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Exceptional-point-engineered cavity magnomechanics
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We theoretically study the role of the exceptional point (EP) in a non-Hermitian cavity magnomechanical
(CMM) system, with a tunable dissipative magnon-photon coupling. We find that the EP emerging in such
a system can radically change the properties of photons and phonons. As a result, flexible on-off optical
transmission, coherent switching of slow and fast lights, and enhanced mechanical cooling deep into the ground
state can be achievable by approaching the EP. Detailed comparisons between this system and its Hermitian
counterpart are given. Our results show that EP-assisted CMM devices can serve as tools for applications in
optical communications and electromechanical switching or sensing.
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I. INTRODUCTION

Hybrid quantum systems, such as electronic and optical
elements linked through the bridge of mechanical oscillations,
play a key role in building quantum networks, especially
coherent signal switching or transducing [1]. Another re-
cent example is hybrid magnonic devices involving collective
spin excitations of a yttrium-iron-garnet (YIG) sphere [2–17].
In such devices, coherent magnon-photon coupling can be
utilized to control spin current [18,19], to achieve quantum en-
tanglement of magnons [20,21], and to observe non-Hermitian
effects [22–25]. Furthermore, by coherently coupling pho-
tons and magnons and various acoustic motions [26–35],
more intriguing applications can be envisaged, i.e., tripar-
tite photon-magnon-phonon entanglement [30–32], ultraslow
light engineering [33,34], and magnomechanical sensing [35].

In parallel, exotic properties of dissipative coupling have
attracted intense interest in recent years [36–43], which
has been observed in cold atoms [36,37], electrical circuits
[38], thermal materials [39], and optical devices [40–42].
In particular, based on dissipative coupling of magnons and
photons, level attractions of hybridized modes were also
demonstrated [44–53]. This opens up a route to make and
utilize unconventional magnonic devices such as nonrecip-
rocal light switches [54–56] and non-Hermitian magnonic
sensors [57,58]. Inspired by these pioneering works, here we
consider a non-Hermitian cavity magnomechanical (CMM)
system, with both coherent magnon-phonon coupling and
dissipative photon-magnon coupling. In such a system, both
eigenvalues and their corresponding eigenvectors are coa-
lesced at the exceptional points (EPs) [59–61], providing a
possibility to engineer CMM devices. We note that counterin-
tuitive EP effects have already been demonstrated in diverse
systems, such as single-mode lasing [62,63], topological en-
ergy transfer [64], wireless electronic power transfer [65],
coherent perfect absorption [66–68], and enhanced perfor-
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mance of sensors [69–72]. In this paper, unconventional EP
effects are revealed in cavity magnomechanics, including sig-
nificantly modified optical transmissions, slow-to-fast light
transition, and also enhanced mechanical cooling. Our pa-
per confirms that non-Hermitian CMM devices can serve as
powerful tools for manipulating photons and phonons, with
potential applications in microwave-to-optical conversion [73]
or weak magnetic-field sensing [74–77].

II. MAGNOMECHANICALLY INDUCED TRANSPARENCY
AT EXCEPTIONAL POINTS

As shown in Fig. 1, we consider a Fabry-Pérot cavity of
resonance frequency ωa and damping rate κa, coupled with
a YIG sphere. Dissipative magnon-photon coupling in such
a system was already realized in recent experiments [45–47].
The YIG sphere glued to the end of a silica fiber is placed
near the inner edge at the middle plane of the waveguide.
The cavity is aligned in the x direction, while an exter-
nal magnetic field H is applied in the z direction. Due to
the magnetic field, a uniform magnon mode with damping
rate κm appears in the sphere at the resonance frequency
ωm = γ H , where γ is the gyromagnetic ratio. The angular
position θ of the YIG sphere can be finely tuned [45–47],
leading to dissipative or coherent magnon-photon coupling
for θ ∈ (65◦, 115◦) ∪ (−65◦,−115◦) or θ ∈ (−65◦, 65◦) ∪
(115◦, 180◦] ∪ (−115◦,−180◦] [45,46].

