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Polarizing the medium: Fermion-mediated interactions between bosons
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We consider a homogeneous mixture of bosons and polarized fermions. We find that long-range and attractive
fermion-mediated interactions between bosons have dramatic effects on the properties of the bosons. We
construct the phase diagram spanned by boson-fermion mass ratio and boson-fermion scattering parameter. It
consists of a stable region of mixing and unstable region toward phase separation. In the stable mixing phase, the
collective long-wavelength excitations can either be well behaved with infinite lifetime or be finite in lifetime
suffered from the Landau damping. We examine the effects of the induced interaction on the properties of weakly
interacting bosons. It turns out that the induced interaction not only enhances the repulsion between the bosons
against collapse but also enhances the stability of the superfluid state by suppressing quantum depletion.
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Ultracold atoms offer fascinating opportunities for in-
vestigating quantum many-body problems that are relevant
to fields as diverse as condensed matter physics, statisti-
cal physics, quantum chemistry, and high-energy physics
[1,2]. Of particular interest are Bose-Fermi mixtures [3],
which allows one to explore the intriguing physics associ-
ated with the interplay between atoms of different quantum
statistics. On the experimental side, tremendous progress has
been achieved, which includes controlling and characterizing
the interspecies interactions [4–12], realizing a mixture of
Bose and Fermi superfluids [13–17], and probing physics of
the phase separation state [18,19]. On the theoretical side,
intense attention has been paid to study ground-state proper-
ties [20–26], nature of excitations [27–31], boson-mediated
fermionic superfluidity [32–36], collective dynamics [37–39],
and formation of exotic quantum phases [40–46].

Very recently, adding to the excitement are the observations
of fermion-mediated long-range interactions between bosons
[47–49]. The long-range nature of these mediated interactions
enriches the toolbox for controlling coherent interactions [50]
and opens up the possibility of correlating distant atoms and
preparing quantum phases [40,51]. There have been theoreti-
cal attempts [52–54] at understanding such fermion-mediated
interactions based on the linear response theory. Given current
experimental relevance, thorough theoretical understanding
and identifying features arising from fermion-mediated inter-
actions becomes an urgent task. Such study will contribute to a
better understanding of the emergence of induced interactions
between quasiparticles [55–61].
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In this work, we will carry out a comprehensive study on
the fermion-mediated interactions in Bose-Fermi mixtures,
with the aim of laying down a solid and tractable framework to
treat such problems, fully characterizing the mediated interac-
tions, and elucidating the effects of the induced interactions on
the bosons. First, we will start from the functional representa-
tion of the partition function of the system. By tracing out the
fermionic degrees of freedom, we obtain an effective action
solely in terms of bosonic degrees of freedom, so that we can
isolate the mediated effects of the fermions on the bosons.
Second, we will examine the induced interaction at static limit
in order to obtain an effective interaction potential. Third, we
construct a phase diagram by taking account of both phase
stability and the Landau damping of Bogoliubov excitations
arising from density response from the Fermi gases. Finally,
we examine the quantum fluctuations in the presence of the
effective potential on the properties of the bosons.

We consider a homogeneous mixture of Bose gases and
spin-polarized Fermi gases, described by the following grand
canonical Hamiltonian:

H = HB + HF + HI , (1a)

HB =
∫

drφ†(r)

(
− h̄2∇2

2mB
− μB

)
φ(r), (1b)

HF =
∫

drψ†(r)

(
− h̄2∇2

2mF
− μF

)
ψ (r), (1c)

HI =
∫

dr
(

gIψ
†ψφ†φ + g

2
φ†φ†φφ

)
. (1d)

For bosons, φ(r) is the field operator, mB is the mass of an
atom, and μB is the chemical potential. For fermions, ψ (r) is
the field operator, mF is the mass of an atom, and μF is the
chemical potential. In the interaction term HI , the coupling
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gI = 2π h̄2aFB(m−1
F + m−1

B ) accounts for the interactions be-
tween the fermions and the bosons, and g = 4π h̄2aBB/mB >

0 accounts for the repulsive interactions between bosons,
where aFB and aBB are the corresponding s-wave scattering
lengths. For convenience, we define the Fermi momentum
kF = (6π2nF )1/3 with nF being the number density of Fermi
gases, the Fermi velocity vF = h̄kF /mF and the correspond-
ing Fermi energy EF = h̄2k2

F /2mF . We will take natural units
by setting h̄ = kB = 1 for sake of simplicity from now on.

