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Diagonalization of the Hamiltonian for finite-sized dispersive media:
Canonical quantization with numerical mode decomposition
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We present a math-physics modeling approach called canonical quantization with numerical mode de-
composition for capturing the physics of how incoming photons interact with finite-sized dispersive media,
which is not describable by the previous Fano-diagonalization methods. The main procedure is to (1) study a
system where electromagnetic fields are coupled to nonuniformly distributed Lorentz oscillators in Hamiltonian
mechanics, (2) derive a generalized Hermitian eigenvalue problem for conjugate pairs in coordinate space, (3)
apply computational electromagnetics methods to find a countably finite set of time-harmonic eigenmodes that
diagonalizes the Hamiltonian, and (4) perform the subsequent canonical quantization with mode decomposition.
Moreover, we provide several numerical simulations that capture the physics of full quantum effects, impossible
by classical Maxwell’s equations, such as nonlocal dispersion cancellation of an entangled photon pair and the
Hong-Ou-Mandel effect in a dispersive beam splitter.
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I. INTRODUCTION

A. Main contribution

We present a math-physics modeling approach, canonical
quantization with numerical mode decomposition (CQ-NMD),
suited for studying how incoming (entangled) photons interact
with finite-sized dispersive media (see Fig. 1) which are not
simply described by the previous Fano-diagonalization meth-
ods. To do this, we (1) study a system where electromagnetic
(EM) fields are coupled to nonuniformly distributed Lorentz
oscillators in Hamiltonian mechanics, (2) derive a general-
ized Hermitian eigenvalue problem (GH-EVP) for conjugate
pairs in the coordinate space, (3) apply computational elec-
tromagnetics (CEM) methods to find a countably finite set
of time-harmonic eigenmodes which diagonalize the Hamil-
tonian, and (4) perform the subsequent canonical quantization
with mode decomposition. We consider two applications of
this modeling for fully quantum effects including the Hong-
Ou-Mandel (HOM) effects in a dispersive beam splitter and
nonlocal dispersion cancellation (NLDC) for an energy-time
entangled photon pair, showing that such CEM-driven quan-
tum electromagnetics-optics (QEM-QO) research has great
promise. In this way, nonlocal dispersion cancellation can
be modeled by a numerical method that can be applied to a
geometry of arbitrary complexity.

Pioneering theoretical works [1,2] have shown canoni-
cal quantization schemes for dispersionless, lossless, and
inhomogeneous dielectric media. In essence, the underlying
principle is the same as that of free fields. Furthermore, it
is shown in our recent study [3] that solving for the eigen-
modes can be numerically performed by exploiting CEM
methods. Such CEM-driven QEM-QO simulations have a
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great potential for effectively dealing with practical QEM-QO
applications involving arbitrary geometric complexity, such as
in quantum imaging, sensing, and radar.

According to Ref. [4], the free-field contribution should
be added to the previous Fano-diagonalization-based quanti-
zation scheme so that one can accurately model finite-sized
media illuminated by incoming photons from free space. The
complete description was recently proposed by Ref. [5] in
momentum (or spectral) space. We show that our formulation
is mathematically equivalent to theirs although our formula-
tion is in coordinate space with the use of CEM methods.
Thus, the proposed approach can tackle arbitrary geometrical
complexity present in finite-sized dispersive media. Also, our
work and derivations are based on sound mathematical logic
and validated with numerical studies. Then we use our math-
physics model to reproduce the “weird” physical phenomena
that have been reported in the literature.

Our main contributions are threefold:
(i) We derive a GH-EVP for EM fields coupled to

nonuniformly distributed Lorentz oscillators, which model
finite-sized dispersive media, directly in coordinate space.

(ii) We exploit CEM methods to solve the GH-EVP with
arbitrary geometric complexity to obtain a countably finite set
of time-harmonic eigenmodes that diagonalizes the Hamilto-
nian; hence, the subsequent quantization becomes easier.

(iii) Our approach is suitable for studying interactions
between incoming (entangled) photons from the free space
with arbitrary finite-sized dispersive media, such as quantum
plasmonic devices or quantum low-loss optical compo-
nents. These cannot be modeled by the previous Fano-
diagonalization methods.

Also, from our model, we can see clearly the dressing of
the modes of the system due to coupling between free-field
modes and the material modes. Moreover, we can clearly see
from the math that when the material medium is removed or
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FIG. 1. Two-dimensional illustration of a problem geometry
where electromagnetic fields are coupled to lossless Lorentz os-
cillators forming polarization density fields inside a macroscopic
dispersive and inhomogeneous dielectric medium.

shrunk to zero, we retrieve the free-field modes and vice versa.
This is not easy to observe when the Fano diagonalization
approach is used.

Although we present the GH-EVP for the generalized
Lorenz gauge, all numerical simulations are performed with
the Coulomb gauge. Thus it is equivalent to the Lorenz gauge
with zero scalar potential, to reduce the redundancy of the
longitudinal component of the vector potential.

We use the Bloch-periodic boundary conditions (B-PBCs)
on the GH-EVP to simulate an infinite-region problem. When
the period tends to infinity, we retrieve the open infinite-region
case. Hence, the GH-EVP is exactly Hermitian. The B-PBC is
the generalized version of conventional PBC, allowing one to
extract eigenmodes in the traveling-wave form in the presence
of arbitrary, lossless, inhomogeneous media. As a result, the
subsequent quantization procedure becomes mathematically
homomorphic to that of free space. Note that, despite work-
ing with lossless media, the Kramers-Kronig relation is still
satisfied [6].

B. Reviews of previous macroscopic quantum
electrodynamics work

The quantum nature of EM fields is basically captured by
solving the quantum Maxwell’s equations (QMEs) [7–10] to-
gether with solving the quantum state equation. In the QMEs,
the classical Maxwell field and source variables are elevated
to infinite-dimensional quantum operators, expressible by

∇ × Ê(r, t ) = −∂B̂(r, t )

∂t
,

∇ × Ĥ(r, t ) = Ĵ(r, t ) + ∂D̂(r, t )

∂t
,

∇ · D̂(r, t ) = ρ̂(r, t ),

∇ · B̂(r, t ) = 0, (1)

The quantum state equations (QSEs) take the form of

Ĥ |ψ〉 = ih̄
∂

∂t
|ψ〉 , (2)

where Ĥ and |ψ〉 denote a Hamiltonian operator and quantum
state, respectively. This equation is often called Schrödinger
equation, but when the Hamiltonian is replaced by the Dirac
Hamiltonian, then it is often called the Dirac equation [11].
To avoid the confusion, we shall call it the quantum state
equation, since we are using an EM Hamiltonian which is very
different from Schrödinger’s original Hamiltonian.

With the quantum state known, one can evaluate the expec-
tation value or variance of observables. Note that the above
QMEs are rigorously derived in the Heisenberg picture, in
coordinate space, for inhomogeneous and anisotropic media
when impressed sources are present [10]. The space and time
dependence of field operators obeys QMEs, similar to the
classical Maxwellian variables. On the other hand, the weird
properties such as “superposition” and “entanglement” can
be modeled by solving the QSE. Having no classical analog,
such properties are the main reason for the weird performance
beyond the classical limit.

