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Nonlinear Bell inequality for macroscopic measurements
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The correspondence principle suggests that quantum systems grow classical when large. Classical systems
cannot violate Bell inequalities. Yet agents given substantial control can violate Bell inequalities proven for
large-scale systems. We consider agents who have little control, implementing only general operations suited to
macroscopic experimentalists: preparing small-scale entanglement and measuring macroscopic properties while
suffering from noise. That experimentalists so restricted can violate a Bell inequality appears unlikely, in light
of earlier literature. Yet we prove a Bell inequality that such an agent can violate, even if experimental errors
have variances that scale as the system size. A violation implies nonclassicality, given limitations on particles’
interactions. A product of singlets violates the inequality; experimental tests are feasible for photons, solid-state
systems, atoms, and trapped ions. Consistently with known results, violations of our Bell inequality cannot
disprove local hidden-variables theories. By rejecting the disproof goal, we show, one can certify nonclassical
correlations under reasonable experimental assumptions.
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Can large systems exhibit nonclassical behaviors such as
entanglement? The correspondence principle suggests not.
Yet experiments are pushing the quantum-classical boundary
to larger scales [1–7]: Double-slit experiments have revealed
interference of organic molecules’ wave functions [4]. A
micron-long mechanical oscillator’s quantum state has been
squeezed [5]. Many-particle systems have given rise to nonlo-
cal correlations [8–10].

Nonlocal correlations are detected with Bell tests. In a
Bell test, systems are prepared, separated, and measured in
each of many trials. The outcome statistics may violate a Bell
inequality. If they do, they cannot be modeled with classical
physics, in the absence of loopholes.

Bell inequalities have been proved for settings that involve
large scales (e.g., [9–29]); see [30,31] for reviews and the Sup-
plemental Material Note A [32] for a detailed comparison with
our results. We adopt a different approach, considering which
operations a macroscopic experimentalist can perform easily:
preparing small-scale entanglement and measuring large-scale
properties, in our model. Whether such a weak experimental-
ist can violate a Bell inequality, even in the absence of noise,
is unclear a priori. Indeed, our experimentalist can violate nei-
ther Bell’s 1964 inequality [33,34], nor any previously proved
macroscopic Bell inequality to which our main result does not
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reduce [9–28].1 Nevertheless, we prove a macroscopic Bell
inequality that can be violated with these operations, even
in the presence of noise. The key is the macroscopic Bell
parameter’s nonlinearity in the probability distributions over
measurement outcomes.

Our inequality is violated by macroscopic measurements
of, e.g., a product of N > 1 singlets. Such a state has been
prepared in a wide range of platforms, including photons [35],
solid-state systems [36], atoms [37,38], and trapped ions [39].
A violation of the inequality implies nonlocality if micro-
scopic subsystems are prepared approximately independently.
Similarly, independence of pairs of particles is assumed
in [34,40,41], though it may be difficult to guarantee.

This independence requirement prevents violations of
our inequality from disproving local hidden-variables the-
ories (LHVTs), as no experimentalist restricted like ours
can [34,40,41]. By forfeiting the goal of a disproof, we show
one can certify entanglement under reasonable experimental
assumptions. This certification is device independent, requir-
ing no knowledge of the state or experimental apparatuses,
apart from the aforementioned independence. Furthermore,
our inequality is robust with respect to errors, including a
lack of subsystem independence, whose variances scale as
N . Additionally, with our strategy, similar macroscopic Bell

1Navascués et al. prove a macroscopic Bell inequality that governs
a similarly restricted experimentalist [29]. However, [29] does not
address noise, with respect to which our result is robust. See the
Supplemental Material Note A [32] for a detailed comparison of [29]
with our result.
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inequalities can be derived for macroscopic systems that sat-
isfy different independence assumptions.

Aside from being easily testable with platforms known
to produce Bell pairs, our inequality can illuminate whether
poorly characterized systems harbor entanglement. Such
tests pose greater challenges but offer greater potential pay-
offs. Possible applications include Posner molecules [42–45],
tabletop experiments that simulate cosmological systems [46],
and high-intensity beams.