Within the framework of the imaginary-time field inte-
gral, the partition function of the system can be cast as
Z = ∫

d[ψ̄, ψ]d[φ∗, φ]e−S with the action given by [62]

S = ∫ β

0 dτ [H + ∫
d3r(ψ̄∂τψ + φ∗∂τφ)], where β = 1/T is

the inverse temperature. Carrying out the integration over the
fermionic degrees of freedom, we obtain an effective action
solely in terms of bosonic degrees of freedom Seff = SB −
Tr lnM, where

SB =
∫

dτdr
[
φ∗(∂τ − ∇2

2mB
− μB)φ + g

2
(φ∗φ)2

]
,

M = ∂τ − ∇2

2mF
− μF + gIφ

∗φ. (2)

Up to this level, the formal manipulation of the partition
function is exact. To distill low-energy physics, we will resort
to some sort of approximations to be elaborated on.

To proceed, we may write φ∗φ = ρ0 + ∑
q �=0 ρqeiqx, and

we set M = −G−1 + M1 where G−1 = −∂τ + ∇2/2mF +
μF − gIρ0 is the inverse fermionic Green’s function and
M1 = gI

∑
q �=0 ρqeiqx, with x being space-time coordi-

nate. This allows one to write Tr lnM = Tr ln(−G−1) +
Tr ln (1 − GM1) and to perform series expansions as follows:

−Tr ln(1 − GM1) =
∑
l=1

1

l
Tr[(GM1)l ]. (3)

To fully exploit the translational invariance of the system, we
will transform the above to momentum-frequency representa-
tion [q ≡ (q, iwm)] resulting in

Tr(GM1) = M1(0)
∑

(k,iwn )

G(k) = 0, (4a)

1

2
Tr[(GM1)2] = βV

g2
I

2

∑
q �=0

	qρqρ−q, (4b)

	q = 1

βV

∑
(k,iwn )

G(k)G(k + q). (4c)

Several comments are in order: For the expansion in Eq.
(3), the l = 1 term vanishes, as can be seen from Eq. (4a);
The l = 2 term corresponds to induced two-body interac-
tions between bosons, as can be seen from Eqs. (4b) and
(4c), where we have defined the so-called polarization func-
tion 	q, describing the response of the Fermi gases under
external density perturbation; V is the volume of the sys-
tem, wn = π (2n + 1)/β is fermionic Matsubara frequencies,
while wm = 2πn/β is the bosonic Matsubara frequencies,
where n’s are integers; We will neglect l >= 3 terms, as
they represent induced three-body or more than three-body
interactions for bosons, which are usually irrelevant for dilute

gases. To be concrete, the effective action for the system is
approximated as

Seff = SB − Tr ln (−G−1) + βV
g2

I

2

∑
q �=0

	qρqρ−q. (5)

We follow the standard Bogoliubov decomposition by split-
ting the bosonic field φ into a mean-field part φ0 and a
fluctuating part ϕ: φ = φ0 + ϕ. By retaining the fluctuat-
ing fields up to the quadratic order, we approximate the
effective action as Seff ≈ S0 + Sg, where S0 is the mean-
field action and Sg is the Gaussian action with quadratic
orders of the fluctuating fields ϕ∗

q and ϕq. Employing � =
− lnZ/βV , we obtain that the grand potential density
at the mean-field level �(0) = S0/βV = g|φ0|4

2 − μB|φ0|2 −
1

βV

∑
k ln (1 + e−βξk ), where ξk = k2/2mF − μF + gI |φ0|2.

Minimization of �(0) with respect to the condensate or-
der parameter φ∗

0 leads to the Hugenholz-Pines theorem
[63] determining the chemical potential μB = gI nF + g|φ0|2.
Without loss of generality, we will take φ0 = √

nB, where
nB is the condensate density of the Bose gases. The self-
consistent condition for the fermion density is determined via
nF = −∂�(0)/∂μF , which gives μF = EF + gI nB. Therefore
the ground-state energy density at mean-field level can be
found as E (0)

G = 3
5 nF EF + g

2 n2
B + gI nF nB.

