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Generalized spin kitten states in a strongly coupled spin-oscillator system
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Utilizing an adiabatic approximation method, a bipartite qudit-oscillator Hamiltonian is studied for low-spin
values in both strong and ultrastrong coupling regimes. The quasiprobability densities on the hybrid factorized
phase space are introduced. Integrating over a sector of the composite phase space, the quasiprobability
distributions of its complementary subsystem are recovered. In the strong coupling regime, the qudit entropy
displays a pattern of quasiperiodic collapses and revivals, where the latter coincide with locally minimum
entropy configurations. Starting with a bipartite factorizable initial state, we observe that almost pure spin
kitten type states dynamically develop at near-null values of entropy. The Hilbert-Schmidt distance measure
of these states puts them metrically far away from the initial state. Other localized spin states form at locally
minimum but significantly large values of entropy. The evolution to the nonclassical transitory spin states is
displayed via the diagonal spin PQ representation. As another manifestation of nonclassicality the emergence of
the spin-squeezed states during the bipartite evolution is observed. In the ultrastrong coupling domain, a large
number of interaction-dependent modes and their harmonics are generated. The consequent randomization of the
phases eliminates the quasiperiodicity of the system which is now driven towards a stabilization of the entropy
that also undergoes stochastic fluctuations around a suitably stabilized value. In both the strong and ultrastrong
coupling realms, antibunching of the photoemission events is realized particularly for the small spin values.
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I. INTRODUCTION

Recently, much interest has developed towards experimen-
tal and theoretical studies on hybrid interacting spin-oscillator
systems going beyond the rotating-wave approximation [1]
that complies with the preservation of the total excitation
number. While the said approximation remains valid in a weak
coupling regime endowed with a small detuning between the
spin and the oscillator frequencies, recent experimental real-
izations use a varied set of tools to explore systems with strong
and ultrastrong coupling between the degrees of freedom. For
instance, a nanoelectromechanical resonator capacitively cou-
pled to a Cooper pair box driven by microwave currents [2,3],
a flux-biased quantum circuit that utilizes the large inductance
of a Josephson junction to generate an ultrastrong coupling
with a coplanar waveguide resonator [4,5], and a quantum
semiconductor microcavity embedding doped quantum wells
[6,7] lie in this category. Specifically, the superconducting
two-level (qubit) as well as multilevel (qudit) systems and
circuits acting as artificial atoms are adaptable for a wide
range of parameters. This flexibility makes them the preferred
building blocks for quantum simulators [8–14]. Multilevel
superconducting circuit has been recently considered [15]
for implementing quantum gates. In principle, the entangled
multilevel quantum systems store significantly more informa-
tion, and have less networking problems compared to their
two-level counterparts. An experimental demonstration of the
nonclassical properties of a photonic qudit state has been

achieved [16]. Moreover, hybrid quantum circuits integrating
multilevel atoms, spins, cavity photons, and superconducting
qudits coupled with nanoelectromechanical resonators hold
much promise for realization of the quantum information net-
work [17].

On the other hand, the atomic coherent state [18,19]
provides a description for the collective atomic quantum
processes such as superradiance [20–22] and resonance flu-
orescence [23,24] that require quantum correlations in an
atomic ensemble. One crucial instance of nonclassical prop-
erties is evident in the formation of the Schrödinger cat and
kitten states [25] that embody a coherent superposition of two
or more distinguishable states of a macroscopic system. These
states have been studied [26] in an ensemble of two-level
atoms interacting with a dispersive cavity mode in the context
of the rotating-wave approximation. Atomic cat-type states
are known [27] to display interference-induced properties
such as enhancement or reduction in the rates of spontaneous
and stimulated emission. Employing two hyperfine ground
states of a beryllium ion, the authors of Ref. [28] consid-
ered a collection of ions confined in an electromagnetic trap
and controlled with a classical laser beam. The cat states
representing equal superposition of two maximally distinct
states have been observed [28] up to six ions. A probabilistic
scheme has been proposed [29] for obtaining pure entangled
spin states in large atomic ensembles where the transmitted
photons undergo a weak random Faraday rotation caused by
the quantum noise of the atomic spin. Two or more photons
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emerging from the system with their polarization vectors or-
thogonal to the corresponding incoming polarization direction
signal formation [29] of atomic Schrödinger cat states. Ex-
perimental realization of atomic cat states characterized by
coherent superposition of electronic spin states of opposite
orientation has been observed [30] in samples of dysprosium
atoms undergoing ac Stark shift effected by detuned spin-light
interaction. More recently, using superconducting transmon
qubits coupled via a coplanar waveguide bus resonator, the
authors of Ref. [31] constructed Schrödinger kitten states
consisting up to 20 qubits.