The magnetization dynamics of the YIG sphere can be
described by the Landau-Lifshitz-Gilbert equation [8,45],

dM
dt

= γ M × Ht − α

M0
M × dM

dt
, (1)

where Ht = hx(t )̂x + hy(t )̂y + Hẑ, M = Mx(t )̂x + My(t )̂y +
M0̂z, and hx,y(t ) or Mx,y(t ) is the rf magnetic field or the mag-
netization, respectively (M0 is the saturation magnetization).
Here this damping term α is assumed to be scalar for uniaxial
symmetry and small oscillations (see, e.g., Refs. [78–80]),
the value of which can be experimentally obtained [80].
We note that in practice the magnetization damping can be
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FIG. 1. (a) A non-Hermitian CMM system, with a highly pol-
ished YIG sphere inside a microwave cavity, supporting a magnon
mode m and a phonon mode b [26,45]. (b) The simulated h field
amplitude for the TE11 mode at the middle plane of the empty cavity.
A or B denotes the h antinode or node position and θ is the angular
position of the sphere. (c) The relation between θ and the coupling
phase � [45]. The measured value of � is uncertain for the yellow
region, e.g., θ � ±65◦ or ±115◦ [45]. (d) Simulated mechanical
displacement (u) as in the experiment [26]. (e), (f) The hybridized
mode eigenfrequencies, �± = Re(ω±) − ωa, as a function of the
detuning δH = ωm − ωa for � = 0 or π , respectively. Dashed lines
in (e) and (f) denote the linewidths γ± = Im(ω±).

affected by many factors such as spin pumping, eddy cur-
rents, or incoherent scattering of magnons, and for general
anisotropic systems a tensor form of damping has been devel-
oped in recent works to describe the magnetization relaxation
near equilibrium [81–84]. For stronger thermal or mechani-
cal motions, novel anisotropic effects may also be revealed
in non-Hermitian CMM systems, e.g., direction-dependent
magnomechanically induced transparency (MMIT) or slow
light; these new possibilities will be explored in our future
works. From this equation, one can derive a simple relation
for the microwave current j and magnetization m [45], i.e.,
(ω − ωm + iκm)M − iωr (KA − KL ) j = 0, where ωr = γ M0,
and in view of the Ampère law (KA) and the Lenz law

(KL), h = hx + ihy = hA + hL = −i(KA − KL ) j. The compe-
tition between the terms KL and KA leads to a net coherent or
dissipative coupling [45]. This equation, along with the RLC
circuit (consisting of a resistor, an inductor, and a capacitor)
equation [45], (ω2 − ω2

a + iκa) j + iKF ω2M = iωV0/L, with
the applied or induced voltage V0 or VF = ∓KF LdM/dt , can
be written in the form of linearly coupled harmonic oscillators
[85]: (

ω2 − ω2
a + iκa iω2KF

−iωr (KA − KL ) ω − ωm + iκm

)(
j

M

)
= 0. (2)

Following the standard quantization procedures [45,46,85],
denoting the creation (annihilation) operator for the photons
and magnons as a (a†) and m (m†), respectively, we can write
the non-Hermitian coupling term h̄gma(a†m + ei�am†), with
[45–47]

gma =
√

ωaωr |KF (KA − KL )|
2

, (3)

and

� = arctan

{
Im [KF (KA − KL )]

Re [KF (KA − KL )]

}
. (4)

Since KF,A,L is real positive, we have � = nπ (n ∈ Z ); thus,
for KA > KL or KA < KL, we have � = 0 (coherent coupling)
or � = π (dissipative coupling) [45–47]. The relation of
the angular position θ to the coupling phase �, as shown
in Fig. 1(c), was observed in the experiments [45–47]. The
eigenfrequencies and eigenvectors of this system are

