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Anderson localization transition in a robust PT -symmetric phase
of a generalized Aubry-André model
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We study a generalized Aubry-André model that obeys PT symmetry. We observe a robust PT -symmetric
phase with respect to system size and disorder strength, where all eigenvalues are real despite the Hamiltonian
being non-Hermitian. This robust PT -symmetric phase can support an Anderson localization transition, giving
a rich phase diagram as a result of the interplay between disorder and PT symmetry. Our model provides a
perfect platform to study disorder-driven localization phenomena in a PT -symmetric system.
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I. INTRODUCTION

Out-of-equilibrium open quantum systems are ubiqui-
tous, where energy, particles, and information can transfer
to or from the surrounding environment. In some limits,
non-Hermitian Hamiltonians can well describe the quan-
tum behavior of these systems [1–10]. The presence of
complex eigenvalues of non-Hermitian Hamiltonians is a
direct consequence of the nonpreservation of probability
due to loss and gain. However, non-Hermitian Hamiltoni-
ans that exhibit parity-time (PT ) symmetry can still possess
a purely real spectrum, indicating that the loss and gain
are coherently balanced [11]. PT symmetry refers to the
invariance of the Hamiltonian under a combined parity
(P) and time-reversal (T ) transformation, but not necessar-
ily with P and T separately. Furthermore, a spontaneous
PT -symmetry breaking may occur when the degree of non-
Hermiticity is large enough, where eigenvalues that come
in complex-conjugate pairs appear. We usually name the
real (complex) spectral phase as a PT -symmetric (-broken)
phase.

PT symmetry has become an active research area since the
original work by Bender and Boettcher [11]. Applications of
PT symmetry have been found in various physics areas, rang-
ing from quantum field theories and mathematical physics
[12–15] to solid-state physics [16,17] and optics [18–23]. It
has recently attracted intense interest due to the rapid progress
in atomic, molecular, and optical (AMO) experiments, where
engineered loss and gain is accessible in a controllable manner
[23–32]. In particular, the real-to-complex spectral transition
(PT transition) has been observed both in classical [33] and
quantal [34] systems.

Another theoretical concept that has gained a lot of at-
tention recently, thanks to experimental developments in
photonic crystals [35–39] and ultracold atoms [40,41], is
Anderson localization [42]. Anderson localization refers to
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the absence of a particle’s diffusion induced by disor-
der. In a one-dimensional (1D) lattice model, an on-site
cosine modulation incommensurate with the underlying lat-
tice can be regarded as a highly correlated disorder, in
a loose qualitative sense, and hence is sometimes called
quasidisorder. Aubry and André (AA) showed that a 1D
tight-binding model with a quasidisorder has a self-dual
symmetry and manifests as a localization phase transi-
tion for all eigenstates at a critical modulation strength
[43]. This seminal work stimulated extensive theoretical
and experimental investigations in various generalized AA
models [44–56].

A localization transition can also occur in a non-Hermitian
Hamiltonian system, such as non-Hermitian extensions of the
AA model [57–59] and the Hatano-Nelson model with asym-
metric hopping amplitudes [60–63]. A very recent study gives
an interesting topological interpretation for the existence of
the localization transition in the Hatano-Nelson model [64].
However, whether an Anderson localization transition can
exist in a PT -symmetric Hamiltonian remains elusive. On
the one hand, an exponential localization state induced by
disorder requires a very large system size and can only be
stable in the PT -symmetric phase. On the other hand, an
uncorrelated disorder usually does not respect PT symmetry,
making the PT -symmetric phase disappear for an arbitrarily
weak disorder strength [65,66]. Even in a few studies that use
an engineered PT -symmetric disorder, the PT -symmetric
phase is still generally very fragile in the sense that it exists
only for an exponentially small non-Hermiticity parameter in
the large system size limit [16,67–69]. Interestingly, the PT -
symmetric phase becomes robust if an asymmetric hopping is
introduced, implying that Anderson localization might exist
[67,70–72].