Another feature of nonclassicality is expressed by the
spin-squeezed states [32–34], which owe their origin to
the nonlinear spin-spin effective interaction in the theory.
These states have been extensively utilized in the study of
quantum phase transitions [35,36], quantum chaos [37], Bose-
Einstein condensate [38,39], and arrays of superconducting
qubits [40,41]. Recently, one photon–two atom excitation pro-
cess has been considered [42] towards engendering optimal
squeezing in an ensemble of N spins coupled to a single
cavity mode. The spin-squeezed state improves the precision
measurement of magnetometry beyond the standard quantum
limit [43]. Interestingly, employing the quantum state transfer
from the nonclassical light to the cold atoms, the generation
of macroscopic spin-squeezed ensemble of atoms has been
experimentally observed [44]. An extensive recent review of
the spin squeezing is given in Ref. [45].

In the setting described above, here we study the evolution
of a hybrid bipartite state which is a linear combination of
the qudit spin coherent states tensored with the squeezed
coherent states of the field mode. A suitable adiabatic approx-
imation pioneered in Refs. [46,47] allows us to investigate
the combined structure for a strong spin-photon coupling as
well as a large detuning of the associated frequencies. To an-
alyze the system, we introduce the bipartite quasiprobability
distributions in the composite phase space of the qudit and
field variable. Tracing over one degree of freedom reproduces
the phase-space quasiprobability distributions [48–50] of the
coupled complementary subsystem. Starting with a factorized
state of the bipartite system in the strong interaction regime,
nonclassical configurations such as the transitory generalized
qudit kitten states dynamically emerge corresponding to the
near-null values of entropy arrived at suitable local minima
of its time evolution. The almost pure generalized spin kitten
states, while maintaining large Hilbert-Schmidt distance from
the initial state, incorporate superposition of an appropriately
small number of spin coherent states. We also employ a tomo-
graphic procedure towards reproducing the states of the qudit
by utilizing the close kinship between the quasiprobability
distributions and the probability densities related to the diago-
nal elements of the spin density matrix in an arbitrarily rotated
frame [51,52]. The transient spin kitten type states are also
evident in the tomographic depictions considered here. More-
over, quantum fluctuations triggered by the nonlinear terms
in the effective Hamiltonian of the spin degree of freedom
turn spin coherent states to short-lived squeezed-spin states.
Towards illustrating the above construction, we explicitly dis-
cuss the low spin s = 1, 3

2 cases. For a higher-spin variable,
more complex kitten type states emerge as a larger Hilbert
space allows for superposition involving more state vectors.

We also investigate the ultrastrong spin-oscillator coupling
regime where the said adiabatic approximation [46,47] is
found to remain valid. In this domain, the realization of a
large number of interaction modes spread over a wide range of
timescales abolishes the phase correlations necessary for the
manifestation of the generalized spin kitten states, which, as a
consequence, disappear. In addition, it causes the materializa-
tion of a steady-state value of the entropy, which is, however,
subjected to rapid stochastic fluctuations.

II. HAMILTONIAN AND ITS APPROXIMATE
DIAGONALIZATION

The bipartite qudit-oscillator Hamiltonian reads as

H = −�Sx + ωa†a + λSz(a + a†). (2.1)

The spin variables {SX |X = x, y, z} obey the su(2) algebra
{S± ≡ Sx ± iSy; [Sz, S±] = ±S±, [S+, S−] = 2Sz} and main-
tain the standard irreducible representations

Sz|s, m〉 = m|s, m〉,
S±|s, m〉 =

√
(s ∓ m)(s ± m + 1) |s, m ± 1〉; (2.2)

s = 0, 1
2 , 1, . . . ; m = −s,−s + 1, . . . , s,

whereas the oscillator degree of freedom is characterized
as follows: {a, a†, n̂ ≡ a†a; [a, a†] = I : n̂|n〉 = n|n〉, a|n〉 =√

n |n − 1〉, a†|n〉 = √
n + 1 |n + 1〉}. Employing a varia-

tional method, the Hamiltonian (2.1) has been previously
investigated, and in the vicinity of the resonance configuration
its approximate ground state has been determined [53]. On
the other hand, the adiabatic approximation [46,47] consid-
ered here employs a separation of the timescales between the
fast-moving oscillator with frequency ω, and the slow-moving
qudit possessing an energy gap � � ω. The qudit-oscillator
coupling is parametrized by λ. The strong and ultrastrong in-
teraction regimes λ � ω necessitate incorporating terms in the
Hamiltonian (2.1) that do not preserve the excitation number.
Under the said approximation the high-frequency oscillator
instantaneously adjusts to the eigenstate of the qudit operator
Sz and, consequently, it is subjected to the Hamiltonian

HO = ωa†a + λ m (a + a†), 〈s, m| Sz |s, m〉 = m. (2.3)

The eigenenergies and the corresponding diagonalizing states
of the oscillator Hamiltonian HO read as