ω± = 1

2

[
ω̃a + ω̃m ±

√
(ω̃a − ω̃m)2 + 4g2

maei�
]
, (5)

and(
ψa

ψm

)
=

(
gma

(ω̃a − ω̃m)/2 ± √
(ω̃a − ω̃m)2/4 + ei�g2

ma

)
, (6)

where ω̃a,m = ωa,m − iκa,m. Figures 1(e) and 1(f) show their
dependences on the field detunings δH = ωm − ωa, with ex-
perimentally accessible values [44,51] ωa/2π = 13.205 GHz,
gma/2π = 20 MHz, κa/2π = 1 MHz, and κm/2π = 1 MHz.
We see that the energy levels of the coupled modes repel each
other for � = 0, while for � = π both the eigenfrequencies
and the eigenvectors simultaneously coalesce, under the con-
dition |δH | = 2gma [44,51], featuring the emergence of EPs.
In particular, (I) for |δH | > 2gma, we have all real eigenfre-
quencies, while (II) for |δH | < 2gma, we have complex ones.

We note that the YIG sphere can also support a mechanical
breathing mode with the frequency ωb and the damping rate γb

[26], based on which MMIT, in analogy to optomechanically
induced transparency [86–88], was observed very recently
[26]. In a frame rotating at the pump frequency ω0, with a
weak probe field of the frequency ωp and the amplitudes Ep,
the Hamiltonian of such a CMM system can be written in the
simplest level as (h̄ = 1)

H = H0 +Hint +Hdr,

H0 = �aa†a + �mm†m + ωbb†b,

Hint = gma(a†m + ei�am†) + gmbm†m(b + b†),

Hdr = i(Edrm† + Epe−iξ t a† − H.c.), (7)
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where �a = ωa − ω0, �m = ωm − ω0, and ξ = ωp − ω0. b
or b† is the annihilation or creation operator of the phonon
mode, respectively, and gmb is the coupling rate with typical
values 4 � gmb/2π � 60 mHz [26]. In particular, for gmb =
0, the whole system can be reduced to a cavity magnonic
(CM) system [45–47]. For gmb �= 0 and � = 0, the whole
system can be reduced to a Hermitian CMM system [26].
For experimentally accessible parameter values, the ratio of
magnon-phonon coupling to magnon-photon coupling, i.e.,
gmb/gma, is ≈10−9. Thus, in such a system, only the lowest EP
exists, without the need to consider any higher-order EPs [89].
Edr =

√
5

4 γ
√

NB0 is the drive strength with the field amplitude
B0, the frequency ω0, and the total number of spins N = ρV ,
with ρ = 4.22 × 1027m−3 (ρ is the spin density and V is the
volume of the sphere) [29–32].

The Heisenberg equations of motion (EOM) of the system
are then

ṁ = −(i�s + κm)m − igmaaei� + Edr,

ȧ = −(i�a + κa)a − igmam + Epe−iξ t ,

ḃ = −(iωb + γb)b − igmbm†m, (8)

where

�s = �m + gmb(bs + b∗
s ).

Typically, the MMIT process can be well treated in the
semiclassical (instead of quantum) perturbation framework
[90]. For a probe field much weaker than the pump, we expand
every operator as the sum of its steady value and a small
fluctuation, i.e., o(t ) = os + δo, where o(t ) denotes any one
of these quantities a(t ), b(t ), and m(t ). Then we have the
steady-state values of the dynamical variables:

ms = −igmaasei� + Edr

i�s + κm
,

as = −igmams

i�a + κa
, bs = −igmb|ms|2

iωb + γb
. (9)

Also, it is straightforward to show that |ms|2 satisfies

|ms|2
(
�2

s + κ2
m

) = ∣∣−igmaei�as + Edr

∣∣2
, (10)

which can be recast as

a3x3 + a2x2 + a1x + a0 = 0, (11)

with x = |ms|2 and the coefficients

a3 = 4g2
mbω

2
bηa, a2 = 4g2

mbαωb
(
g2

maμa − �mηa
)
,

a1 = 2g2
maα

2(κaβ − �aμm) + ηaηmα2 + g4
maα

2,

a0 = −ηaα
2E2

dr, (12)

and

α = ω2
b + γ 2

b , ηa,m = �2
a,m + κ2

a,m,

β = κm cos(�) + �m sin(�),

μa,m = �a,m cos(�) − κa,m sin(�).