II. GENERALIZED AA MODEL

We study a generalized AA model with commensurate
modulation in both on-site potentials and asymmetric imag-
inary hopping terms in this work. The Hamiltonian of the
one-dimensional (1D) generalized AA model that we consider
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here is given by

Ĥ =
N∑

j=1

[t j ĉ
†
j+1ĉ j + t j+1ĉ†

j ĉ j+1 + Vjĉ
†
j ĉ j], (1)

where ĉ†
j (c j) is the creation (annihilation) operator

at site j, and the subindex j should be understood
as j (mod N ). The on-site modulation is given by
Vj = 2V0 cos(2πβ j + ϕ), and the hopping is complex and
asymmetric: t j = t + iγ0 sin(2πβ j + ϕ) �= t∗

j+1. Here, V0 is
the quasidisorder strength and γ0 controls the non-Hermiticity.
We also choose β = M/N , where M and N are two adjacent
Fibonacci numbers, which are mutually prime. When γ0 = 0,
the model Hamiltonian reduces back to the traditional AA
model with hopping amplitude t .

We analytically prove that this Hamiltonian is PT sym-
metric for a set of modulation phase factors ϕ = ϕPT ≡
mπ/N , where m are odd (integer) numbers if N is even
(odd) [73]. Surprisingly, we numerically observe that under
some conditions, the system’s spectrum remains (up to the
numerical accuracy) all real or complex-conjugate paired for
any arbitrary ϕ. We test the violation of PT symmetry of
our Hamiltonian by defining a measure that vanishes if all
eigenenergies Ek are either real or complex-conjugate paired,

SPT = 1

N

N∑
k

|Im(Ek )|
N∏

m �=k

[1 − δ(Ek, Em)]

+ 1

2N

N∑
k

N∑
m �=k

δ(Ek, Em)|Im(Ek ) + Im(Em)|, (2)

where δ(Ek, Em) = 1 if the difference of the real parts is small
enough, i.e., |Re(Ek ) − Re(Em)| < εtol, and 0 otherwise. We
choose a tolerance εtol = 10−4V0 for the numerical implemen-
tation. Here, we use Re (Im) to denote the real (imaginary)
part. Figure 1(a) shows the behavior of the maximum of
SPT /V0 over ϕ as a function of N for some typical param-
eters to characterize whether the spectrum is purely real. Our
numerical result shows that SPT /V0 are always vanishingly
small for even chains (i.e., N is even). For long enough
(N > 55) odd chains, SPT /V0 is also as small as the numer-
ical precision except at the ray {t = 0, γ0 > V0} in the t–γ0

parameter space, which is called “special ray” for convenience
hereafter. We remark here that for analyzing the disorder-
driven localization transition, it is vital that the spectrum
remains purely real or complex-conjugate paired for arbitrary
ϕ since it allows us to average over the phase factor ϕ to emu-
late disorder realization. Hereafter, unless specified otherwise,
we always average observables over ϕ and denote the average
as 〈·〉, except at the special ray, where we only calculate for
ϕ = ϕPT .

III. PT -BROKEN PHASE

For PT -symmetric systems, the PT symmetry might be
spontaneously broken if the degree of non-Hermiticity is large
enough [11]. In our system, we explore the parameter space
to find both symmetry-broken and -unbroken regions. As the
appearance of complex-conjugate pairs in the spectrum of a
PT -symmetric system indicates the broken phase, we define

(a)

(b)

FIG. 1. (a) Maximum violation of the PT symmetry
max(SPT /V0 ) for even and odd chains at γ0 = 2, t = 0, and
t = 1. (b) 〈IPT 〉/V0 reveals the robust PT -symmetric phase existing
for γ0 < 1 for arbitrary t/V0.

a PT -symmetry indicator as the sum over the absolute values
of the imaginary parts of the spectrum,