εn,m = ω[n − (mλ̃)2], λ̃ = λ
ω
, |nm〉 = D(mλ̃)†|n〉, (2.4)

where the displacement operator is denoted by D(α) =
exp(αa† − α∗a), α = Re(α) + i Im(α). Mimicking the con-
struction in [46], a matrix representation of the Hamiltonian
(2.1) in the complete basis set |s, m〉|nm〉 ≡ |s, m; nm〉 may be
furnished. The nonvanishing overlap between the basis vec-
tors causes this matrix to be infinite dimensional that may be
approximately diagonalized only numerically. Under the adi-
abatic approximation, however, the Hamiltonian H assumes
a block-diagonal form where the nth photonic manifold is
expressed via the basis set |s, m; nm〉. The approximation uti-
lizes [46] the self-energy of the spin degree of freedom just
to eliminate the degeneracy evident in the displaced oscillator
representation (2.4). Effectively it leads to a mixing between
the states |nm〉 for a fixed value of n. The approximate energy
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FIG. 1. The cavity mode and the spin constitute the interacting system which is diagonalized in a displaced operator basis. The harmonic-
oscillator well is shifted by an amount proportional to the spin quantum number m. The adiabatic approximation permits block diagonalization
of the Hamiltonian. A representational view of the eigenstates of the nth manifold is shown.

eigenstates for the said nth photonic manifold in the exam-
ples of spin variables s = 1, 3

2 are described in this work.
A schematic view of the approximate diagonalization of the
interacting Hamiltonian for the s = 1 case is given in Fig. 1.

For the s = 1 case, the nth photonic block of the Hamilto-
nian is given by

H (s=1)
n = ω

⎛⎝n − λ̃2 �n 0
�n n �n

0 �n n − λ̃2

⎞⎠, (2.5)

where the scaled and renormalized qudit gap param-
eter is listed as �n = − �√

2ω
exp(− λ̃2

2 )L0
n (̃λ2). The

Laguerre polynomial maintains the standard expansion
Lk

n (x) = ∑
�

(−1)�

�!

(n+k
n−�

)
x�. In the subspace of the nth block the

eigenenergies E (1)
j ,n , j ∈ {0,±} of the Hamiltonian (2.5) may

be given by

E (1)
0,n = ω(n − λ̃2), E (1)

±,n = ω
[
n − 1

2 (̃λ2 ∓ δn)
]
,

δn =
√

8�2
n + λ̃4 (2.6)

and the corresponding normalized eigenvectors read as∣∣E (1)
0,n

〉 = 1√
2

(|1, 1; n1〉 − |1,−1; n−1〉),

|E (1)
±,n〉 = 1√

N (1)
±,n

[2�n|1, 1; n1〉 + (̃λ2 ± δn)|1, 0; n〉

+ 2�n |1,−1; n−1〉],
N (1)

±,n = 2δn(δn ± λ̃2). (2.7)

In a specific nth-photonic block, the above basis set ful-
fills the orthocompleteness relations 〈E (1)

j ,n|E (1)
�,n 〉 = δj�, where
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j , � ∈ {0,±}, and
∑

j |E (1)
j ,n〉〈E (1)

j ,n| = I. The energies (2.6) and
the related states (2.7) constitute the lowest-order adiabatic
approximation in the manner of [46,47] for the s = 1 qudit.
Moreover, the approximate energy eigenstates constructed

herein [Eqs. (2.7) and (B3)] are also eigenstates of the con-
served parity operator: P = exp[iπ (a†a + 1

2 r + Sx )], where
the index reads as r = 0 (1) for integral (half-integral) values
of the spin s.

III. INITIAL STATE AND ITS EVOLUTION VIA THE ADIABATIC APPROXIMATION

The generalized quasi-Bell bipartite entangled initial state is chosen as

|ψs(0)〉 = Ns(|z〉(s) |α, ξ 〉 + c |−z〉(s) | − α, ξ 〉), (3.1)

where |z〉(s) is the qudit spin-s coherent state [19]. Its expansion via the eigenstates of the generator Sz reads as

|z〉(s) = 1

(1 + |z|2)s

s∑
m=−s

(
2s

s + m

) 1
2

zs+m |s, m〉. (3.2)

The polar coordinate [z = tan( θ̃
2 ) exp(−iφ̃)] allows us to recast the sum (3.2) in terms of the spherical phase-space variables as

|z〉(s) ≡ |̃θ, φ̃〉(s) =
s∑

m=−s

(
2s

s + m

) 1
2
(

sin
θ̃

2

)s+m (
cos

θ̃

2

)s−m

exp[−i(s + m)φ̃] |s, m〉. (3.3)

The squeezed oscillator coherent state [50] is structured as |α, ξ 〉 ≡ D(α)S(ξ )|0〉, S(ξ ) = exp( ξ∗a2−ξa†2