The rest of this paper is organized as follows. We intro-
duce the setup in Sec. I. Section II contains the main results:
We present and prove the Bell inequality for macroscopic
measurements, using the covariance formulation of a micro-
scopic Bell inequality [47]. Section III contains a discussion:
We compare quantum correlations and global classical cor-
relations as resources for violating our inequality, show
how to combat experimental noise, reconcile violations of
the inequality with the correspondence principle [34,40,41],
recast the Bell inequality as a nonlocal game, discuss a po-
tential application to Posner molecules [42–45], and detail
opportunities.

I. SETUP

Consider an experimentalist Alice who has a system A and
an experimentalist Bob who has a disjoint system B. Each
system consists of N microscopic subsystems, indexed with
i. The ith subsystem of A can interact with the ith subsystem
of B but with no other subsystems. Our setup resembles that
in [34].

Alice can measure her system with settings x = 0, 1, and
Bob can measure his system with settings y = 0, 1. Each mea-
surement yields an outcome in [0, 1].2 The experimentalist
observes the sum of the microscopic outcomes, the value of
a macroscopic random variable. Measuring A with setting
x yields the macroscopic random variable Ax. By is defined
analogously.

We will often illustrate with two beams of photons. The
polarization of each photon in beam A is entangled with the
polarization of a photon in beam B and vice versa. Such beams
can be produced through spontaneous parametric down con-
version (SPDC) [48]: A laser beam strikes a nonlinear crystal.
Upon absorbing a photon, the crystal emits two photons en-
tangled in the polarization domain: 1√

2
(|H, V〉 + eiα|V, H〉).

Horizontal and vertical polarizations are denoted by |H〉 and
|V〉. The relative phase depends on some α ∈ R. The photons
enter different beams. Each experimentalist measures his/her
beam by passing it through a polarizer, then measuring the
intensity. The measurement setting (Alice’s x or Bob’s y)
determines the polarizer’s angle. A photon passing through
the polarizer yields a 1 outcome. The intensity measurement
counts the 1s. Supplemental Material Note B [32] addresses
concerns about the feasibility of realizing our model exper-
imentally. Supplemental Material Note C [32] details the
photon example.

2In the strategies presented explicitly in this paper, every measure-
ment outcome equals 0 or 1. But the macroscopic Bell inequality
holds more generally.

The randomness in the Ax’s and By’s is of three types:
(i) Quantum randomness: If the systems are quantum,

outcomes are sampled according to the Born rule during
wave-function collapse.

(ii) Local classical randomness: Randomness may taint
the preparation of each AB pair of subsystems.

In the SPDC example, different photons enter the crystal
at different locations. Suppose that the crystal’s birefringence
varies over short length scales. Different photon pairs will
acquire different relative phases eiα [48].

(iii) Global classical randomness: Global parameters that
affect all the particle pairs can vary from trial to trial. In the
photon example, Alice and Bob can switch on the laser; mea-
sure their post-polarizer intensities several times, performing
several trials, during a time T ; and then switch the laser
off. The laser’s intensity affects the Ax’s and By’s and may
fluctuate from trial to trial.

Quantum randomness and global classical randomness can
violate our macroscopic Bell inequality. Assuming a cap on
the amount of global classical randomness, we conclude that
violations imply nonclassicality. Local classical randomness
can conceal violations achievable by quantum systems ideally.
Local classical randomness also produces limited correla-
tions, which we bound in our macroscopic Bell inequality. We
quantify classical randomness with a noise variable r below.

Systems A and B satisfy two assumptions:
(a) A and B do not interact with each other while being

measured. Neither system receives information about the set-
ting with which the other system is measured.

(b) Global classical correlations are limited, as quantified
in Ineq. (2).

Assumption (a) is standard across Bell inequalities. In the
photon example, the beams satisfy (a) if spatially separated
while passing through the polarizers and undergoing intensity
measurements.