For the system to be stable, we naturally require that
the Hessian matrix ∂2E (0)

G /∂ni∂n j (i, j = F, B) constructed for
the ground-state energy EG(nF , nB) to be positively definite,
which leads to an upper bound for the fermion density

n1/3
F <

g

3mF g2
I

(6π2)2/3, (6)

which gives the condition for mechanical stability of the sys-
tem [32].

As seen from the effective action in Eq. (5), the Hamil-
tonian describing induced two-body interactions between
bosons through coupling with fermions is given by

Hind = g2
I

2

∑
q �=0

∑
k,p

	qφ
†
k+qφ

†
p−qφpφk. (7)

Here, 	q ≡ 	(q,0) is the polarization function evaluated at the
static limit at zero temperature, which reads

	q = −d (EF )

4

[
1 + k2

F − q2/4

kF q
ln

∣∣∣∣q + 2kF

q − 2kF

∣∣∣∣
]
, (8)

where d (EF ) = mF kF /π2 is the density of states at the Fermi
energy.

This corresponds to an induced pairwise interaction poten-
tial between two Bose atoms with relative coordinate r, given
by Vind(r) = ∑

q �=0 g2
I	qeiq·r, where the constant part of 	q

does not contribute to the V (r) due to the exclusion of q = 0
component. As shown in Eq. (8), 	q only depends on the
magnitude of momentum q, so after carrying out the solid
angle integration and then using the residue theorem for the
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integral with respect to q, we have

Vind(r) = −d (EF )g2
I

4
VRKKY(r), (9a)

VRKKY(r) = sin (2kF r) − 2kF r cos (2kF r)

2πkF r4
. (9b)

The induced attractive long-range interaction is of the RKKY
type [64–66] in real space, where it decays at 1/r3 and shows
the Friedel oscillations at a wave vector 2kF .

The Gaussian action for the bosonic fluctuating fields can
be written as Sg = 1

2

∑
q †

qG−1
B (q)q with q = (ϕq, ϕ

∗
−q )T

and the matrix G−1
B (q) = (εq + Aq)I − iwmσz + Aqσx, where

εq = q2/2mB and Aq = (g + g2
I	q)nB. The quasiparticle

spectrum ω(q) and the damping rate γ (q) can be obtained
by seeking solutions of the secular equation detG−1

B (q, ω −
iγ ) = 0 with substitution of 	q|iwm → ω + i0†. By analytic
continuation to real frequency(iω → ω + i0†), one obtains the
real part and the imaginary part of the polarization function,
the so-called Lindhard function [67]

Re	 = −d (EF )

4

[
1 +

∑
s=±

s
1 − u2

s

2q/kF
ln

∣∣∣∣1 + us

1 − us̄

∣∣∣∣
]
, (10a)

Im	 = d (EF )
πkF

8q

[∑
s=±

s(1 − u2
s )�(1 − u2

s )

]
, (10b)

where u± = ω/qvF ± q/2kF and s̄ = −s. The imaginary part
of the polarization function provides essential information
for the damping of excitations, as it can be related to the
dynamical structure factor through the fluctuation-dissipation
theorem [68]. For a given q, it differs from zero only in a
well-defined range of frequencies. This range is determined by
the geometry of the Fermi surface and is directly related to the
possible excitation energies of particle-hole pairs. We show
the region in momentum-frequency space where the imagi-
nary part of the polarization function Im	(q, ω) differs from
zero in Fig. 1(a). In the plot, region I is defined as u2

− < 1 and
u2

+ > 1, while region II satisfies u2
+ < 1. The upper (lower)

bound is given by ω±/EF = (q/kF )2 ± 2q/kF . In Fig. 1(b),
we plot Im	 as a function of frequencies ω for three typical
momenta amplitude q/kF = 0.5, 1.0, 1.5. The curve will be
linear when the corresponding (q, ω) lying in region II, where
both terms in Eq. (10b) contribute. Otherwise, the curve will
be parabolic when the corresponding (q, ω) lying in region I.