2 ), where ξ [=
r exp(iζ )] ∈ C. Employing the parameters μ = cosh r, ν = sinh r exp(iζ ) its mode expansion is given by

|α, ξ 〉 =
∞∑

n=0

Sn(α, ξ )|n〉, Sn(α, ξ ) = 1√
n! μ

(
ν

2μ

) n
2

exp

(
−1

2
|α|2 − ν

2 μ
α∗2

)
Hn

(
μα + να∗
√

2 μν

)
, (3.4)

where the Hermite polynomials obey the sum rule exp(2X t − t2) = ∑∞
n=0 Hn(X ) t n

n! . For a large value of the parameter |α|2 � 1
the oscillator coherent state may be regarded as macroscopic in nature. The normalization constant for the initial state (3.1) reads
as Ns = [1 + |c|2 + 2( 1−|z|2

1+|z|2 )2s exp(−2|αμ + α∗ν|2) Re (c)]−
1
2 . The parameter c ∈ C appearing in the linear combination (3.1)

allows us to suitably select the initial state. For instance, the choice c = 0 leads to the factorized bipartite state at t = 0, and
therefore the transient formation of the nonclassical states discussed in Sec. VI owes its origin to dynamical effects.

For the spin s = 1 case our approximate diagonalization via the basis states {|E (1)
j ,n〉 |j ∈ (0,±); n = 0, 1, . . .} given in (2.7)

permits us to extract the time evolution of the corresponding initial state (3.1):

|ψ1 (t )〉 =
∑

j

∞∑
n=0

A(1)
j ,n exp

( − iE (1)
j ,nt

) ∣∣E (1)
j ,n

〉
, (3.5)

where the projectors of the initial state (3.1) on the approximate eigenvector basis (2.7) read as

A(1)
0,n ≡ 〈

E (1)
0,n

∣∣ψ1 (0)
〉 = N1√

2 (1 + |z|2)
([z2 − (−1)nc] exp[−ĩλ Im(α)]Sn(α+, ξ ) − [1 − (−1)nc z2] exp[ĩλ Im(α)]Sn(α−, ξ )),

A(1)
±,n ≡ 〈

E (1)
±,n

∣∣ψ1 (0)
〉 = N1√

N (1)
±,n (1+|z|2)

(2�n [z2 + (−1)nc] exp[−ĩλIm(α)]Sn(α+, ξ ) +
√

2(̃λ2 ± δn) z [1 − (−1)nc]Sn(α, ξ )

+ 2�n [1 + (−1)nc z2] exp[ĩλ Im(α)]Sn(α−, ξ )), α± = α ± λ̃. (3.6)

For an arbitrary spin s the present approximation of the evolving bipartite state |ψs (t )〉 produces the pure state density matrix as
follows:

ρ (s)(t ) = |ψs (t )〉〈ψs (t )|. (3.7)

Partial tracing on the oscillator degrees of freedom contained in the density matrix (3.7) for s = 1 case yields the corresponding
reduced qudit density matrix ρ

(1)
Q (t ) = TrO(ρ (1)(t )):

ρ
(1)
Q (t ) =

∞∑
n,̃n=0

⎛⎝ B(1)
+,n(t )B(1)

+,̃n(t )∗ δñn B(1)
+,n(t )B(1)

0,̃n(t )∗ Gñn(−λ̃) B(1)
+,n(t )B(1)

−,̃n(t )∗ Gñn(−2̃λ)
B(1)

0,n(t )B(1)
+,̃n(t )∗ Gñn (̃λ) B(1)

0,n(t )B(1)
0,̃n(t )∗ δñn B(1)

0,n(t )B(1)
−,̃n(t )∗ Gñn(−λ̃)

B(1)
−,n(t )B(1)

+,̃n(t )∗ Gñn(2̃λ) B(1)
−,n(t )B(1)

0,̃n(t )∗ Gñn (̃λ) B(1)
−,n(t )B(1)

−,̃n(t )∗ δñn

⎞⎠, (3.8)
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where the elements are expressed via the sum of the factorized time-dependent components as

B(1)
0,n(t ) = 1√

N (1)
+,n

(̃λ2 + δn) exp
( − iE (1)

+,nt
)
A(1)

+,n + 1√
N (1)

−,n

(̃λ2 − δn) exp
( − iE (1)

−,nt
)
A(1)

−,n,

B(1)
±,n(t ) = ± 1√

2
exp

( − iE (1)
0,n t

)
A(1)

0,n + 2
�n√
N (1)

+,n

exp
( − iE (1)

+,n t
)
A(1)

+,n + 2
�n√
N (1)

−,n

exp
( − iE (1)

−,n t
)
A(1)

−,n. (3.9)

The off-diagonal elements of the density operator (3.8) carry the correlation functions of the oscillator number states:

Gmn(X ) ≡ 〈m|D(X )|n〉 =
⎧⎨⎩exp

(−|X |2
2

)
Xm−n

√
n!
m! Lm−n

n (|X |2) ∀ m � n,

exp
(−|X |2

2

)
(−X ∗)n−m

√
m!
n! Ln−m

m (|X |2) ∀ m < n.
(3.10)

The qudit density matrix (3.8) maintains the required normalization restriction: Trρ (1)
Q = 1. The oscillator-reduced density matrix

for the s = 1 example may also be extracted by partial tracing of the spin variable in the bipartite pure state. We do not reproduce
the result here.