IPT =
∑

k

|Im(Ek )|, (3)

which vanishes if the spectrum is purely real. We observe
that 〈IPT 〉/V0 abruptly changes from finite to vanishingly
small at the vicinity of γ0 = V0, irrespective of the value
of t/V0, marking the boundary between the PT -symmetric
and -broken phases, as depicted in Fig. 1(b). The fact that
a PT transition occurs at γ0 = V0 for arbitrary t/V0 implies
that the PT -symmetric phase in our system is robust against
strong disorder. We have also confirmed that this PT -phase
diagram is essentially unchanged for larger N , indicating the
robustness against system size. The robustness of the PT -
symmetric phase in our system is in stark contrast to most of
the previous studies, where the PT -symmetric phase becomes
exponentially fragile in the presence of disorder.

IV. LOCALIZATION

Next, we investigate the system for its localization behav-
ior. A widely used measure for localization is the inverse
participation ratio (IPR) [74]. For a normalized wave function
ψ ( j) of a Hermitian Hamiltonian, the IPR is defined as the
summation of the probability over all the sites,

∑
j p( j)2 ≡∑

j |ψ ( j)|4. In the case of non-Hermitian Hamiltonians, the
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(a)

(b)

FIG. 2. 〈MIPR〉 and 〈r〉 as a function of R = √
t2 + γ 2

0 . (a) The
〈MIPR〉 at several different θ = tan−1(γ0/t ), indicating that the lo-
calization transition occurs at R = V0 for all θ . (b) The gap statistics
〈r〉 ≈ 0.38, the Poisson distribution value, in the strong disorder limit
t/V0 → 0, and a rapid decay at the localization transition boundary.

left and right eigenvectors can be orthonormalized in the sense
that

∑
j ψ

L
m( j)∗ψR

k ( j) = δmk , where pLR
k ( j) = ψL

k ( j)∗ψR
k ( j)

plays a similar role as the probability at site j. Thus we define
the IPR measure as [75]

IPRLR (Ek ) =
{[∑

j

∣∣ψL
k ( j)ψR

k ( j)
∣∣]2

∑
j

∣∣ψL
k ( j)ψR

k ( j)
∣∣2

}−1

, (4)

which varies from being O(1/N ) for eigenfunctions smeared
uniformly over all sites to O(1) for those localized near a
specific site. Therefore, the IPR can serve as an indicator for
the localization transition. Averaging the IPR over all eigen-
functions and all quasidisorder realizations gives the mean in-
verse participation ratio, 〈MIPR〉 = 〈∑k IPRLR(Ek )/N〉 [73].
Figure 2(a) shows the 〈MIPR〉 as a function of R =

√
t2 + V 2

0
for various θ = atan(γ0/t ) ∈ [0◦, 90◦]. These calculations are
carried out for N = 1597, where the numeric is well con-
verged. The 〈MIPR〉 monotonically decreases from one to
zero in the regime R/V0 ∈ [0, 1] and slower for larger θ . The
〈MIPR〉 also essentially remains zero in the regime R > V0 for
any θ . In the t–γ0 parameter space, R/V0 can be recognized
as the distance to the origin, and θ as the angle to the t

(a)

(b)

FIG. 3. Phase diagrams of the system for N = 233. (a) The
〈MIPR〉 and (b) gap statistics 〈r〉, both of which identify a localized
phase within the quarter circle

√
t2 + γ 2

0 � V0. The localization-
transition and PT -transition boundaries are also indicated in (a) by
the thin dashed curve and the dotted line, respectively. A thick
dashed line illustrates the “special ray” {t = 0, γ > 1} detailed in
the main text. We also mark several specific points P1, P2, P3, and
B60 in different phase regimes, which correspond to {t/V0, γ0/V0} ≈
{0.24, 0.42}, {1.2, 0.69}, {1.0, 1.74}, and {cos(60◦), sin(60◦)}. We
exemplify properties of different phases on these points as detailed
in the main text.

axis. Therefore, the localization boundary is located at the
quarter-circle arc

√
t2 + γ 2

0 = V0, which is also illustrated in
the phase diagram in Fig. 3(a).