In place of the atomistic description, the macroscopic the-
ory on quantum electrodynamics (QED), proposed by Jauch
and Watson [12], is more practical to analyze large-scale
quantum technologies. This framework is valid as long as the
wavelength of photons is much larger than a lattice constant
[13,14]. In this, the EM characteristics of matter (composed
of a large number of atoms) are embodied in a phenomeno-
logical medium described by the effective permittivity and
permeability, as done in the classical Maxwell theory. Thus,
it can reduce significantly the needed degrees of freedom
(DoFs) for modeling. This approach has been successfully
applied to study various quantum-related applications, for
instance, quantum metamaterials [15], Casimir forces [16],
spontaneous emission in photonic structures [17], and quan-
tum plasmonics [18], just to name a few.

Recently, Jauslin’s group has shown that the previous
Fano-diagonalization method is incomplete when it comes
to studying finite-sized dispersive and dissipative media [4].
Specifically, in the vanishing limit of finite-sized media, the
previous Fano-diagonalization approach, which only includes
the medium-assisted field operators, cannot recover the free-
field operator due to the absence of the free-field contribution.
Hence, the Fano-diagonalization approach violates a simple
sanity check. The complete quantization formulation was pro-
posed in Ref. [5] in momentum space.

But analytic solutions of time-harmonic eigenmodes are
often not available. More importantly, the corresponding
Helmholtz wave equation for vector potentials,

∇ × 1

μ0
∇ × Ã(r) − ω2ε(r, ω)︸ ︷︷ ︸

eigenvalue

Ã(r) = 0, (3)

cannot be converted to a simple explicit eigenvalue problem
(EVP) since the eigenvalue ω is implicit. As such, the two
fundamental properties essential for canonical quantizations
of systems does not hold in a strict sense: (1) completeness of
eigenmodes and (2) realness of eigenfrequency. Nevertheless,
such implicit EVP have been solved by some ad hoc fashions
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in the past, such as the finite-difference time-domain (FDTD)
method, iterative eigenvalue algorithms, or the cutting surface
method [19]. In contrast, we formulate this as an explicit
eigenvalue problem here.

II. DIAGONALIZATION OF CLASSICAL HAMILTONIAN
VIA TIME-HARMONIC EIGENMODES

A. Description in Hamiltonian mechanics

Consider EM fields coupled to a cluster of lossless Lorentz
oscillators in the three-dimensional free space V , as illustrated
in Fig. 1. Lorentz (or medium) oscillators can be nonuni-
formly distributed over V , modeling an arbitrary lossless,
isotropic, dispersive, and inhomogeneous dielectric medium.

Fundamental dynamical variables are vector and scalar po-
tentials and polarization density field, denoted by A, �, and P,
respectively. Suggested in Ref. [20], we define the conjugate
variables A, �, and P as

�AP � ε0
∂A
∂t

− P, �� � χ0
∂�

∂t
, �P � β(r)

ε0

∂P
∂t

. (4)

The corresponding Hamiltonian is then given by

H =
∫

V
drH(r, t ) = 1

2

∫
V

dr
(

1

ε0
|�AP|2 + 1

μ0
|∇ × A|2

+ 1

χ0
(∇ · ε0A)2 − ε0|∇�|2 − 1

χ0
�2

� + ε0

β(r)
|�P|2

+ f (r) + 1

ε0
|P|2 + 2

ε0
�AP · P + 2P · ∇�

)
, (5)

where f (r) = ω2
0(r)/ω2

p(r) and β(r) = 1/ω2
p(r). Note that

ωp(r) and ω0(r) are the plasma and resonant frequencies of
a Lorentz oscillator located at r. Then Hamilton’s equations
of motion (EoMs) can be explicitly written as [20]

∂A
∂t

= δH

δ�AP
= 1

ε0
(�AP + P),

∂�AP

∂t
= −δH

δA
= −∇ × 1

μ0
∇ × A + ε0∇ 1

χ0
∇ · ε0A,

∂�

∂t
= − δH

δ��

= 1

χ0
��,

∂��

∂t
= δH

δ�
= ∇ · ε0∇� − ∇ · P,

∂P
∂t

= δH

δ�P
= ε0

β(r)
�P,

∂�P

∂t
= −δH

δP
= − 1

ε0
�AP − f (r) + 1

ε0
P − ∇�. (6)

Defining generalized position and momentum for the
whole system as

q � [A,�, P]T , p � [�AP,−��,�P]T , (7)

one can compactly write the above Hamiltonian in a block
matrix form as

H = 1

2

∫
V

dr
[

q
p

]†

·
[

K C

C
†

M

]
·
[

q
p

]
, (8)

where each block matrix can be explicitly written by

K =
⎡
⎣ ∇ × 1

μ0
∇ × −ε0 · ∇ 1

χ0
∇ · ε0 0 0

0 ∇ · ε0∇ −∇·
0 ∇ f (r)+1

ε0

⎤
⎦,

C =
⎡
⎣ 0 0 0

0 0 0
1
ε0

0 0

⎤
⎦, M =

⎡
⎢⎣

1
ε0

0 0
0 − 1

χ0
0

0 0 β(r)
ε0

⎤
⎥⎦. (9)

Note that, in the block matrix representation, the partitions are
delimited by solid vertical and horizontal lines. The Hamil-
ton’s EoMs can be written in the block matrix form (see its
details in Appendix A) as

∂

∂t

[
q
p

]
=

[
C

†
M

−K −C

][
q
p

]
. (10)

However, the Hamilton’s EoMs may not be simply converted
to a Hermitian eigenvalue problem due to the presence of C
(cross-coupling term), as discussed in Appendix B in detail.

B. Generalized Hermitian eigenvalue problem

To derive a simpler standard Hermitian eigenvalue prob-
lem, we redefine generalized position and momentum such as

q � [A,��,�P]T , p � [�AP,�,−P]T , (11)

motivated by the cross-coupling term C. It still preserves
the structure of the original Hamiltonian density H(r, t ) in
Eq. (5), i.e.,

H = 1

2

∫
V

dr
[

q
p

]†

·
[

K 0
0 M

]
·
[

q
p

]
, (12)

where the “spring constant” and “mass” matrices are also
redefined as

K =

⎡
⎢⎣ ∇ × 1

μ0
∇ × −ε0∇ 1

χ0
∇ · ε0 0 0

0 − 1
χ0

0

0 0 β(r)
ε0

⎤
⎥⎦, (13)

M =
⎡
⎣ 1

ε0
0 1

ε0

0 ∇ · ε0∇ −∇·
1
ε0

∇ f (r)+1
ε0

⎤
⎦. (14)

As a result, Hamilton’s EoMs can be rewritten as

∂

∂t

[
q
p

]
=

[
0 M

−K 0

]
·
[

q
p

]
. (15)

Thus, one can derive EoMs only for the generalized q or
p variable involving a second-order time derivative. For in-
stance, for the q case,

∂2

∂t2
q = M · (−K) · q. (16)

Since M and K are both positive-definite and Hermitian, the
above is convertible to an explicit GH-EVP as

ω2M
−1 · q̃ω,λ(r) = K · q̃ω,λ(r), (17)

where q̃ω,λ(r) is a time-harmonic eigenmode of q(r, t ) and
ω is eigenfrequency. Note that the above GH-EVP is equiv-
alent to Eq. (14) in Ref. [5], as proven in Appendix C. As
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a result, one can expand the generalized position in terms of
time-harmonic eigenmodes

q(r, t ) =
∫

+
dω

∑
λ

q̃ω,λ(r) dω,λe−iωt︸ ︷︷ ︸
dω,λ(t )

+H.c., (18)

where + denotes the set of positive eigenfrequencies and λ

denotes comprehensive degeneracy index for EM fields and
Lorentz oscillators.