IV. PHASE-SPACE REPRESENTATION OF THE EVOLVING HYBRID SYSTEM

To express the phase-space quasiprobability densities for the spin variable the author of Ref. [48] introduced the spherical
tensor operator

Tkq =
∑
m,m′

(−1)s−m
√

2 k + 1

(
s k s

−m q m′

)
|s m〉〈 s m′|, T †

kq = (−1)q Tk,−q, (4.1)

where the indices read as k ∈ (0, 1, . . . , 2s), q ∈ (−k,−k + 1, . . . , k). The Wigner 3 j coefficient appearing above follows the
standard definition [54] (

j1 j2 j3
m1 m2 m3

)
= (−1) j1− j2−m3 (2 j3 + 1)−

1
2 〈 j1 m1; j2 m2| j3,−m3〉. (4.2)

Towards constructing the phase-space distributions for the hybrid bipartite system we employ the direct product of the spherical
tensor (4.1) and the unit operator acting on the oscillator Hilbert space: Tkq = Tkq ⊗ IO . The bipartite density matrix ρ (s)(t ) given
in (3.7) may now be utilized in the manner of [48] to acquire the spherical tensor components in the compounded Hilbert space:

�kq = TrQ [ρ (s)(t ) T †
kq]. (4.3)

In (4.3) the indices referring to the oscillator variable are not explicitly notified. A partial tracing on the oscillator degree of
freedom in (4.3) readily furnishes the qudit-reduced density matrix in the spherical tensor basis [48]:

�Q
kq ≡ TrO [�kq] = (−1)q

∑
m,m′

(−1)s−m
√

2k + 1

(
s s k
m −m′ q

)
(ρQ )m′m, (ρQ )m′m = 〈s m′| ρQ |s m〉 . (4.4)

For the s = 1 case its structure is obtained via (3.8) and (4.4):

�Q
kq(t )

∣∣
s=1

=
√

2k + 1

(2 − k)!(3 + k)!

∞∑
n,̃n=0

(
δñnδq,0

[
2
(
B(1)

+,n(t )B(1)
+,̃n(t )∗ + (−1)kB(1)

−,n(t )B(1)
−,̃n(t )∗

)

− (k2 + k − 2)B(1)
0,n(t )B(1)

0,̃n(t )∗
] − δq,1

√
2

(k + 1)!

(k − 1)!
Gñn(−λ̃)

[
B(1)

+,n(t )B(1)
0,̃n(t )∗

− (−1)kB(1)
0,n(t )B(1)

−,̃n(t )∗
] + δq,−1

√
2

(k + 1)!

(k − 1)!
Gñn (̃λ)

(
B(1)

0,n(t )B(1)
+,̃n(t )∗

− (−1)kB(1)
−,n(t )B(1)

0,̃n(t )∗
) +

√
(k + 2)!

(k − 2)!

(
δq,−2 Gñn(2̃λ)B(1)

−,n(t )B(1)
+,̃n(t )∗

+ (−1)kδq,2 Gñn(−2̃λ)B(1)
+,n(t )B(1)

−,̃n(t )∗
))

. (4.5)

Adapting the formulation in Ref. [48] for the spin variable and the well-known description of the oscillator degree of freedom
[49,50], we now propose the phase-space quasiprobability distributions of the bipartite system via the decomposition (4.3) of
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the compounded density matrix. In particular, the diagonal P representation of the qudit-oscillator interacting system may be
constructed as

P(θ, φ; β, β∗) = exp(|β|2)

π2

∑
k,q

(−1)k−q ckq

(∫
〈−γ | �kq |γ 〉 exp(|γ |2) exp(β γ ∗ − β∗ γ ) d2γ

)
Ykq(θ, φ), (4.6)

where the spin coefficient reads as [48] ckq =
√

(2 s−k)! (2 s+k+1)!√
4 π (2 s)!