Assumption (b) is the usual assumption that parameters do
not fluctuate too much between trials, due to a separation of
timescales. Consider the photon example in item (ii) above.
Let t denote the time required to measure the intensity, to
perform one trial. The trial time must be much shorter than
the time over which the global parameters drift (e.g., the laser
intensity drifts): t � T . The greater the timescales’ separa-
tion, the closer the system comes to satisfying assumption (b).
Assumption (b) has appeared in other studies of nonclassical
correlations in macroscopic systems (e.g., [34,41]).

Assumptions (a) and (b) are the conditions under which a
Bell inequality is provable for the operations that a macro-
scopic experimentalist is expected to be able to perform:
correlating small systems and measuring macroscopic observ-
ables.3 If the experimentalist can perform different operations,
different assumptions will be natural, and our macroscopic
Bell test may be extended (Sec. III).

3Why these operations? Preparing macroscopic entanglement is
difficult; hence the restriction to microscopic preparation control.
Given microscopic preparation control, if the experimentalist could
measure microscopic observables, she/he could test the microscopic
Bell inequality; a macroscopic Bell inequality would be irrelevant.
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We fortify our Bell test by allowing for small global cor-
relations and limited measurement precision. Both errors are
collected in one parameter, defined as follows. In the absence
of errors, Ax and By equal ideal random variables A′

x and B′
y.

Each ideal variable equals a sum of independent random vari-
ables. We model the discrepancies between ideal and actual
with random variables r, as in

Ax = A′
x + rAx . (1)

Our macroscopic Bell inequality is robust with respect to
errors of bounded variance:

Var(rAx ) � εN, (2)

wherein ε > 0. Errors rBy are defined analogously. They obey
Ineq. (2) with the same ε. Strategies for mitigating errors are
discussed in Sec. III.

Our macroscopic Bell inequality depends on the covari-
ances of the Ax’s and By’s. The covariance of random variables
X and Y is defined as

Cov(X,Y ) := E([X − E(X )][Y − E(Y )]), (3)

wherein E(X ) denotes the expectation value of X . One useful
combination of covariances, we define as the macroscopic Bell
parameter:4

B(A0, A1, B0, B1) := 4

N
[Cov(A0, B0) + Cov(A0, B1)

+ Cov(A1, B0) − Cov(A1, B1)]. (4)

II. MAIN RESULTS

We present the nonlinear macroscopic Bell inequality and
sketch the proof, detailed in Supplemental Material Note
D [32]. Then, we show how to violate the inequality using
quantum systems.

Theorem 1 (Nonlinear Bell inequality for macroscopic
measurements). Let systems A and B, and measurement set-
tings x and y, be as in Sec. I. Assume that the systems
are classical. The macroscopic random variables satisfy the
macroscopic Bell inequality

B(A0, A1, B0, B1) � 16/7 + 16ε + 32
√

ε. (5)

Proof. Here, we prove the theorem when ε = 0, when the
observed macroscopic random variables Ax and By equal the
ideal A′

x and B′
y. The full proof is similar but requires an error

analysis (Supplemental Material Note D [32]).
Let a(i)

x denote the value reported by the ith A particle after
A is measured with setting x. A′

x and B′
y equal sums of the

microscopic variables:

A′
x =

N∑

i=1

a(i)
x and B′

x =
N∑

i=1

b(i)
x . (6)

4Calculating B requires knowledge of N , the number of particles in
each experimentalist’s system. N might not be measurable precisely.
But knowing N even to within

√
N suffices: Taylor-approximating

yields 1
N+√

N
= 1

N (1 − 1√
N

). The correction is of size 1√
N

� 1. Fur-
thermore, uncertainty about N may be incorporated into a noise
model with which a macroscopic Bell inequality can be derived
(Supplemental Material Note C [32]).

Because a(i)
0 and b(i)

0 are independent of the other variables,

Cov(A′
0, B′

0) =
N∑

i=1

Cov
(
a(i)

0 , b(i)
0

)
. (7)

Analogous equalities govern the other macroscopic-random-
variable covariances.