C. Diagonalization of Hamiltonian

The GH-EVP inherently possesses the following two or-
thonormal conditions:∫

V
dr (q̃†

ω,λ · M
−1 · q̃ω′,λ′ ) = δω,ω′δλ,λ′ , (19)∫

V
dr (q̃†

ω,λ · K · q̃ω′,λ′ ) = ω2δω,ω′δλ,λ′ . (20)

Substituting (18) into (12) and using the above orthonormal
conditions, one can diagonalize the Hamiltonian as

H = 1

2

∫
+

dω
∑

λ

ω2(d∗
ω,λdω,λ + dω,λd∗

ω,λ). (21)

The detailed procedure can be found in Appendix D.
Note that the present diagonalization procedure shall be

called no-cross-coupling description since we remove the
cross-coupling term C by properly redefining generalized
position and momentum. We also present another diagonal-
ization strategy, called cross-coupling description, even in the
presence of the cross-coupling term, in Appendix E. It turns
out that the latter has a twice-larger linear system; thus, the
no-cross-coupling description here is more computationally
efficient.

III. QUANTIZATION BY MODE DECOMPOSITION

The subsequent quantization procedure becomes straight-
forward with the use of time-harmonic eigenmodes [3,10]. Let
us elevate the conjugate pairs into operators:

q(r, t ) → q̂(r, t ), p(r, t ) → p̂(r, t ), (22)

which satisfy canonical commutator relations

[[q̂(r, t )]i, [p̂(r′, t )] j] = ih̄δ(r − r′)δi, j Î, (23)

[[q̂(r, t )]i, [q̂(r′, t )] j] = [[p̂(r, t )]i, [p̂(r′, t )] j] = 0, (24)

for i, j ∈ {1, 2, . . . , 7} including three-dimensional vector
components of vector potential and polarization density and
scalar potential (and their conjugate pairs). Note that [q̂(r, t )]i

[or [p̂(r′, t )] j] stands for ith element of q(r, t ) [or the jth
element of p(r, t )]. Annihilation and creation operators can
be defined by simply elevating modal amplitudes scaled by√

h̄/ω as

dω,λ(t ) →
√

h̄

ω
d̂ω,λ(t ), d∗

ω,λ(t ) →
√

h̄

ω
d̂†

ω,λ(t ), (25)

which also satisfies the bosonic commutator relations:

[d̂ω,λ, d̂†
ω′,λ′] = δω,ω′δλ,λ′ Î, (26)

[d̂ω,λ, d̂ω′,λ′] = 0 = [d̂†
ω,λ, d̂†

ω′,λ′]. (27)

Thus, the resulting observables are represented by

q̂(r, t ) =
∫

+
dω

∑
λ

q̃ω,λ(r)

√
h̄

ω
d̂ω,λe−iωt︸ ︷︷ ︸

d̂ω,λ(t )

+H.c. (28)

One can easily check the consistency between canonical
commutator relations and bosonic commutator relations by
substituting (28) into the left-hand sides (LHSs) of (23)
and (24), using the orthonormal properties of time-harmonic
eigenmodes, and showing that the resulting LHSs of (23) and
(24) become the right-hand sides (RHSs) of (23) and (24).

Finally, the Hamiltonian operator, the quantum equivalence
of (21) that has been elevated to become a quantum operator,
can be diagonalized with respect to the ladder operators for
both descriptions as

Ĥ =
∫

+
dω

∑
λ

h̄ω

(
d̂†

ω,λd̂ω,λ + 1

2
Î

)
, (29)

where the zero-point energy becomes E0 = ∫
+

dω
∑

λ h̄ω/2.
An eigenstate of the corresponding time-independent (station-
ary) quantum state Eq. (2) is the multimode-Fock state. In
a word, the Hamiltonian has been decomposed into a sum
of Hamiltonians of independent harmonic oscillators. The
eigenstate of each individual Hamiltonian is its respective
Fock state. This physical picture is similar to the quantization
of electromagnetic field in vacuum using Fourier mode de-
composition. But here we have used numerically-sought-for
modes using CEM rather than Fourier modes. It should also
be noted that this eigenstate does not represent bare eigenstate
for neither free EM field nor polarization density but a dressed
state which combines the coupling between them. In a word,
the free field modes have been “dressed” by the matter modes,
and vice versa.

IV. NUMERICAL SOLUTIONS TO THE GENERALIZED
HERMITIAN EIGENVALUE PROBLEM

Solving the GH-EVPs in (17) returns the uncountably
infinite set of eigenmodes, which is impossible in practice.
Furthermore, analytic solutions of (17) may not exist in
general. To remedy this, one can use computational elec-
tromagnetic (CEM) methods which can be viewed as a
subspace projection method [21]. Here, we refer subspace
projection method to a general procedure to approximate an
infinite-dimensional solution space V by a finite-dimensional
(countably finite) one Vd .1 As a consequence, (17), as is
commonly done in numerical linear algebra [23], becomes a
finite-dimensional linear system such as

M
−1
d · �d · ω2

d = Kd · �d , (30)

1Note that the term subspace projection method (also known as
Krylov subspace methods) [22] is also used in the numerical linear
algebra field, referring to a procedure to deal efficiently with large
linear systems.
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FIG. 2. Schematic of 1-D simulations for the HOM effect in a dispersive beam splitter. A nonentangled photon pair is initially localized
around xg and −xg and sent to a beam splitter. After the interference, we measure the second-order correlation at (x1, t1) and (x2, t2) by
perturbing the initialization position (δxg) of the photon initialized on the right side.

where the subscript d stands for the approximation by sub-
space projection method; Md and Kd are discrete counterparts
of M and K, ωd is a diagonal matrix whose elements are
eigenfrequencies including degeneracy, and �d is a matrix
that collects all numerical time-harmonic eigenmodes. If the
dimension of the solution space Vd was N , the size of Md ,
Kd , ωd , and �d would be N × N . Most subspace projection
methods employ a mesh on which continuum solutions are
sampled by finite number. The dimension of the solution space
is closely related to the mesh size. The continuum eigenmode
index (ω, λ) is replaced by a single index n which represents
nth numerical time-harmonic eigenmodes [�d ]:,n having nth
eigenfrequency [ωd ]n,n = ωn. Note that an element in the ith
row and nth column of �d , i.e., [�d ]i,n, represents the nth
numerical time-harmonic eigenmode sampled at the ith grid
point.

V. NUMERICAL EXAMPLES

In this section, we discuss two numerical studies using
the proposed quantization scheme: (1) the Hong-Ou-Mandel
(HOM) effect [24] in a one-dimensional (1-D) disper-
sive beam splitter, and (2) nonlocal dispersion cancellation
(NLDC) for an energy-time entangled photon pair [25].

Note that these are 1-D simulations in which the vector
potential A is always transverse (polarized along the z axis) to
the propagation direction (x axis) while the polarization den-
sity is also transverse. Hence, one can use the Lorenz gauge
with � = �� = 0, which is equivalent to the Coulomb gauge.
And, (17) is to be modified accordingly. As a result, the result-
ing dynamical variables are A(r, t ) = ẑA(x, t ), �AP(r, t ) =
ẑ�AP(x, t ), P(r, t ) = ẑP(x, t ), and �P(r, t ) = �P(x, t ).