. The coherent states {|γ 〉 , γ ∈ C} in the oscillator phase space
facilitate, via an inverse Fourier transform [49], furnishing the diagonal P(θ, φ; β, β∗) representation for the bipartite density
matrix. The spherical harmonics appearing in (4.6) follow the standard definition [54]. Maintaining its characteristics for
individual phase spaces [48,55] the P representation provides a diagonal factorized coherent state description of an arbitrary
bipartite qudit-oscillator density matrix:

ρ(t ) =
∫

P(θ, φ; β, β∗) |θ, φ; β〉 〈θ, φ; β| d� d2β, d� = sin θ dθ dφ. (4.7)

The diagonal PQ representation for the spin variable [48] may be procured by integrating the bipartite quasiprobability density
(4.6) on the oscillator phase space:

PQ(θ, φ) ≡
∫

P(θ, φ; β, β∗) d2β ⇒ PQ(θ, φ) =
∑

kq

(−1)k−q ckq �Q
kq Ykq(θ, φ),

∫
PQ(θ, φ)d� = 1. (4.8)

Modulo our approximation, Eq. (4.8) admits explicit evaluation of the qudit PQ(θ, φ) representation, say for the s = 1 and
3
2 cases, via the substitution of the corresponding density matrices in the spherical tensor basis given in (4.5) and (B10),
respectively. Unlike its oscillator counterpart, the spin PQ representation is nonsingular, and, therefore, may be fruitfully applied
to observe the phase-space structures such as the transient spin kitten type states.

The construction of the hybrid bipartite Wigner W distribution in the product phase space may be similarly established.
Maintaining the compositions of the individual phase-space Wigner functions for the spin and oscillator variables, we construct
the W distribution for the interacting system as

W(θ, φ; β, β∗) = 1

π2

√
2s + 1

4π

∑
kq

(∫
TrO

[
�kqD(γ )

]
exp(β γ ∗ − β∗ γ ) d2γ

)
Ykq(θ, φ). (4.9)

The above Wigner distribution (4.9) may be recast in the manner of [56] as an infinite alternating series sum of the diagonal
matrix elements of the density operator in the displaced oscillator number state basis:

W(θ, φ; β, β∗) = 2

π

√
2s + 1

4π

∑
kq

∞∑
n=0

(−1)n 〈β, n|�kq|β, n〉Ykq(θ, φ), |β, n〉 = D(β ) |n〉 . (4.10)

An integration of the bipartite quasiprobability function (4.9) over the oscillator phase space generates the Wigner distribution
for the spin degree of freedom [57]:

WQ(θ, φ) ≡
∫

W(θ, φ; β, β∗) d2β ⇒ WQ(θ, φ) =
√

2s + 1

4π

∑
kq

�Q
kq Ykq(θ, φ),

∫
WQ(θ, φ) d� = 1. (4.11)

Continuing our description of the bipartite quasiprobability functions on the joint phase space we now constitute the positive-
semidefinite Husimi Q function for the combined spin-oscillator system via the spherical tensor decomposition (4.3) of the
compounded density matrix:

Q(θ, φ; β, β∗) = 2 s + 1

4 π2

∑
kq

(−1)k−q (ckq)−1 〈β| �kq |β〉 Ykq(θ, φ). (4.12)

The Q function for the spin degree of freedom [48] is recovered from the bipartite construction (4.12) by an integration over the
oscillator phase space:

QQ (θ, φ) ≡
∫

Q(θ, φ; β, β∗) d2β ⇒ QQ (θ, φ) = 2 s + 1

4 π

∑
kq

(−1)k−q (ckq)−1�Q
kq Ykq(θ, φ),

∫
QQ(θ, φ)d� = 1. (4.13)

We also briefly summarize the recipe for constructing the normalized oscillator quasiprobability distributions starting from
the bipartite phase-space densities. Integration of the bipartite distributions over the qudit spherical phase space leads to the
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corresponding oscillator quasiprobabilities [50] listed below:∫
P(θ, φ; β, β∗) d� ≡ PO(β, β∗) = exp(|β|2)

π2

∫
〈−γ | ρO |γ 〉 exp(|γ |2) exp(β γ ∗ − β∗ γ ) d2γ , (4.14)∫

W(θ, φ; β, β∗)d� ≡ WO(β, β∗) = 1

π2

∫
TrO

[
ρOD(γ )

]
exp(β γ ∗ − β∗ γ ) d2γ , (4.15)∫

Q(θ, φ; β, β∗)d� ≡ QO(β, β∗) = 1

π
〈β|ρO|β〉 . (4.16)

A. Explicit structures of the hybrid phase-space distributions for the s = 1 case

The bipartite P representation (4.6) may be explicitly determined by employing the composite density matrix elements (4.3).
The s = 1 example reads as

P(1)(θ, φ; β, β∗) = 1

16π

∞∑
n,̃n=0

{
3(3 − 4 cos θ + 5 cos 2θ )B(1)

+,n(t )B(1)
+,̃n(t )∗�n,̃n

1 − 6(1 + 5 cos 2θ )

×B(1)
0,n(t )B(1)