Let us bound the covariances among the a(i)
x ’s and b(i)

y ’s.
We use the covariance formulation of the Bell-Clauser-
Horne-Shimony-Holt (Bell-CHSH) inequality (see [47,49]
and Supplemental Material Note E [32]),5

Cov
(
a(i)

0 , b(i)
0

) + Cov
(
a(i)

0 , b(i)
1

) + Cov
(
a(i)

1 , b(i)
0

)

− Cov
(
a(i)

1 , b(i)
1

)
� 4/7. (8)

Combining Eq. (7) and Ineq. (8) with the definition of
B(A′

x, A′
y, B′

x, B′
y) [Eq. (4)] gives

B(A′
0, A′

1, B′
0, B′

1)

= 4

N

N∑

i=1

[
Cov

(
a(i)

0 , b(i)
0

) + Cov
(
a(i)

0 , b(i)
1

) + Cov
(
a(i)

1 , b(i)
0

)

− Cov
(
a(i)

1 , b(i)
1

)]
(9)

� 16/7. (10)

�
We now show that a quantum system can produce correla-

tions that violate Ineq. (5). The system consists of singlets.
Theorem 2. There exist an N-particle quantum system and

a measurement strategy, subject to the restrictions in Sec. I,
whose outcome statistics violate the nonlinear Bell inequal-
ity for macroscopic measurements. The system and strategy
achieve

B(A0, A1, B0, B1) = 2
√

2 (11)

in the ideal (ε = 0) case and

B(A0, A1, B0, B1) � 2
√

2 − 16ε − 32
√

ε (12)

in the presence of noise bounded as in Ineq. (2).
Proof. As in the proof of 1, we prove the result in the

ideal case here. Supplemental Material Note F [32] contains
the error analysis. Let each of A and B consist of N qubits.
Let the ith qubit of A and the ith qubit of B form a singlet,
for all i: |�−〉 := 1√

2
(|01〉 − |10〉). We denote the 1 and −1

eigenstates of the Pauli z-operator σz by |0〉 and |1〉. Let x
and y be the measurement settings in the conventional CHSH
test ([49], reviewed in Supplemental Material Note E [32]). If
the measurement of a particle yields 1, the particle effectively
reports 1; and if the measurement yields −1, the particle
reports 0.

5In the original statement of Ineq. (8), the right-hand side equals
16/7. The reason is, in [47], a(i)

x , b(i)
y ∈ [−1, 1]. We assume that each

variable ∈ [0, 1], so we deform the original result in two steps. First,
we translate [−1, 1] to [0, 2]. Translations preserve covariances.
Second, we rescale [0, 2] to [0, 1]. The rescaling halves each a and
b, quartering products ab, the covariances, and the 16/7 in Ineq. (8).
The resulting 4/7 is multiplied by 4 in Ineq. (9), returning to 16/7.
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Measuring the ith particle pair yields outcomes that satisfy

E
(
a(i)

0

) = E
(
a(i)

1

) = E
(
b(i)

0

) = E
(
b(i)

1

) = 1
2 . (13)

As shown in Supplemental Material Note F [32],

E
(
a(i)

0 b(i)
0

) + E
(
a(i)

0 b(i)
1

) + E
(
a(i)

1 b(i)
0

) − E
(
a(i)

1 b(i)
1

)

= 2 sin2(3π/8) − 1
2 . (14)

Combining these two equations yields

Cov
(
a(i)

0 , b(i)
0

)+Cov
(
a(i)

0 , b(i)
1

)+Cov
(
a(i)

1 , b(i)
0

)−Cov
(
a(i)

1 , b(i)
1

)

= 2 sin2(3π/8) − 1 (15)

= 1/
√

2. (16)

Following the proof of 1, we compute

B(A′
0, A′

1, B′
0, B′

1) = 4

N

∑

i

[
Cov

(
a(i)

0 , b(i)
0

) + Cov
(
a(i)

0 , b(i)
1

)

+ Cov
(
a(i)

1 , b(i)
0

) − Cov
(
a(i)

1 , b(i)
1

)]
(17)

= 2
√

2. (18)

�

III. DISCUSSION

Six points merit analysis. First, we discuss the equiv-
alence of local quantum correlations and global classical
correlations as resources for violating the macroscopic Bell
inequality. Second, we suggest strategies for mitigating
experimental errors. Third, we reconcile our macroscopic-
Bell-inequality violation with the principle of macroscopic
locality, which states that macroscopic systems should behave
classically [34,40,41]. Fourth, we recast our macroscopic Bell
inequality in terms of a nonlocal game. Fifth, we discuss a
potential application to the Posner model of quantum cogni-
tion [42–45]. Sixth, we detail opportunities engendered by this
work.