Figures 2(a) and 2(b) show the mean magnon number |ms|2
versus the microwave drive field amplitude B0 for different

|m
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FIG. 2. Numerical solutions of Eq. (11). Mean magnon number
|ms|2 is plotted as a function of the drive field amplitude B0 for
different δH/gma. � is set to zero (a) and π (b), respectively. The
other parameters can be found in the main text.

δH . Taking the case δH/gma = −4 and � = π for an exam-
ple, when 0.57 < B0 < 2.66 mT, Eq. (11) has three solutions,
which means the system enters the bistable regime. In order
to study MMIT, this system should be in the stable regime
(B0 < 0.57 mT) where Eq. (11) only has a single real solution.
Thus for −4 � δH/gma � 4 and � = {0, π} in this paper, B0

is set to 0.5 mT.
Now we consider the perturbation induced by the input

probe field. After eliminating the steady-state values and
neglecting the higher-order terms, we obtain the linearized
EOM:

δȧ = −(i�a + κa)δa − igmaδm + Epe−iξ t ,

δṁ = −(i�s + κm)δm − igmbms(δb + δb†) − igmaei�δa,

δḃ = (iωb + γb)δb − i(gmbm∗
s δm + gmbmsδm†). (13)

Using the ansatz⎛
⎝δa

δm
δb

⎞
⎠ =

⎛
⎝A−
M−
B−

⎞
⎠e−iξ t +

⎛
⎝A+
M+
B+

⎞
⎠eiξ t , (14)

the solution for A− corresponding to the input probe field
Epe−iξ t is

A− = [K3(ξ ) + G−K4(ξ )]Ep

F1(ξ )K3(ξ ) + F5(ξ )F6(ξ )K2(ξ ) +K1(ξ )
, (15)

with G± = g2
mae±i�, and

F1,2(ξ ) = −iξ ± i�a + κa,

F3,4(ξ ) = −iξ ± i�s + κm,

F5,6(ξ ) = −iξ ± iωb + γb,

K1(ξ ) = 2iωb|G|2[F2(ξ )G+ − F1(ξ )G−],

K2(ξ ) = F1(ξ )F3(ξ )G− + F2(ξ )F4(ξ )G+ + g4
ma,

K3(ξ ) = F2(ξ )F3(ξ )F4(ξ )F5(ξ )F6(ξ ) − 4F2(ξ )ωb�s|G|2,
K4(ξ ) = F3(ξ )F5(ξ )F6(ξ ) − 2iωb|G|2.

Here G = gmbms is the effective magnomechanical coupling
coefficient. Then with the aid of the input-output relation [91]

aout = ain −
√

2κexA−, (16)
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FIG. 3. Transmission rate of the probe light as a function of the field detuning δH and the probe detuning �p = ξ − ωb for gmb = 0 ((a)–(c),
corresponding to a CM system [45–47]) and gmb �= 0 ((d)–(f), corresponding to a CMM system [26]). (e) For gmb �= 0 and � = π , transmission
rate of the probe light as a function of δH and �p, corresponding to a non-Hermitian CMM system. (f) Transmission rate of the probe light as
a function of δH with different values �. In these figures, we have selected B0 = 0.5 mT. See the text for the other parameter values.

where κex is the external loss rate and ain (aout) is the input
(output) probe amplitudes, we can obtain the transmission rate
of the probe field as

T = |tp|2 =
∣∣∣∣aout

ain

∣∣∣∣2

=
∣∣∣∣1 − 2κexA−

Ep

∣∣∣∣2

. (17)

With this at hand, we can discuss the EP effects
on the MMIT process and accompanying group de-
lay. In numerical simulations, we have selected ex-
perimentally feasible parameters [26,45], i.e., ωa/2π =
13.205 GHz, gma/2π = 20 MHz, κa/2π = 1 MHz, κm/2π =
1 MHz, ωb/2π = 15 MHz, γb/2π = 300 Hz, and gmb/2π =
9.9 mHz.