A. Hong-Ou-Mandel effect in dispersive beam splitter

Here, we discuss 1-D simulation results of the HOM effect
[24] in a dispersive beam splitter.

The problem geometry is illustrated in Fig. 2. The prob-
lem domain V ∈ {x ∈ [−L/2, L/2]}, which is the free space,
includes the dielectric slab in the middle with thickness Ls.
Then, a nonentangled photon pair is initialized (t = 0) around
x1 = xg and x2 = −xg in the free space and sent to a beam
splitter. Each photon is assumed to be polychromatic, riding
on a Gaussian wave packet. After the interference, we measure
the second-order correlation at (x1, t1) and (x2, t2) by perturb-

ing the initialization position of the photon on the right side,
i.e., x1 = xg + δxg. The beam splitter is assumed to be made
of a single dielectric slab, which is modeled by filling Lorentz
oscillators to account for dispersion effects. Simulation pa-
rameters, design of the beam splitter, relevant numerical setup,
and modeling incoming polychromatic photons are discussed
in detail in Appendix F.

Figure 3 shows the second-order correlation versus τ

for various ωp. The smaller ωp, the more dispersive the
beam splitter becomes. Note that the dispersionless case was
calculated based on the CQ-NMD for inhomogeneous and
dispersionless media [3].

The almost zero coincidence when τ = 0 is the clear ev-
idence of the creation of path-entangled photons, i.e., N00N
states where N = 2. This results from the perfect destructive
interference between the two photons inside the 50 : 50 beam
splitter [26–28]. When τ �= 0, the temporal decoherence—
different arrival times of the incident photons to the beam

FIG. 3. Second-order correlation versus time delay [g(2)(τ )] for
various ωp. When τ = 0, dispersion degrades the perfect destructive
interference between two incident photons; consequently, g(2)(τ ) in-
creases depending on the dispersion degree. In contrast, when τ �= 0,
dispersion can mitigate the time-harmonic decoherence such that
g(2)(τ ) is slightly lower than the dispersionless case.
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FIG. 4. Time evolution of the energy density expectation value
when τ = 0 for (a) ωp/c = 4750 and (b) ωp/c = 875. The former is
almost dispersionless whereas the latter is highly dispersive. Accord-
ingly, one can observe the deformation of wave packets in the latter
case due to the group-velocity dispersion while passing the beam
splitter.

splitter—degrades the perfect destructive interference; conse-
quently, g(2) gradually increases as τ gets larger.

In the presence of dispersion, even when τ = 0, two
polychromatic photons cannot have perfect destructive in-
terference over their whole bandwidth. This is because the
dispersive beam splitter quickly loses the 50 : 50 performance
as an operating frequency deviates from the carrier frequency
of photons. In other words, the 50 : 50 performance band-
width becomes much narrower than the photon’s bandwidth
depending on the dispersion extent; hence, g(2) increases. It
is interesting to observe that when τ �= 0, g(2) for dispersive
cases gets lower than that of the dispersionless case. This is
because the dispersion effects can mitigate the degradation
by the temporal decoherence. More specifically, the interac-
tion time between photons and the dispersive beam splitter
becomes longer than the dispersionless case so that photons
can stay longer in the dispersive beam splitter. As a result,
the partial destructive interference can happen even though
the arrival times of incidence photons are mismatched. This
is the hallmark of dispersion effects, viz., the decrease of the
quality factor of the HOM dip, and our simulation correctly
captures this effect.

To show this, Fig. 4 compares the time evolution of the en-
ergy density expectation value for ωp/c = 4750 and ωp/c =
875, which correspond to almost dispersionless and highly
dispersive cases, respectively. One can observe the deforma-
tion of the wave packets after passing the dispersive beam
splitter, compared with the dispersionless case. This is be-
cause the chromatic dispersion changes the group velocity of
the wave packets during interacting with the dispersive beam
splitter.

B. Nonlocal dispersion cancellation

Unlike to classical EM pulses, an energy-time entangled
photon pair can cancel the dispersion effects in the nonlocal
sense, called nonlocal dispersion cancellation (NLDC). This
is another nonclassical feature of entangled photons, first pro-
posed by Franson [25]. More specifically, even if signal and
idler photons experience dispersion effects independently on

their own path, the degree of coincidence can be maintained
as if there are no dispersive media. Thus, it has a great promise
in resolving entanglement loss that significantly degrades the
system performance of quantum communication technology.
Recently, several experimental works have been performed
[29] to validate the NLDC effect even for a few tens of kilome-
ters [30]. Here, we conduct numerical experiments to confirm
the NLDC effect via the proposed quantization scheme.

Again, we consider a 1-D problem geometry, as illustrated
in Fig. 5. An energy-time entangled photon pair is initial-
ized at x = 0 and signal and idler photons are supposed to
propagate to the right and left sides, respectively. Again, each
photon is polychromatic. We place a dispersive medium on
each photon’s path, denoted by βr and βl , where β represents
a second-order dispersion of the medium. The degree of coin-
cidence is computed from two photodetections at (x1, t1) and
(x2, t2). We present simulation parameters, numerical setup,
design of dispersive media, and modeling the energy-time
entangled photons in Appendix G in detail.

Note that we again use the FDM with Bloch-Floquet
boundary conditions to solve (17).

We conducted four simulations for both entangled and
nonentangled photons: (1) free space (no dispersive media),
(2) in the presence of left dispersive media (βl ), (3) right
dispersive media (βr), and (4) both dispersive media (βl and
βr). Then, we computed two-time coincidences for all cases.
Figure 6 displays aggregate coincidence (normalized by the
free-space case) versus time difference τ , defined by τ =
(t1 − t̃1) − (t2 − t̃2). Here, t̃i denotes a delay of the ith photon
arrival time to the ith photodetector for i = 1, 2, compared
with the free-space case. Note that the delay is mostly affected
by the degree of the first-order dispersion α [29].

For the entangled photon pair in Fig. 6(a), the presence of
either left or right dispersive media gets the coincidence peak
broadened compared with the free-space case. Furthermore,
since both left and right dispersive media have the same mag-
nitude of second-order dispersion, the broadening amounts are
almost equal. It is very interesting to observe that, when both
dispersive media are present, the coincidence curve becomes
narrower, resulting from the destructive interference of the
second-order dispersion. However, due to imperfect cancella-
tions in higher-order dispersions, the coincidence peak is not
perfectly converging to the free-space case [31]. On the other
hand, as observed in Fig. 6(b), the nonentangled photon pairs
do not exhibit any dispersion cancellation that the coincidence
curve in the presence of both dispersive media gets wider than
one-sided medium cases.

VI. CONCLUSION

We have presented a mathematical modeling approach,
called canonical quantization with numerical mode de-
composition, suited for studying how incoming photons
interact with finite-sized dispersive media which may not
be simply described by the previous Fano-diagonalization-
based quantization methods. The main procedure was to
(1) inspect a system where electromagnetic (EM) fields are
coupled to nonuniformly distributed Lorentz oscillators in
Hamiltonian mechanics, (2) derive a generalized Hermitian
eigenvalue problem for conjugate pairs in Euclidean space,
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FIG. 5. Problem geometry of 1-D simulations to observe nonlocal dispersion cancellation. An energy-time entangled (or nonentangled)
photon pair is initialized at x = 0 and the signal and idler photons are supposed to propagate to the right and left sides, respectively. We place
a dispersive medium on each photon’s path, denoted by βr and βl , where β represents a second-order dispersion of the medium. The degree of
coincidence is computed from two photodetections at (x1, t1) and (x2, t2).