Violating the macroscopic Bell inequality with classical
global correlations: Violating the inequality (5) is a quantum
information-processing (QI-processing) task. Entanglement
fuels some QI-processing tasks equivalently to certain clas-
sical resources (e.g., [50]). In violating the macroscopic Bell
inequality, entanglement within independent particle pairs
serves equivalently to global classical correlations. We prove
this claim in Supplemental Material Note G [32]. This result
elucidates entanglement’s power in QI processing.

Two strategies for mitigating experimental imperfections:
Imperfections generate local classical (ii) and global classical
(iii) randomness, discussed in Sec. I. Local classical ran-
domness can conceal quantum violations of the macroscopic
Bell inequality, making the macroscopic Bell parameter B (4)
appear smaller than it should. Global classical randomness can
lead classical systems to violate the inequality. These effects
can be mitigated in two ways.

First, we can reduce the effects of local classical random-
ness on B by modeling noise more precisely than in Sec. I.
A macroscopic Bell inequality tighter than Ineq. (5) may be
derived. We illustrate in Supplemental Material Note C [32],

with noise that acts on the microscopic random variables a(i)
x

and b(i)
y independently. Second, we can mitigate global clas-

sical randomness by reinitializing global parameters between
trials. In the photon example, the laser can be reset between
measurements.

Reconciliation with the principle of macroscopic local-
ity: Macroscopic locality has been proposed as an axiom for
distinguishing quantum theory from other nonclassical prob-
abilistic theories [34,40,41] (see [51,52] for a more restrictive
proposal). Suppose that macroscopic properties of N indepen-
dent quantum particles are measured with precision ∼√

N .
The outcomes are random variables that obey a probability
distribution P. A LHVT can account for P, according to the
principle of macroscopic locality.

The violation of our macroscopic Bell inequality would
appear to violate the principle of macroscopic locality. But
experimentalists cannot guarantee the absence of fluctuat-
ing global parameters, no matter how tightly they control
the temperature, laser intensity, etc. Some unknown global
parameter could underlie the Bell-inequality violation, due
to the inequality’s nonlinearity (Supplemental Material Note
A 2 [32]). This parameter would be a classical, and so lo-
cal, hidden variable. Hence violating our macroscopic Bell
inequality does not disprove LHVTs. Rather, a violation sig-
nals nonlocal correlations under reasonable, if not airtight,
assumptions about the experiment (Sec. I).

Nonlocal game: The macroscopic Bell inequality gives rise
to a nonlocal game. Nonlocal games quantify what quan-
tum resources can achieve that classical resources cannot.
The CHSH game is based on the Bell-CHSH inequality
([49,53,54] and Supplemental Material Note E [32]): Players
Alice and Bob agree on a strategy; share a resource, which
might be classical or quantum; receive questions x and y
from a verifier; operate on their particles locally; and reply
with answers ax and by. If the questions and answers satisfy
x ∧ y = a + b (mod 2), the players win. Players given quan-
tum resources can win more often than classical players can.

Our macroscopic game (Supplemental Material Note
H [32]) resembles the CHSH game but differs in several ways:
N Alices and N Bobs play. The verifier aggregates the Alices’
and Bobs’ responses, but the verifier’s detector has limited
resolution. The aggregate responses are assessed with a cri-
terion similar to the CHSH win condition. After many rounds
of the game, the verifier scores the player’s performance. The
score involves no averaging over all possible question pairs
xy. Players who share pairwise entanglement (such that each
Alice shares entanglement with only one Bob and vice versa)
can score higher than classical players.