0,̃n(t )∗�n,̃n
0 + 3(3 + 4 cos θ + 5 cos 2θ ) B(1)

−,n(t )B(1)
−,̃n(t )∗�n,̃n

−1

+
∞∑

k=0

[
12

√
2 sin θ (1 − 5 cos θ ) Re

(
exp (iφ)B(1)

+,n(t )B(1)
0,̃n(t )∗ Gkn(−λ̃)�k,̃n

0

)
+ 12

√
2 sin θ (1 + 5 cos θ ) Re

(
exp (−iφ) B(1)

−,n(t )B(1)
0,̃n(t )∗ Gkn (̃λ)�k,̃n

0

)]
+

∞∑
k,�=0

60 sin2 θ Re
(
exp (2iφ)B(1)

+,n(t )B(1)
−,̃n(t )∗Gkn(−λ̃) Gñ�(−λ̃)�k,�

0

)}
, (4.17)

where the weighted distribution has the form �n,̃n
m = 1√

n!̃n!
exp(|βm|2)(− ∂

∂βm
)n(− ∂

∂β∗
m

)̃nδ(2)(βm), and the spin-dependent displaced

coordinate is given by βm = β + mλ̃. The oscillator phase-space integral of the composite quasiprobability density (4.17)
provides, in the manner of (4.8), the qudit s = 1 diagonal PQ representation

P(1)
Q (θ, φ) = 1

16π

∞∑
n,̃n=0

{
3 (3 − 4 cos θ + 5 cos 2θ )B(1)

+,n(t )B(1)
+,̃n(t )∗ δñn − 6 (1 + 5 cos 2θ ) B(1)

0,n(t )B(1)
0,̃n(t )∗ δñn

+ 3 (3 + 4 cos θ + 5 cos 2θ )B(1)
−,n(t )B(1)

−,̃n(t )∗ δñn + 12
√

2 sin θ (1 − 5 cos θ )Re
(

exp (iφ)

×B(1)
+,n(t )B(1)

0,̃n(t )∗Gñn(−λ̃)
) + 12

√
2 sin θ (1 + 5 cos θ )Re

(
exp (−iφ)B(1)

−,n(t )B(1)
0,̃n(t )∗Gñn (̃λ)

)
+ 60 sin2 θ Re

(
exp (2iφ)B(1)

+,n(t )B(1)
−,̃n(t )∗Gñn(−2̃λ)

)}
. (4.18)

Alternately, (4.18) may be directly computed via the corresponding spin density matrix (4.5) in the spherical tensor basis and the
construction [48] of the PQ(θ, φ) representation appearing at the first equality in (4.8). This provides a consistency check on the
structure of the hybrid P representation (4.6). Similarly, the composition (4.10) of the bipartite Wigner W distribution provides
its explicit evaluation for the s = 1 case:

W(1)(θ, φ; β, β∗) = 1

16π2

∞∑
n,̃n=0

(
(8 +

√
10 + 12

√
2 cos θ + 3

√
10 cos 2θ )Hn,̃n

1,1(β, β∗)B(1)
+,n(t )B(1)

+,̃n(t )∗

+ (
8 + 4

√
10 − 12

√
10 cos2 θ

)
Hn,̃n

0,0(β, β∗)B(1)
0,n(t )B(1)

0,̃n(t )∗ + (
8 +

√
10 − 12

√
2 cos θ

+ 3
√

10 cos 2θ
)
Hn,̃n

−1,−1(β, β∗)B(1)
−,n(t )B(1)

−,̃n(t )∗ + 24(1 +
√

5 cos θ ) sin θ

× Re
{
Hn,̃n

1,0(β, β∗) exp[i(φ + λ̃Im(β ))]B(1)
+,n(t )B(1)

0,̃n(t )∗
} + 24(1 −

√
5 cos θ ) sin θ

× Re
{
Hn,̃n

−1,0(β, β∗) exp
[
i
(
φ + λ̃Im(β )

)]
B(1)

−,n(t )B(1)
0,̃n(t )∗

} + 12
√

10 sin2 θ

× Re
{
Hn,̃n

1,−1(β, β∗) exp[2i(φ + λ̃Im(β ))]B(1)
+,n(t )B(1)

−,̃n(t )∗
})

, (4.19)
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where the complex Gaussian structure stands as

Hn,̃n
k,�

(β, β∗) = 1√
n!̃n!