(3) apply computational electromagnetics methods to find
a countably finite set of time-harmonic eigenmodes which
diagonalizes the Hamiltonian, and (4) perform the sub-
sequent canonical quantization with mode decomposition.
Moreover, we have provided several numerical simulations
for fully-quantum-theoretic phenomena, not predictable by
the classical Maxwell’s equations, such as nonlocal dispersion
cancellation of an entangled photon pair and the Hong-Ou-
Mandel (HOM) effect in a dispersive beam splitter, showing
the great promise of the CEM-driven QEM/QO research. We
have shown the equivalence between the present approach and
the recent works [4,5] by the Jauslin’s group, although, our
formulation was based on Euclidean space with the use of
CEM methods rather than reciprocal space.

In the future, we will compare the computational efficiency
of the present and Jauslin’s group’s formulations for various
cases. Furthermore, we will extend the present approach to
dissipative quantum systems by introducing coarse-grained
bath oscillators. Moreover, we will investigate how to remove
the redundancy when using Lorenz gauge, which is important
to account for trapped modes, such as surface-plasmon
polaritons.
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APPENDIX A: HAMILTON’S EQUATIONS OF MOTION
IN BLOCK MATRIX FORM

Hamilton’s EoMs can be expressed in the block matrix
form as

∂

∂t

[
q
p

]
=

[
δH
δp

− δH
δq

]
= J ·

[
1
δq
1
δp

]
δH, (A1)

where the differential Hamiltonian is given by

δH = 1

2

∫
V

dr
[
δq
δp

]†

· U ·
[

q
p

]
+

[
q
p

]†

· U ·
[
δq
δp

]

=
∫

V
dr

[
δq
δp

]†

· U ·
[

q
p

]
,

U =
[

K C

C
†

M

]
, J =

[
0 I

−I 0

]
, (A2)

and I is an identity matrix.
Substituting the above differential Hamiltonian into (A1)

yields

∂

∂t

[
q
p

]
= J ·

[ 1
δq
1
δp

]
·
(∫

V
dr

[
δq
δp

]†

· U ·
[

q
p

])

= J ·
(∫

V
dr

[ 1
δq
1
δp

]
·
[
δq
δp

]†

· U ·
[

q
p

])
. (A3)

One can make the use of the properties of functional deriva-
tives [10,32–34], as a result,[

1
δq(r′,t )

1
δp(r′,t )

]
·
[
δq(r, t )
δp(r, t )

]†

=
[

δq(r,t )
δq(r′,t )

δp(r,t )
δq(r′,t )

δq(r,t )
δp(r′,t )

δp(r,t )
δp(r′,t )

]

=
[
δ(r − r′) 0

0 δ(r − r′)

]
. (A4)

Upon applying the sifting property of the δ function, the
resulting Hamilton’s EoMs become

∂

∂t

[
q
p

]
=

(∫
V

dr
[

0 δ(r − r′)
−δ(r − r′) 0

]
· U ·

[
q
p

])

= J · U ·
[

q
p

]
=

[
C

†
M

−K −C

]
·
[

q
p

]
. (A5)

The above procedure was also applied to arriving at (15).

APPENDIX B: NON-HERMITICITY OF THE EIGENVALUE
PROBLEM DUE TO CROSS-COUPLING TERMS

Let us represent the dynamical variables by the linear su-
perposition of time-harmonic eigenmodes as

[
q
p

]
=

∫


dω
∑

λ

⎛
⎜⎝[

q̃ω,λ(r)
p̃ω,λ(r)

]
cω,λe−iωt︸ ︷︷ ︸

cω,λ(t )

⎞
⎟⎠, (B1)
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FIG. 6. Coincidence versus time difference τ for (a) entangled
and (b) nonentangled photon pairs. Note that τ = (t1 − t̃1) − (t2 −
t̃2) where t̃i is the delay of arrival time of th ith photon to the
photodetector.

where  denotes a set including both positive and negative
eigenfrequencies. By substituting (B1) into (10) and replacing
the time derivative by −iω, one arrives at

ω

[
q̃ω,λ

p̃ω,λ

]
= iJ · U ·

[
q̃ω,λ

p̃ω,λ

]
. (B2)

However, since iJ · U is a non-Hermitian matrix, solutions
of (B2) may not ensure the completeness of time-harmonic
eigenmodes nor the realness of the eigenfrequencies.

APPENDIX C: EQUIVALENCE BETWEEN THE PRESENT
FORMULATION AND REF. [5]

From the no-cross-coupling description, we can apply the
canonical transformation for generalized position and mo-
mentum as

q′ = M
− 1

2 · q, p′ = M
1
2 · p. (C1)

Then, the Hamiltonian (12) can be brought to the form

H = 1

2

∫
V

dr
[

q
p

]†

·
[

K 0
0 M

]
·
[

q
p

]

= 1

2

∫
V

dr
[

q′
p′

]†

·
[

M
1
2 · K · M

1
2 0

0 I

]
·
[

q′
p′

]

= 1

2

∫
V

dr(p′)† · p′ + (q′)† · �
2 · q′, (C2)

where the positive symmetric operator �
2 = M

1
2 · K · M

1
2 ,

called frequency operator. Next, we show the equivalence
between the GH-EVP (17) and equation (14) in Ref. [5]. The
standard eigenvalue problem of equation (14) in Ref. [5] is
given by

�
2 · ψω,λ = ω2ψω,λ,

M
1
2 · K · M

1
2 · ψω,λ = ω2ψω,λ,

K · M
1
2 · ψω,λ = ω2M

− 1
2 · ψω,λ. (C3)

Identifying q̃ω,λ = M
1
2 · ψω,λ, the above can be written by

K · q̃ω,λ = ω2M
−1 · q̃ω,λ. (C4)

Thus, our GH-EVP and that in Ref. [5] are mathematically
equivalent. It is to be noted that our GH-EVP is based on
Euclidean space, although Eq. (14) in Ref. [5] is based on
reciprocal space.

APPENDIX D: DIAGONALIZATION OF THE CLASSICAL
HAMILTONIAN

The generalized momentum variable can be represented by

p =
∫

+
dω

∑
λ

p̃ω,λdω,λe−iωt + H.c. (D1)

By substituting (18) and (D1) into the original Hamiltonian
(12) and rearranging it, one can arrive at

H = 1

2

∫
V

dr

(∫
+

dω
∑

λ

q̃†
ω,λd∗

ω,λeiωt

)

·K ·
(∫

+
dω′ ∑

λ′
q̃ω′,λ′dω′,λ′e−iω′t

)

+ 1

2

∫
V

dr

(∫
+

dω
∑

λ

p̃†
ω,λd∗

ω,λeiωt

)

·M ·
(∫

+
dω′ ∑

λ′
p̃ω′,λ′dω′,λ′e−iω′t

)

= 1

2

∫
+

dω
∑

λ

∫
+

dω′ ∑
λ′

d∗
ω,λdω′,λ′ei(ω−ω′ )t

×
(∫

V
drq̃†

ω,λ · K · q̃ω′,λ′

)

+ 1

2

∫
+

dω
∑

λ

∫
+

dω′ ∑
λ′

d∗
ω,λdω′,λ′ei(ω−ω′ )t
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×
(∫

V
drp̃†

ω,λ · M · p̃ω′,λ′

)
. (D2)

