2〉 + G(2)
totalδ〈r2〉2. (12)

To fit the experimental data, we add to G(2)
RPA the second-

order G(2) from Table I, G(2)
total = G(2) + G(2)

RPA. The resulting
F, G(2)

RPA, G(2)
total coefficients for two transitions in Yb+ are

presented in Table V. Then we use these numbers to fit the ex-
perimental FIS by adjusting the values of δ〈r2〉. The resulting
values of δ〈r2〉 are presented in Table IV as case B. They are
practically the same as in case A. We conclude that neglecting
G(4) actually leads to the redefinition of the parameter F but
practically does not affect value of δ〈r2〉 extracted from the
experiment.

The comparison with other results for δ〈r2〉. It is instruc-
tive to analyze possible reasons for the difference between
our results and other results for δ〈r2〉 presented in Table IV.
There is a 12–19% difference between our results and those
published in Ref. [16] (see Table IV). However, the latter were
taken from a 50-year-old paper [17], which has no many-body
calculations but only estimations based on the single-electron
consideration. The uncertainty of such estimations can be well
above 10% and even 20%.

There is also a 8–13% difference between our results and
those of Ref. [1]. Reference [1] contains two calculations of
the FIS constants performed by CI and MBPT methods with
4% difference between corresponding results. Our FIS con-
stant F is about 13% larger than the same constant calculated
in Ref. [1] using the CI method and about 8% larger than
those calculated in Ref. [1] using the MBPT method. This
explains the difference in the results for δ〈r2〉 (Table IV).
When we use the numbers from Ref. [1] in Eq. (3), we re-
produce their results for δ〈r2〉. The difference in the results

TABLE V. Calculated parameters of formula (12) for the FIS in
two transitions of Yb+.

Tran- F G(2)
RPA G(2)

total

sition (GHz/fm2) (GHz/fm4) (GHz/fm4)

a −16.7185 0.015534 0.044064
b −17.0984 0.015883 0.044413
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seems to be due to the difference in the procedures defining
the constants F and G. We use BO and the RPA method to
calculate F and G(4) and the perturbation theory to find G(2),
as explained above. The authors of Ref. [1] calculate F as a
leading term of the Seltzer moment expansion at the origin
for the total electron density (see Eq. (S11) in Ref. [1]) and
then use partial derivatives of FIS to calculate constants G.
Such method looks sensitive to the degeneracy of G(2) and
G(4) contributions to FIS. An indication of the problem may be
a significant relative difference in G(2) parameters in Ref. [1],
while we argued above that it must be very small since it
appears in the second order of the small d-wave FIS matrix
elements.

It is instructive to explain why the ratios G(4)/F are dif-
ferent in the s-d3/2 and s-d5/2 transitions (this is needed for
the nonlinearity of the King plot without QFS). We suggest
the following mechanism supported by the numerical cal-
culations. According to it, only two relativistic Dirac wave
functions, s1/2 and p1/2, penetrate into the nucleus. They have
different spatial distributions inside and therefore the ratios of
the δ〈r2〉 and δ〈r4〉 contributions to their energies and wave

functions are noticeably different. The d3/2 and d5/2 wave
functions interact differently with the s1/2 and p1/2 ones and
this gives the difference in G(4)/F .

In conclusion, we state that presented arguments indicate
that nuclear deformation is the most likely source of recently
observed nonlinearities of King plot in Yb+. The results of the
combined nuclear and atomic calculations for the effect are
consistent with the observations. The contribution of the QFS
is about an order of magnitude smaller. The measurements
of the nonlinearity of the King may be used to study nuclear
deformation in nuclei with zero spin where nuclear electric
quadrupole moment cannot be extracted from atomic spec-
troscopy. The changes of nuclear charge RMS radii between
even-even Yb isotopes extracted from atomic measurements
are consistent with nuclear theory.

Acknowledgments. We are grateful for J. Berengut for
useful discussion. The work was supported by the Aus-
tralian Research Council Grants No. DP190100974 and No.
DP200100150 and by the US Department of Energy, Office
of Science, Office of Nuclear Physics under Grant No. DE-
SC0013037.

[1] I. Counts, J. Hur, D. P. L. Aude Craik, H. Jeon, C. Leung, J. C.
Berengut, A. Geddes, A. Kawasaki, W. Jhe, and V. Vuletic,
Phys. Rev. Lett. 125, 123002 (2020).

[2] K. Mikami, M. Tanaka, and Y. Yamamoto, Eur. Phys. J. C 77,
896 (2017).

[3] Evaluated Nuclear Structure Data File (ENSDF) located at
the website (http://www.nndc.bnl.gov/ensdf/) of Brookhaven
National Laboratory. ENSDF is based on the publications pre-
sented in Nuclear Data Sheets (NDS), which is a standard for
evaluated nuclear data.

[4] S. G. Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear
Structure (Cambridge University Press, Cambridge, UK, 1995).

[5] Z.-H. Zhang, M. Huang, and A. V. Afanasjev, Phys. Rev. C 101,
054303 (2020).

[6] S. O. Allehabi, V. A. Dzuba, V. V. Flambaum, A. V. Afanasjev,
and S. E. Agbemava, Phys. Rev. C 102, 024326 (2020).

[7] V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P.
Sushkov, J. Phys. B: At. Mol. Phys. 20, 1399 (1987).

[8] V. A. Dzuba and V. V. Flambaum, Phys. Rev. A 77, 012515
(2008).

[9] V. A. Dzuba and V. V. Flambaum, Phys. Rev. A 83, 052513
(2011).

[10] V. A. Dzuba, V. V. Flambaum, M. S. Safronova, S. G. Porsev, T.
Pruttivarasin, M. A. Hohensee, and H. Häffner, Nat. Phys. 12,
465 (2016).

[11] V. V. Flambaum and V. A. Dzuba, Phys. Rev. A 100, 032511
(2019).

[12] A. V. Afanasjev and S. E. Agbemava, Phys. Rev. C 93, 054310
(2016).

[13] S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring, Phys.
Rev. C 89, 054320 (2014).

[14] Please see Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevA.103.L030801 for more infor-
mation on nuclear models used in the calculations.

[15] C. Solaro, S. Meyer, K. Fisher, J. C. Berengut, E. Fuchs, and
M. Drewsen, Phys. Rev. Lett. 125, 123003 (2020).

[16] I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69
(2013).

[17] D. L. Clark, M. E. Cage, D. A. Lewis, and G. W. Greenlees,
Phys. Rev. A 20, 239 (1979).

L030801-5

https://doi.org/10.1103/PhysRevLett.125.123002
https://doi.org/10.1140/epjc/s10052-017-5467-4
http://www.nndc.bnl.gov/ensdf/
https://doi.org/10.1103/PhysRevC.101.054303
https://doi.org/10.1103/PhysRevC.102.024326
https://doi.org/10.1088/0022-3700/20/7/009
https://doi.org/10.1103/PhysRevA.77.012515
https://doi.org/10.1103/PhysRevA.83.052513
https://doi.org/10.1038/nphys3610
https://doi.org/10.1103/PhysRevA.100.032511
https://doi.org/10.1103/PhysRevC.93.054310
https://doi.org/10.1103/PhysRevC.89.054320
http://link.aps.org/supplemental/10.1103/PhysRevA.103.L030801
https://doi.org/10.1103/PhysRevLett.125.123003
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1103/PhysRevA.20.239