Toy application to Posner molecules: Fisher has proposed
a mechanism by which entanglement might enhance co-
ordinated neuron firing [42]. Phosphorus nuclear spins, he
argues, can retain coherence for long times when in Posner
molecules Ca9(PO4)6 [55–61]. (We call Posner molecules
“Posners” for short.) He has argued that Posners might share
entanglement. Fisher’s work has inspired developments in
quantum computation [44,62], chemistry [43,61], and many-
body physics [63–65]. The experimental characterization of
Posners has begun. If long-term coherence is observed, entan-
glement in Posners should be tested for.
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How could it be? Posners tumble randomly in their room-
temperature fluids. In Fisher’s model, Posners can undergo
the quantum-computational operations detailed in [44], not
the measurements performed in conventional Bell tests. Fisher
sketched an inspirational start to an entanglement test in [45].
Concretizing the test as a nonlocal game was proposed in [44].
We initiate the concretization in Supplemental Material Note
I [32]. Our Posner Bell test requires microscopic control but
proves that Posners can violate a Bell inequality, in principle,
in Fisher’s model. Observing such a violation would require
more experimental effort than violating our inequality with
photons. But a Posner violation would signal never-before-
seen physics: entanglement among biomolecules.

Opportunities: This work establishes six avenues of re-
search. First, violations of our inequality can be observed
experimentally. Potential platforms include photons [35],
solid-state systems [36], atoms [37,38], and trapped ions [39].
These systems could be conscripted relatively easily but are
known to generate nonclassical correlations. More ambi-
tiously, one could test our macroscopic Bell inequality with
systems whose nonclassicality needs characterization. Ex-
amples include the cosmic microwave background (CMB)
and Posner molecules. Detecting entanglement in the CMB
faces difficulties: Some of the modes expected to share en-
tanglement have such suppressed amplitudes, they cannot be
measured [66]. Analogs of cosmological systems, however,
can be realized in tabletop experiments [46]. Such an ex-
periment’s evolution can be paused. Consider pausing the
evolution before, or engineering the evolution to avoid, the
suppression. From our Bell test, one might infer about en-
tanglement in the CMB. A Posner application would require
the elimination of microscopic control from the Bell test in
Supplemental Material Note I [32], opportunity two.

Third, our macroscopic Bell inequality may be generalized
to systems that violate the independence requirement in Sec. I.
Examples include squeezed states, as have been realized with,
e.g., atomic ensembles and SPDC [67,68]. The assumptions
in Sec. I would need to modified to accommodate the new
setup. If an experimental system violated the new inequal-
ity while satisfying the appropriate assumptions, one could
conclude that the system was nonclassical. We illustrate such
a modification and violation in Supplemental Material Note
C [32], with a photonic system. Tailoring our results to a

high-intensity pump appears likely to enable experimentalists
to witness entanglement in systems that violate a common
coincidence assumption: Bell tests tend to require low in-
tensities, so that only one particle reaches each detector per
time window [69]. The coincidence of a particle’s arriving
at detector A and a particle’s arriving at detector B implies
that these particles should be analyzed jointly. High-intensity
pumps violate the one-particle-per-time-window coincidence
assumption. Tailoring Supplemental Material Note C [32],
using Gaussian statistics, appears likely to expand Bell tests
to an unexplored, high-intensity regime.

Fourth, which macroscopic Bell parameters B can prob-
abilistic theories beyond quantum theory realize? Other
theories can support correlations unrealizable in quantum
theory [70,71]. These opportunities can help distinguish quan-
tum theory from alternative physics while illuminating the
quantum-to-classical transition.

Fifth, our macroscopic Bell parameter is nonlinear in
the probabilities of possible measurements’ outcomes (Sup-
plemental Material Note A 2 [32]). We have proved that
a nonlinear operation—photodetection—can violate the in-
equality. Can Gaussian operations [72]? The answer may
illuminate the macroscopic Bell inequality’s limits.

Sixth, certain Bell inequalities have applications to self-
testing [73]. A maximal violation of such an inequality
implies that the quantum state had a particular form. Whether
covariance Bell inequalities can be used in self-testing merits
investigation.
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