Using the relation in the first row equation of (15), a time-
harmonic eigenmode for p can be represented by

p̃ω,λ = −iωM
−1 · q̃ω,λ, (D3)

therefore, one can have the following property:∫
V

drp̃†
ω,λ · M · p̃ω′,λ′

= ωω′
∫

V
dr(M

−1 · q̃ω,λ)† · M · (M
−1 · q̃ω′,λ′ )

= ωω′
∫

V
drq̃†

ω,λ · M
−1 · q̃ω′,λ′ = ωω′δω,ω′δλ,λ′ . (D4)

Finally, by applying (20) and (D4) to (D2), one can obtain the
diagonalized Hamiltonian such as

H = 1

2

∫
+

dω
∑

λ

ω2(d∗
ω,λdω,λ + dω,λd∗

ω,λ). (D5)

APPENDIX E: CROSS-COUPLING DESCRIPTION

Motivated by the recent work to rigorously find time-
harmonic eigenmodes for photonic crystal systems by solving
an explicit EVP [35], we can derive another GH-EVP, called
the cross-coupling description. To convert (B2) into a GH-
EVP, as performed in Ref. [35], we multiply U to the both
sides of (B2) to obtain

ωU ·
[

q̃ω,λ

p̃ω,λ

]
= iV ·

[
q̃ω,λ

p̃ω,λ

]
, (E1)

where iV = U · iJ · U is now a Hermitian matrix. Finally,
solving (E1) yields a complete set of time-harmonic eigen-
modes with real eigenfrequencies ω. Furthermore, the follow-
ing two orthonormal properties can be deduced∫

V
dr

([
q̃ω,λ

p̃ω,λ

]†

· U ·
[

q̃ω′,λ′

p̃ω′,λ′

])
= δω,ω′δλ,λ′ , (E2)∫

V
dr

([
q̃ω,λ

p̃ω,λ

]†

· iV ·
[

q̃ω′,λ′

p̃ω′,λ′

])
= ωδω,ω′δλ,λ′ . (E3)

Substituting (B1) into the original Hamiltonian (8) and apply-
ing the orthonormal condition (E3), one can easily diagonalize
the Hamiltonian in terms of cω,λ as

H = 1

2

∫
+

dω
∑

λ

(c∗
ω,λcω,λ + cω,λc∗

ω,λ), (E4)

where + denotes the positive-frequency regime of .
The manipulation done to derive (E1) is more than a co-

incidence. In fact, (E1) is closely associated with the energy
continuity equation. To check this, let us multiply both sides
of (10) by U as follows:

U ·
(

∂

∂t

[
q
p

])
= V ·

[
q
p

]
, (E5)

which is the time-domain description of (E1). It should be
mentioned that U and V are real matrices and independent

TABLE I. Simulation parameters.

L 1.5 [m] N (0) 2500 xg 0.3747 [m]
Ls 6 [mm] �x 0.6 [mm] σg 0.05 [m]
εs,∞ 7 N (0)

s 10 ωg 526c [rad/s]

of time or frequency. Then multiplying both sides of (E5) by
[q, p]∗, one arrives at[

q
p

]†

· U ·
(

∂

∂t

[
q
p

])
=

[
q
p

]†

· V ·
[

q
p

]
. (E6)

The LHS in (E6) represents an energy density rate over an
infinitesimal volume since[

q
p

]†

· U ·
(

∂

∂t

[
q
p

])
= 2

∂

∂t
H −

(
∂

∂t

[
q
p

])†

· U ·
[

q
p

]

= ∂

∂t
H, (E7)

where

H = 1

2

[
q
p

]†

· U ·
[

q
p

]
. (E8)

The energy continuity equation states that an energy density
rate should be equal to a negative of an energy flux, viz.,

∂

∂t
H + energy flux = 0. (E9)

Thus, the RHS in (E6) can be interpreted as a negative of an
energy flux flowing out of a closed surface of the infinitesimal
volume

energy flux = −
[

q
p

]†

· V ·
[

q
p

]
. (E10)

One can easily check that the above energy flux only contains
EM-associated terms (A, �, �AP, and ��) while P and �P

terms are canceled out. This coincides with the explanation in
Ref. [36] that Lorentz oscillators do not propagate energy. Fur-
thermore, when polarization density goes to zero, the energy
continuity Eq. (E6) converges to the conventional Poynting
theorem.

We have shown two possible approaches to derive GH-
EVPs for EM fields coupled to lossless Lorentz oscillators and
search for a complete set of time-harmonic eigenmodes of the
system. The overview is illustrated in Fig. 7.

APPENDIX F: DETAILS OF SIMULATIONS OF THE
HONG-OU-MANDEL EFFECT

IN A DISPERSIVE BEAM SPLITTER

1. Design of dispersive beam splitter

A dispersionless beam splitter is designed first. Performing
a parametric study, we set the relative permittivity of the
slab εs,∞ = 7ε0 [F/m] and the thickness Ls = 6 [mm]. The
relevant parameters are listed in Table I. It can be observed
in Fig. 8 that the 50 : 50 reflectivity |R|2 and transmissivity
|T |2 with a quadrature phase shift can be achieved around
ω/c ≈ 526. This frequency ω/c ≈ 526 will be used for the
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FIG. 7. Overview of the two possible ways to derive GH-EVPs for a coupled system between EM fields and lossless Lorentz oscillators.
The schematic in panel (a) describes an overall coupling relation among all dynamical variables in the original Hamiltonian (5). Note that
blue solid-glowed line symbolizes coupling between two variables. In panel (b), the left and right schematics depict the no-cross-coupling
and cross-coupling descriptions, respectively. In the presence of cross coupling, one should invoke the energy continuity equation to obtain a
GH-EVP which yields a full set of time-harmonic eigenmodes for both q and p with positive and negative eigenfrequencies. In contrast, by
properly defining q and p for no cross coupling, one can either arrive at another GH-EVP in terms of q only. Consequently, it yields the smaller
eigenspace spanned by time-harmonic eigenmodes for q with positive eigenfrequency. Both methods can easily diagonalize the Hamiltonian
in terms of modal amplitudes either cω,λ or dω,λ via the orthonormal properties inherent from GH-EVPs.

carrier frequency ωg of incident photons’ wave packets. It is
to be noted that, even though material dispersion is ignored,
geometrical dispersion is present due to the finite thickness of
the beam splitter.

The dispersive dielectric slab is modeled by single species
Lorentz oscillators. All Lorentz oscillators have same ωp and
ω0 where ω2

0 = ω2
p/(εs,∞ − 1) + ω2

g. Since the resulting rel-
ative dielectric constant becomes εs(ω) = 1 + ω2

p/(ω2
0 − ω2),

FIG. 8. Reflectivity (solid red line), transmissivity (dashed red
line), and their phase difference (dash-dotted blue line) versus ω for
the designed dispersionless beam splitter. The 50 : 50 reflectivity and
transmissivity with a quadrature phase shift can be achieved around
ω/c ≈ 526 which will be chosen for the center frequency of incident
photons’ wave packets.

it always ensures εs(ωg) = εs,∞. Figure 9 illustrates the di-
electric constant versus ω for various ωp. Because εs(ω)
starts deviating from εs,∞ = 7ε0 when |ω − wg| increases,
the bandwidth of exhibiting the 50 : 50 performance becomes
narrower. The smaller ωp (higher dispersion) is, the narrower
is the 50 : 50 performance bandwidth.