We also perform an energy gap statistic analysis to di-
agnose the localization transition. As the energies can be
complex in the PT -broken regime, we restrict this analysis
to the region γ0 � V0, where the averaged level spacing ratio
is well defined: r = ∑

k rk/(N − 1) and

rk = min(δk+1, δk )

max(δk+1, δk )
, δk = Ek+1 − Ek . (5)

In the deeply localized region R/V0 → 0, 〈r〉 → 〈r〉Poisson =
2 ln(2) − 1 ≈ 0.3863 for a Poisson distribution [76,77], as
shown in Fig. 2(b). In the deep extended region R/V0 → ∞,
an asymptotic degeneracy emerges due to the periodic bound-
ary condition and vanishing disorder. Consequently, 〈r〉 → 0
in this limit, instead of 〈r〉GOE ≈ 0.5307 for a Gaussian or-
thogonal ensemble as one might naïvely assume. As 〈r〉 also
changes rapidly at R = V0, this assures one of a localization-
transition boundary, as shown in Fig. 3(b).
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FIG. 4. Energy spectra Im(Ek ) as a function of Re(Ek ) and
√|pLR

0 ( j)| of the state with E0 ≈ 0 for N = 1597 for the different sets of
parameters marked in Fig. 3(a). The spectra are shown in (a), (c), (e), and (g) and the wave functions are shown in (b), (d), (f), and (h) for P1,
P2, P3, and B60, respectively.

Our main results are summarized and illustrated in the
phase diagrams in Fig. 3: (1) a robust PT -symmetric phase
exists for large system sizes and arbitrary disorder strength;
(2) a disorder-driven localization transition occurs within the
PT -symmetric phase on a quarter-circle arc

√
t2 + γ 2

0 =
V0 as the phase boundary; (3) along this phase boundary
and t = 0, γ0 � V0, the system shows critical behavior; and
(4) in the PT -broken phase, the eigenwave functions are
extended.

V. MULTIFRACTAL ANALYSIS

Next, we investigate the spectra and wave functions at
different phase regimes. As some typical examples, we show
Ek and

√
|pLR

0 ( j)| in Fig. 4 for four sets of {t, γ0} marked in
Fig. 3(a): P1 in the localized phase, P2 in the PT -symmetric
and extended phase, P3 in the PT -broken and extended
phase, and B60 at the localization-transition boundary. Here,√

|pLR
0 ( j)| corresponds to the eigenstate with eigenenergy

E0 closest to 0, which is near the center of the spectrum.
The numerical examples are calculated using ϕ ≈ 0.157 and
N = 1597. Figures 4(a) and 4(b) shows a purely real spectrum
and localized wave function at P1. At P2, the spectrum is
also purely real, as shown in Fig. 4(c), but the wave function
spreads across all sites in Fig. 4(d). Complex-conjugate pairs
show up in the spectrum in Fig. 4(e), and the extended wave
function is shown in Fig. 4(f) for P3. In Figs. 4(g) and 4(h), the
spectrum and wave function for R = V0 and θ = 60◦ (B60) are
depicted. As this point is at the phase boundary between the
localized and extended region, we expect the system to show
critical behavior. Indeed, looking at the wave function, we can
see that it is not completely smeared over the chain. The peaks
are larger and the wave function looks less dense as for the
extended states in Figs. 4(d) and 4(f). This is a signature of a

multifractal wave function. To investigate the critical behavior
of the system further, we employ a multifractal analysis.

To analyze the scaling behavior of the wave functions,
we apply the approach detailed by Refs. [49,73,78] and only
mention the key steps here. For a lattice with length N = Fn,
where Fn is the nth Fibonacci number, a scaling index α j can
be defined as ∣∣pLR

0 ( j)
∣∣ = F

−α j
n . (6)

For an extended wave function, α j ∼ 1 since |pLR
0 ( j)| ∼ 1/Fn.