Figure 3 shows the transmission rate of the probe light as a
function of δH and �p. As shown in Figs. 3(a) and 3(b), when
gmb = 0 (CM system), a magnetically induced transparency
(MIT) window appears, and a Fano-like shape can be ob-
served in the spectra by varying field detuning δH [6,25,45,47]
for both � = 0 and π . At the resonance point �p = 0, the
variation of δH leads to subtle changes in the spectra [see
Fig. 3(c)]. As for gmb �= 0 (the CMM system), in contrast to
MIT, double transparency windows appear in the transmission
spectra due to the presence of the phonon mode [26], as
shown in Figs. 3(d) and 3(e). What is more, for gmb �= 0 and

� = π (the non-Hermitian CMM system), the transmission
rate at �p = 0 first drops down and then increases with fur-
ther increasing δH , with a turning point corresponding to the
EP [see Fig. 3(f)]. This turning behavior cannot be observed
in the CMM system without the EP [see the blue curve in
Fig. 3(f)], which implies that, by tuning δH to surpass EPs, the
transmission of the probe light can be absorbed or reflected
by the system, opening up an avenue to utilizing EP-assisted
CMM devices in coherent optical communications [92–94].

Accompanying the MMIT process, dramatic reduction in
the optical group delay can emerge in such a system [95,96],
due to the rapid variation of the refractive index in the MMIT
process, which is characterized by

τg = d arg(tp)

d�p
. (18)

Figure 4 shows that τg can be tuned by changing the phase
factor � (i.e., the YIG sphere location) or the field detuning
δH . For δH = 0, the group delay can be tuned to be positive
or negative, i.e., controllable switching from fast to slow light
is achievable by tuning �. Moreover, by changing the field
detuning δH , the system can also switch from slow to fast light
in the vicinity of the EPs [92–94]. The fact that the presence of
EPs can strongly modify the dispersion of the system provides
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for the other parameter values.

a powerful way to slow or advance signals by using such a
non-Hermitian CMM device.

III. MECHANICAL COOLING AT EPs

Now we theoretically study the role of EPs in further
enhancing mechanical cooling in the non-Hermitian CMM
system. We find that in comparison with the Hermitian CMM
system a factor 2 enhancement of the cooling rate is achiev-
able near the EP, resulting in a lower phonon number, i.e.,
n f � 0.22. To see this, we consider the effective linearized
Hamiltonian of the fluctuation operators (hereafter we drop
the notation δ for all the fluctuation operators for the sake of
simplicity, like δa → a):

Heff = �aa†a + �sm
†m + gma(a†m + ei�am†) + ωbb†b

+ G(m + m†)(b + b†), (19)

where �s = �m + gmb(bs + b∗
s ) and G = gmbms. In the weak-

coupling regime, the reaction of the mechanical resonator to
the magnon can be neglected. So the fluctuation spectrum
SFF (ω) of the magnetostrictive force F = m + m† is totally
determined by the optical and magnetic part in the effective
Hamiltonian Eq. (19),

Hma = �aa†a + �sm
†m + gma(a†m + ei�am†), (20)

and the linearized quantum Langevin equations are given by

ȧ = −(i�a + κa)a − igmam + √
κaain,

ṁ = −(i�s + κm)m − igmaei�a + √
κmmin, (21)

where ain and min are the noise operators satisfying

〈ain(t )a†
in(t ′)〉 = δ(t − t ′),

〈min(t )m†
in(t ′)〉 = δ(t − t ′). (22)

In the frequency domain, the linearized quantum Langevin
equations are written as

−iωa(ω) = −(i�a + κa)a(ω) − igmam(ω)

+√
κaain(ω),

−iωm(ω) = −(i�s + κm)m(ω) − igmaei�a(ω)

+√
κmmin(ω). (23)

As a result, we obtain

SFF (ω) = 1

A(ω)
+ 1

A∗(ω)
, (24)

with

A(ω) = κm − i(ω − �s) + g2
maei�

κa − i(ω − �a)
.