FIG. 9. Relative dielectric constant εs(ω) versus ω for various
plasma frequencies. In dispersive cases, since εs(ω) starts deviating
from εs,∞ = 7ε0 as |ω − 526c| increases, the 50 : 50 performance
bandwidth decreases. The smaller ωp (higher dispersion) is, the
smaller the bandwidth becomes.
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2. Extraction of numerical eigenmodes

To extract numerical time-harmonic eigenmodes, we
use the finite-difference method (FDM) and Bloch-Floquet
boundary conditions to numerically solve (30). The problem
domain V ∈ {x ∈ [−L/2, L/2]} is uniformly discretized (grid
spacing �x) by a number N (0) of grid points. The number of
grid points inside the beam splitter is N (0)

s . Thus, we have
total N (0) + N (0)

s numerical time-harmonic eigenmodes hav-
ing positive eigenfrequencies.

3. Modeling incoming polychromatic photons

Two photons are assumed to be polychromatic, viz., they
are riding on wave packets whose spatial distributions are
modeled by g(x) and h(x), respectively. The corresponding
initial quantum state can be modeled by

|� (2)〉 =
(∫

+
dω

∑
λ

g̃(ω, λ)d̂†
ω,λ

)

×
(∫

+
dω′ ∑

λ′
h̃(ω′, λ′)d̂†

ω′,λ′

)
|0〉

≈
(∑

m

g̃md̂†
m

)(∑
n

h̃nd̂†
n

)
|0〉

= (g̃T · ĉ)(h̃T · ĉ) |0〉 , (F1)

where the second equality is the discrete counterpart of the
first one, m and n are numerical time-harmonic eigenmode
indices, and [g̃]m = g̃m and [h̃]n = h̃n are spectral probability
amplitudes. If wave packet is modeled by Gaussian function,

g(x) = g0e
−(

x−(xg−δxg)√
2σg

)2

e−ikgx, (F2)

h(x) = h0e
−(

x+xg√
2σg

)2

eikgx, (F3)

where the carrier wave number kg = ωg/c and g0 and h0 are
normalization constants. By using the orthonormal proper-
ties of numerical time-harmonic eigenmodes, one can obtain
g̃ and h̃.

4. Calculation of second-order correlation

We can evaluate the second-order correlation [7,37]

g(2)(τ ) = 〈� (2)|α̂(+)β̂ (−)β̂ (+)α̂(+)|� (2)〉
〈� (2)|α̂(−)α̂(+)|� (2)〉〈� (2)|β̂ (−)β̂ (+)|� (2)〉 , (F4)

where τ = δxg/c and

α̂(±) = Â(±)(x1, t1), (F5)

β̂ (±) = Â±(x2, t1 + τ ), (F6)

t1 = 2xg/c. The detailed calculation for g(2)(τ ) is explained in
Ref. [3].

APPENDIX G: DETAILS OF SIMULATIONS ON
NONLOCAL DISPERSION CANCELLATION FOR AN

ENERGY-TIME ENTANGLED PHOTON PAIR

1. Modeling energy-time entangled photon pair

Based on a pump frequency P/c = 35, the signal and
idler photons have the center frequencies S/c = 37.5 and
I/c = 32.5 with a bandwidth of 5c. The corresponding ini-
tial quantum state can be written by

|�〉 =
∫ ∞

−∞
dω2

∑
λ2

∫ ∞

−∞
dω1

∑
λ1

ψ (ω2, λ2, ω1, λ1)

× d̂†
ω2,λ2

d̂†
ω1,λ1

|0〉 , (G1)

where ψ is a nonfactorizable joint spectral probability am-
plitude. On the other hand, one can describe a (spatially
localized) nonentangled photon pair by

|�〉 =
∫ ∞

−∞
dω2

∑
λ2

∫ ∞

−∞
dω1

∑
λ1

φ2(ω2, λ2)φ1(ω1, λ1)

× d̂ω2,λ2 d̂ω1,λ1 |0〉 , (G2)

where φi describes a spectral probability amplitude of ith
photon for i = 1, 2. By implicitly accounting for the degen-
eracy index, Figs. 10(a) and 10(b) illustrate ψ (ω2, ω1) and
φ(ω2, ω1) = φ2(ω2)φ1(ω1).

2. Design of dispersive media

To induce nonlocal dispersion cancellation, we introduce
a dispersive medium composed of uniformly filled single
species of Lorentz oscillators. And we exploit highly disper-
sive two local regimes in the dispersion diagram: One is below
the band gap for idler photons the other is above the band gap
for the signal photons, as illustrated in Fig. 11(a). By properly
choosing resonant and plasma frequencies of the media, we
can achieve the same magnitude of the second-order disper-
sion (β) with opposite signs over the photon’s bandwidth,
as illustrated in Fig. 11(b). The length of the both dispersive
media is Ls.

3. Coincidence

We compute the degree of coincidence for the above two
cases at different times t1 and t2, as depicted in Figs. 10(c) and
10(d), respectively. One can observe that the entangled pho-
ton pair has both strong temporal correlation and frequency
anticorrelation obeying

�(t2 − t1)�(ω2 + ω1 − P ) � 1, (G3)

where t2 and t1 are detection times of the signal and idler
photons, respectively. However, the nonentangled photon pair
does not exhibit any (anti)correlations.

APPENDIX H: CONSISTENCY WITH PAST WORKS

We show that the present method is consistent with some
previous works in some limiting cases.
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FIG. 10. Spectral probability amplitudes for (a) two entangled
photons ψ (ω2, ω1) and (b) two nonentangled photons φ(ω2, ω1). The
degree of (two-time) coincidence for (c) entangled and (d) nonen-
tangled photon pairs. The entangled photon pair has both strong
temporal correlation and frequency anticorrelation whereas the
nonentangled photon pair does not.

1. Free-field quantization

In the vacuum, by using the Coulomb gauge with � = 0,
there are nonzero dynamical variables A and �AP. Taking the
no-cross-coupling description, one can easily check that (17)
is equivalent to the conventional Helmholtz wave equation
for A

∇2Ãω,λ(r) + ω2ε0μ0Ãω,λ(r) = 0, (H1)

where analytic solutions are plane waves. The subsequent
quantization can be easily done with the plane-wave basis.
Note that the plane waves have a dispersion relation ω2ε0μ0 =
k2 = |k|2 exhibiting the one-to-one correspondence between
ω and k. Thus, a photon has both definite energy and
momentum.

2. Inhomogeneous dispersionless dielectric medium

The present methods are still valid when the background
vacuum is replaced by a dispersionless inhomogeneous
medium, modeled by ε∞(r) and μ∞(r), making the result-
ing EVP still Hermitian. Although this assumption does not
satisfy the Kramers-Kronig relation over all frequencies, it
will be computationally efficient when dealing with a medium
which is almost dispersionless over a narrow bandwidth.