With the information of the polarization function at hand,
it is straightforward to obtain the quasiparticle spectrum ω(q)
and the damping rate γ (q), shown in Fig. 2. From Eq. (10b),
one obtains that the region for damping to occur is given
by the inequality constraint (q/kF )2 − 2q/kF < ω/EF <

(q/kF )2 + 2q/kF , as shown in the shade region on Fig. 2(a)
in Fig. 2. At small momenta, the spectrum is phononlike with
the sound velocity given by c =

√
(g + g2

I	0)nB/mB . The
positivity of the sound velocity yields the stability constraint
(kF aFB)2 < 2πkF aBBmF mB/(mF + mB)2, coincident to the
mechanical stability provided in Eq. (6). The mass of bosons
mB has dramatic effects on the spectrum: at low momenta,
the slope is inversely proportional to

√
mB; while at high

momenta, it gives the mass for free particle. For sufficiently
small mB/mF , the excitations can achieve infinite lifetime.

0 1 2 3
q/kF

0

1

2

3

4

ω
/E

F

0 2 4
ω/EF

0

0.2

0.4

0.6

−I
m

Π

q/kF = 0.5
q/kF = 1
q/kF = 1.5

u2
− < 1

u2
+ > 1

II

u2
+ < 1

I
ω+

ω−

(a) (b)

FIG. 1. (a) The shade region is the range where the imaginary
part of the polarization function differs from zero, and it is referred
as particle-hole continuum, since it is the region of single-particle
excitations, whereby a particle below the Fermi surface is excited
to above the Fermi surface. Outside this region, it is not possible to
conserve energy and wave vector in a single-particle excitation pro-
cess. (b) The imaginary part of the polarization function Im	(q, ω)
[in units of d (EF )] as a function of frequencies ω at given different
typical momentum amplitude q.

The damping of the excitations show sharp peak at wave
vector q = kF for all three typical boson-fermion scattering
parameter kF aFB, which is associated with the largest density
of states at the Fermi surface.

We are now in a position to construct a phase diagram for
the system. The stability constraint marks the transition line
between stable mixing phase and phase separation (PS) into
fermions and bosons [20,21,23,69], shown in Fig. 3, which
stays intact for different number density ratio. In the stable
region, we can further classify it into quasiparticle excitations
with no damping and with damping. To search for well-
defined, long-lived excitations, we consider the region where
Im	(q, ω) = 0. This occurs when ω/qvF > 1 + q/2kF [see
Eq. (10b)]. At long wavelength, this becomes c/EF > 2/kF ,

0 1 2 3
q/kF

0

10

20

30

40

ω
/E

F

mB/mF = 0.25
mB/mF = 0.50
mB/mF = 0.75

0 1 2 3
q/kF

0

0.005

0.01

0.015

0.02

γ
/
E

F

kF aFB = 0.20
kF aFB = 0.40
kF aFB = 0.60

(b)(a)

FIG. 2. Properties of the Bogoliugov quasiparticles: (a) the exci-
tation energy ω/EF where kF aFB = 0.3 and (b) the Landau damping
rate γ /EF where mB/mF = 1. The shade region is referred as
particle-hole continuum. The quasiparticle spectrum laying outside
of the shadow region is well-defined, being immune from the Landau
damping. We set kF aBB = 0.3 and nB/nF = 0.2.
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0 0.2 0.4 0.6 0.8

mB/mF

0
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0.6

0.8

k
F
a

F
B

PS
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nB/nF = 0.5
nB/nF = 1.0
nB/nF = 1.5

FIG. 3. Phase diagram spanned by mass ratio mB/mF and in-
terspecies coupling strength kF aFB. PS stands for phase separation
and QP stands for quasi-particle with infinite lifetime. Here we set
kF aBB = 0.4, which sets bosons in a weakly interacting regime.

yielding

(kF aFB)2 <
2πmF mB

(mF + mB)2

(
kF aBB − 3π

2

nF

nB

m2
B

m2
F

)
. (11)

The phase diagram constructed is shown in Fig. 3. The re-
gion of the quasiparticle excitations with infinite lifetime
(QP) gets expanded by tuning up the number density ra-
tion nB/nF . It should be pointed out that we focus on the
Landau damping of the collective long-wavelength excita-
tion, where Beliaev damping is strongly suppressed at low
momenta, as it is proportional to q5 at zero temperature
[70,71].