Following the methods as given in Refs. [97,98], we can
obtain the rate equations of the mechanical mode as

Ṗn = �n←n+1Pn+1 + �n←n−1Pn−1 − �n−1←nPn − �n+1←nPn

+ γb(nm + 1)(n + 1)Pn+1 + γbnmnPn−1

− γb(nm + 1)nPn − γbnm(n + 1)Pn, (25)

where Pn is the probability for the mechanical element to be
in the Fock state |n〉; �n−1←n is the transition rate from |n〉
to |n − 1〉 induced by the effective magnomechanical cou-
pling. In the weak-coupling regime, the fluctuation spectrum
SFF (ω) = ∫

dteiωt 〈F (t )F (0)〉 is determined by the above ef-
fective Hamiltonian. According to Fermi’s “golden rule,” the
heating and cooling rate are given by

�+ = G2SFF (−ωb), �− = G2SFF (ωb),

hence we can obtain the final mean phonon number of the
mechanical resonator and the quantum limit of cooling, which
read

n f = γbnm + �mnc

γb + �m
, nc = �+

�− − �+
, (26)

where

�m = G2[SFF (−ωb) − SFF (ωb)]

is the net cooling rate, and nm = (eh̄ωb/kBT − 1)−1 is the ther-
mal phonon number with the environmental temperature T .

Figures 5(a) and 5(b) show the fluctuation spectrum
SFF (ω) versus the frequency ω with different magnon-photon
coupling strengths gma. For � = 0 (the Hermitian CMM sys-
tem), increasing the coupling strength leads to the splitting of
the single peak into two narrower peaks, with a dip emerg-
ing between them [see the dashed and dot-dashed line in
Fig. 5(a)], due to the destructive interference between the
optical mode and the magnon mode [6]. In particular, for
� = π (the non-Hermitian CMM system), the fluctuation
spectrum SFF (−ωb) � 0, determining the heating processes,
can be achieved near the EP [see the red solid line in Fig. 5(b)].
Accordingly, a factor 2 enhancement of the cooling rate can
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coupling gma. (c) The net cooling rate �m = �− − �+ (in arbitrary
units) vs gma. (d) The mean phonon number nf vs gma. Here we
have chosen κm/ωb = 3 (nonresolved sideband case), and the initial
phonon number nm = 320 or T = 310 mK. See the text for the other
parameter values.

be achievable by approaching the EP [see Fig. 5(c)]. Thus,
mechanical cooling deep into the ground state or n f � 0.22
is accessible for such a system precooled down to 310 mK
[see Fig. 5(d)]. This opens up the prospect to explore and
engineer purely quantum effects of mechanical motion using
unconventional CMM devices.

IV. CONCLUSION

In conclusion, we have theoretically studied the role of
EPs in a non-Hermitian CMM system, with a tunable dissi-
pative magnon-photon coupling. We find that EPs emerging

TABLE I. The group delay τg under different cases for �p = 0
and B0 = 0.07 mT, and the minimum phonon number nf under dif-
ferent cases for T = 310 mK.

Cases τg(μs) nf

Hermitian CM −0.032
Non-Hermitian CM 0.030
Hermitian CMM −93.2 0.78
Non-Hermitian CMM 150 0.22

in such a system can radically change the properties of both
photons and phonons. As a result, flexible on-off optical trans-
mission and slow-to-fast light switching are achievable by
approaching the EP, which, surprisingly, is also accompanied
by enhanced mechanical ground-state cooling, and the main
results are summarized in Table I. Also, we note that, in
the latest experiment [99], switchable fast-slow light can be
realized in a cavity-magnon polariton system by tuning the
relative phase of the magnon pumping and cavity probe tones.
These results indicate that EP-assisted CMM devices can pro-
vide a versatile platform to control coherent interactions of
photons, phonons, and magnons, for such a wide range of
potential applications as EP-enhanced microwave-to-optical
conversion [73], EP-enabled topological energy transfer [64],
and improved quantum sensing of weak force or magnetic
signal [74–77].
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