Assume that Lorentz oscillators are absent (viz. no disper-
sive medium) and the background is filled by dispersionless
and inhomogeneous dielectric medium. Using the generalized
Coulomb gauge with � = 0 and again taking the no coupling
approach, one can show that (17) is equivalent to the con-
ventional Helmholtz wave for dispersionless inhomogeneous

FIG. 11. (a) Dispersion diagram and (b) second-order dispersion
β of designed dispersive media. The signal (green lines on the right)
and idler (blue lines on the left) photons will experience the almost
same amount of second-order dispersions with opposite sign.

dielectric media; viz.,

∇2Ãω,λ(r) + ω2ε∞(r)μ0Ãω,λ(r) = 0. (H2)

In this case, time-harmonic eigenmodes, which corresponds
to Bloch-Floquet modes, do not hold the one-to-one corre-
spondence between ω and k; hence, monochromatic photons
cannot have a definite momentum. Canonical quantization can
be done with the Bloch-Floquet modes [1–3].

3. One-dimensional homogeneous dispersive medium

A quantized vector potential field operator in 1-D vacuum
uniformly filled by lossless Lorentz oscillators, which models
a dispersive and homogeneous dielectric medium, was repre-
sented by [36,38]

Â(x, t ) =
∫

+
dω

+∑
λ=−

(A0eikxxĉω,λe−iωt + H.c.), (H3)

�̂AP(x, t ) =
∫

+
dω

+∑
λ=−

(D0eikxxĉω,λe−iωt + H.c.), (H4)
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FIG. 12. Dispersion relation (ω, kx ) for a dispersive and homo-
geneous dielectric medium (ω0 = ωp = 50c). Analytic (blue dashed
line) and numerical (red circle) results are compared, showing great
agreement except in the high-frequency regime. This is due to the nu-
merical dispersion effect which makes the phase and group velocities
gradually slower [39].

where λ = ± denotes the propagation direction degeneracy
and

A0 = −i
√

h̄vg(ω)
4πε0c

√
ε(ω)ω

, (H5)

D0 = −
√

h̄vg(ω)
√

ε(ω)
3
ω

4πε0c , (H6)

where vg = dω/dkx denotes the group velocity. The disper-
sion relation is given by k2

x = ω2ε(ω)μ0 where ε(ω) = (1 +
ω2

p

ω2
0−ω2 )ε0; hence, it also destroys the one-to-one correspon-

dence between ω and kx. The time-harmonic eigenmodes for
Â(x, t ) and �̂AP(x, t ) take the form

Ãω,λ(x) = A0eikxx, (H7)

�̃AP,ω,λ(x) = D0eikxx, (H8)

and their ratio becomes

C0 = Ãω,λ(x)

�̃AP,ω,λ(x)
= A0

D0
= i

ωε(ω)
. (H9)

Taking the cross-coupling description, we use the finite-
difference method (FDM), which is widely used across all
scientific areas due to its simplicity and reliability, to obtain
a set of numerical time-harmonic eigenmodes. The dispersive
medium was modeled by Lorentz oscillators (having ωp =
ω0 = 50c) uniformly filled over the entire problem domain
x ∈ [−L/2, L/2]. Note that the domain was discretized by
201 grid points. Since the present method does not specify
wave number of time-harmonic eigenmodes, we performed
the spatial fast Fourier transform analysis to extract kx for
each numerical time-harmonic eigenmode. The dispersion re-
lations of analytic and numerical time-harmonic eigenmodes
are compared in Fig. 12. There is great agreement between

FIG. 13. Illustration of n = 11th numerical time-harmonic
eigenmode for (a) vector potential and (b) its conjugate variable
where ωn ≈ 11.52c. Note that curves with red circles and blue
crosses represent real and imaginary values, respectively. The ra-
tio Ãm/�̃AP,m normalized by C0 = i/[ωε(ωm )] is displayed in panel
(c), showing that the real and imaginary values are unity and zero,
respectively.

them except in the high-frequency regime. The deviation
comes from the numerical grid dispersion error in using the
finite-difference approximation [39]. This can be mitigated by
using advanced CEM methods, such as finite-element or pseu-
dospectral methods. It is observed that, at a given kx, there are
two plane-wave solutions having different eigenfrequencies
lying on the lower and upper branches. The gap between lower
and upper branches, i.e., ω ∈ [ω0, (ω2

0 + ω2
p)1/2] is related to

the anomalous dispersion region if absorption is included [36].
Figure 13 illustrates the n = 11th numerical time-harmonic

FIG. 14. Purcell factors versus normalized transition frequency
ωa when a two-level system is embedded in a 1-D dispersive medium
with a single polarization. The SER can be enhanced above the band
gap where ω ∈ [ω0, (ω2

0 + ω2
p)1/2].
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FIG. 15. Dispersion relation (ω, kx ) for the dispersive dielectric
slab. The contour map (gray color scale) illustrates spectral am-
plitudes of numerical time-harmonic eigenmodes. There are three
plane-wave solutions having different eigenfrequencies at a given
kx . Two sets of dispersion relations can be observed: One is of
the vacuum (red × marker) and the other is of the dispersive and
homogeneous dielectric medium (blue ◦ marker).

eigenmodes. One can clearly observe that the ratio between
Ãm and �̃AP,m maintains C0, which is consistent with the
analytic time-harmonic eigenmodes.

4. Purcell factor in dispersive medium

Spontaneous emission rate (SER) of an excited atom can
be enhanced by introducing cavity [40], plasmonic structures
[41], photonic crystals [42], and dielectric media [43]. To
check the validity of the proposed method, we compute a
Purcell factor when an excited two-level system is embedded
in a dispersive medium. For simplicity, we consider the 1-D
free space along the x axis and single polarization (electric
field operators are polarized along the y axis). The SER of

this system can be determined by the Fermi golden rule [44]

�1-D,sp(ωa) = 2μ2
a

3ch̄2 〈0|Ê (+)
a Ê (−)

a |0〉δ(ω − ωa), (H10)

where ωa and μa denote transition frequency and dipole mo-
ment, and

Ê (+)
a = Ê (+)(xa, t ) = iωÂ(+)(xa, t ) (H11)

at the two-level system’s location xa. We analytically calculate
the above SER by using (H3) and approximating δ(ω − ωa)
by Lorentzian distribution. In addition, we evaluate the SER
by using numerical time-harmonic eigenmodes based on the
no-cross-coupling description. Figure 14 compares Purcell
factors versus normalized transition frequency for analytic
and numerical time-harmonic eigenmodes. Note that the SER
for the 1-D free-space with a single polarization is calculated
from the vacuum fields and density of states (DOS) [44]

�
1-D,sp
0 (ωa) = μ2

aωa

3h̄ε0c
. (H12)

There is great agreement between two results, which suc-
cessfully validates the proposed method. The SER can be
enhanced above the band gap where ω ∈ [ω0, (ω2

0 + ω2
p)1/2].

5. One-dimensional dispersive dielectric slab surrounded
by free space

Finally, we consider a dispersive dielectric slab (sized
by x ∈ [−L/4, L/4]) inside a vacuum box sized by x ∈
[−L/2, L/2]. We take the cross-coupling description to ob-
tain numerical time-harmonic eigenmodes and compute their
spectral amplitudes by performing the spatial fast Fourier
transform analysis. The result is displayed in Fig. 15, com-
pared with dispersion relations of the vacuum and dispersive
and homogeneous dielectric medium. There are three plane-
wave solutions with different eigenfrequencies at a given kx.
Two sets of dispersion relations can be observed: One is of
the vacuum (red × marker) and the other is of the dispersive
and homogeneous dielectric medium (blue ◦ marker). Hence,
it is between two limiting cases: (1) vacuum when the slab
width converges to zero and (2) dispersive and homogeneous
medium when the whole vacuum box is filled by the slab, as
expected.
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