To examine the effects of the effective potential upon
the Bose gases, we will evaluate the ground-state energy
correction arising from quantum fluctuations. The fluctua-
tion correction to the thermodynamic potential is given by
� f = β

2 Tr ln G−1
B − ∑

q(εq + Aq). At zero temperature, the
corresponding ground-state energy correction, becomes renor-
malized as �EG = 1

2

∑
q (ωq − εq − Aq + g2n2

B/2εq), where

ωq = √
εq(εq + Aq), and Aq = (g + g2

I	q)nB.
The behavior of fluctuation correction to the ground-state

energy �EG is shown in Fig. 4. In Fig. 4(a), we find that
as the mass ratio mB/mF increases the energy correction
decreases, which is reasonable since the kinetic energy is
inversely proportional to the mass of the bosons. Increasing
the density ratio nB/nF contributes to the enhancement of the
energy correction as �EG ∝ n5/2

B . Shown in Fig. 4(b), the en-
ergy correction increases monotonically with boson-fermion
coupling strength kF aFB. For vanishing boson-fermion in-
teraction, one can verify that the energy correction recovers
the Lee-Huang-Yang correction [72] to the spinless weak-
ling interacting bosons �EG/(gn2

B) = 64/(15
√

π )
√

nBa3
BB . It

is remarkable that the correction of energy increases steadily
with increasing kF aFB. This raises the possibility of realizing
quantum droplets states with enhanced quantum repulsion
again collapse.

We turn to the depletion of the condensates due to quan-
tum fluctuations, which provides key information about the
robustness of the superfluid state. The number of excited

1 2 3
mB/mF

0

0.01

0.02

0.03

0.04

Δ
E

G
/n

B
E

F

nB/nF = 0.2
nB/nF = 0.4
nB/nF = 0.6

0 0.2 0.4 0.6
kFaFB

0

0.005
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0.015

0.02

Δ
E

G
/n

B
E

F

nB/nF = 0.2
nB/nF = 0.4
nB/nF = 0.6

(a) (b)

FIG. 4. Correction to the ground-state energy per density
�EG/nBEF (a) as a function of mass ratio mB/mF where kF aFB = 0.3
and (b) as a function of boson-fermion scattering length kF aFB where
mB/mF = 1. We set kF aBB = 0.3.

particles is evaluated as nex = ∑
q GB11(q, iwn). The depen-

dence of quantum depletion on tuning parameters mB/mF and
kF aFB are shown in Fig. 5 for fixed density ratios. Aes-
thetically appealingly, nex/nB develops a maximum at equal
mass mB = mF . Remarkably, increasing the boson-fermion
interaction suppresses the quantum depletion, due to attrac-
tive nature of induced interaction between bosons. At zero
boson-fermion coupling, it recovers the known result [73] for
spinless weakly interacting Bosons nex = (gmBnB)3/2/(3π2).
In summary, we find that the induced interaction mediated
by fermions between bosons are long-range attractive interac-
tions, tunable with fermion density as well as boson-fermion
scattering length. We map out the phase boundary sepa-
rating stable region of mixing phases and unstable region
toward phase separation. We show that the stable region
can be further classified by damping of the excitations. The
predicted damping rate can be probed experimentally via
two-phonon Bragg spectroscopy [74]. Extension of current
work to trapped cases [3,75] will facilitate the experimental
verification of our predictions. Finally, we analyze the effects

1 2 3
mB/mF

0.005
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0.015

0.02

n
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/
n

B

nB/nF = 0.2
nB/nF = 0.4
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n
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nB/nF = 0.2
nB/nF = 0.4
nB/nF = 0.6
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(b)

FIG. 5. Quantum depletion of the condensates nex/nB (a) as a
function of mass ratio mB/mF where kF aFB = 0.3 and (b) as a func-
tion of boson-fermion scattering parameter kF aFB where mB/mF =
1. The vertical dash line intercepts with maxima of the curves at
mB = mF . We set kF aBB = 0.3.
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of the induced interactions on the ground-state energy cor-
rection and quantum depletion of the system. It suggests that
by coupling to Fermi gases, weakly interacting bosons may
form quantum droplet states [44,45] with enhanced stability.
We expect our study to contribute to a better understanding
of emergent phenomena associated with fermion-mediated
interactions.
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