For a localized state, on the other hand, |pLR
0 ( j)| is nonzero

only on a finite number of lattice sites. Therefore, α j ∼ 0 on
these few localized sites and α j → ∞ on the other sites. For
critical wave functions, the index α j would distribute on a
finite interval [αmin, αmax]. Hence, we may use αmin in the ther-
modynamic limit n → ∞ to characterize the scaling behavior:
αmin = 1 for extended states, αmin = 0 for localized states, and
0 < αmin < 1 for critical states. In the numerical calculations,
we average αmin over different quasidisorder configurations
for finite n. We fit the data points with a linear function to
extrapolate the limit 1/n → 0.

We present the results of the multifractal scaling in Fig. 5.
In Fig. 5(a), the purple pentagons correspond to P1 in the
localized phase, where the extrapolation reveals 〈αmin〉 → 0.
Both the blue squares and green circles that correspond to P2

and P3, respectively, show the trend 〈αmin〉 → 1, confirming
that the wave functions are extended in both phases. At the
localization-transition boundary B60, the extrapolation of red
triangles gives 〈αmin〉 ≈ 0.361 as a signature of the multi-
fractal nature of the critical wave function. In Fig. 5(b), we
display the extrapolated value of 〈αmin〉 as a function of R.
〈αmin〉 stays at zero for the localized phase region R < V0.
At the boundary, the value rises quickly in the critical region
until the value assumes the extended one. At the critical point
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(a) (b)

FIG. 5. (a) 〈αmin〉 for different chain length N = Fn with n = 13–17 for P1, P2, P3, and B60 defined in Fig. 3(a). Extrapolation of 〈αmin〉 to
the 1/n → 0 limit can distinguish extended, localized, and critical phases. (b) The values of 〈αmin〉 for 1/n → 0 obtained from extrapolation for
different θ , illustrating the localization transition at R = V0. The inset illustrates a zoom-in near R = V0, emphasizing that the critical indexes
〈αmin〉 all collapse approximately on 0.36 for different θ , except θ = 90◦.

R = V0, the value of 〈αmin〉 ≈ 0.361 ± 0.024 stays constant
for all simulated values of θ , except θ = 90◦. The good agree-
ment of 〈αmin〉 between different θ at the critical point can
be observed in the inset of Fig. 5(b), where we show the
zoomed region around R = V0, revealing the critical region
within R ∈ [0.96, 1.04]. We notice that θ = 90◦, R > V0 cor-
respond to the “special ray” mentioned earlier, where we do
not average over ϕ, and hence the finite-size effects become
more severe. Nevertheless, despite the discontinuity and large
error bars of αmin on the “special ray,” the wave function can
be classified as multifractal since 0 < α < 1. This implies that
the system is critical at t = 0 in the PT -broken phase, which
will be explored in a more systematic way in future studies.

VI. EXPERIMENTAL REALIZATION

Experimental realization of the PT -symmetric Hamilto-
nian has been recently achieved in dissipative ultracold-atom
systems via investigation of the dynamics conditioned on
measurement outcomes [34,79]. Our model Hamiltonian
given by Eq. (1) can, in principle, be realized based on ul-
tracold atoms in optical lattices with technologies in currently
existing proposals such as engineered dissipation and laser-

assisted hopping (see the Supplemental Material for details
[73]).

VII. CONCLUSION

We have studied a generalized PT -symmetric AA model.
We have observed a PT -symmetric phase γ0 < V0 that is
robust against disorder and system size. Furthermore, we have
calculated the 〈MIPR〉 and carried out the energy gap statis-
tics to characterize the localized and extended phases. We
report a localized phase within a quarter circle,

√
γ 2

0 + t2 �
V0. Additionally, the system features a critical behavior at
the localization-transition boundary R = V0 and a special ray
{R > V0, θ = 90◦}, where we have analyzed fractal behaviors
of the wave function.
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