(β∗
k + β∗

� )n(βk + β� )̃n exp

(
−1

2
(|βk|2 + |β�|2) − βkβ

∗
�

)
2F0

(
−n,−ñ; −; − 1

|βk + β�|2
)

and the hypergeometric sum is given by [58] 2F0(x, y; −; τ ) = ∑∞
k=0(x)k (y)k

τ k

k! , (x)k = ∏k−1
�=0(x + �). Choosing nega-

tive integers as numerator coefficients the function 2F0 may be expressed [59] via the Charlier polynomial ck (�; τ ) =
2F0(−k,−�; −; − 1

τ
) ∀ τ > 0. To derive the bipartite W distribution (4.19) we utilize an identity [59] that readily follows from

the bilinear generating function of the Charlier polynomials:
∞∑

k=0

(−1)kτ k

k!
2F0

(
− n,−k; −; −1

x

)
2F0

(
− k,−m; −; −1

y

)
=

(
1 + τ

x

)n
(

1 + τ

y

)m

exp(−τ )

×2F0

(
− n,−m; −; − τ

(x + τ )(y + τ )

)
. (4.20)

A reduction of the phase space via the integration over the complex plane given in (4.11) now procures the qudit WQ distribution
concretely for the s = 1 case:

W(1)
Q (θ, φ) = 1

32π

∞∑
n,̃n=0

{
(8 +

√
10 + 12

√
2 cos θ + 3

√
10 cos 2θ )B(1)

+,n(t )B(1)
+,̃n(t )∗ δñn + (8 + 4

√
10

− 12
√

10 cos2 θ )B(1)
0,n(t )B(1)

0,̃n(t )∗ δñn + (8 +
√

10 − 12
√

2 cos θ + 3
√

10 cos 2θ )

×B(1)
−,n(t )B(1)

−,̃n(t )∗ δñn + 24(1 +
√

5 cos θ ) sin θ Re
(
exp(iφ) B(1)

+,n(t )B(1)
0,̃n(t )∗Gñn(−λ̃)

)
+ 24(1 −

√
5 cos θ ) sin θ Re

(
exp(−iφ) B(1)

−,n(t )B(1)
0,̃n(t )∗Gñn (̃λ)

) + 12
√

10 sin2 θ

× Re
(
exp(2iφ) B(1)

+,n(t )B(1)
−,̃n(t )∗Gñn(−2̃λ)

)}
. (4.21)

The above expression may also be directly obtained by applying our evaluation of the spin density matrix (4.5) in a spherical
basis, and utilizing the construction [48] of the WQ(θ, φ) representation realized in (4.11). This implements a consistency check
on the validity of the hybrid W representation (4.9) advanced here. We also proceed with a similar demonstration of the bipartite
Q function given in (4.12). The compounded Q function for the qudit-oscillator system may be composed by employing the
corresponding hybrid density matrix (4.3). The s = 1 example is quoted below:

Q(1)(θ, φ; β, β∗) = 3

4π2

∞∑
n,̃n=0

(
sin4

(
θ

2

)
Yn,̃n

1,1 (β, β∗)B(1)
+,n(t )B(1)

+,̃n(t )∗ + sin2 θ

2
Yn,̃n

0,0 (β, β∗)B(1)
0,n(t )B(1)

0,̃n(t )∗

+ cos4

(
θ

2

)
Yn,̃n

−1,−1(β, β∗)B(1)
−,n(t )B(1)

−,̃n(t )∗ +
√

2 sin θ sin2

(
θ

2

)
Re

{
Yn,̃n

1,0 (β, β∗)

× exp[i(φ + λ̃Im(β ))]B(1)
+,n(t )B(1)

0,̃n(t )∗
} +

√
2 sin θ cos2

(
θ

2

)
Re

{
Yn,̃n

−1,0(β, β∗)

× exp[−i(φ + λ̃Im(β ))]B(1)
−,n(t )B(1)

0,̃n(t )∗
} + sin2 θ

2
Re

{
Yn,̃n

1,−1(β, β∗)

× exp[2i(φ + λ̃Im(β ))]B(1)
+,n(t )B(1)

−,̃n(t )∗
})

. (4.22)

In the expression (4.22) we have employed the notation Yn,̃n
k,�

(β, β∗) = 1√
n!̃n!

β∗n
k β ñ

� exp[− 1
2 (|βk|2 + |β�|2)]. A further integration

on the oscillator variables in the manner of (4.13) now generates the s = 1 qudit Q(1)
Q function that may alternately be established

starting from the spin density matrix (4.5) in the spherical basis set and implementing the construction given in [48]:

Q(1)
Q (θ, φ) = 3

4π

∞∑
n,̃n=0

{
sin4

(
θ

2

)
B(1)

+,n(t )B(1)
+,̃n(t )∗δñn + 1

2
sin2 θ B(1)

0,n(t )B(1)
0,̃n(t )∗δñn

+ cos4

(
θ

2

)
B(1)

−,n(t )B(1)
−,̃n(t )∗δñn +

√
2 sin θ sin2

(
θ

2

)
Re

[
exp (iφ)B(1)

+,n(t )B(1)
0,̃n(t )∗Gñn(−λ̃)

]
+

√
2 sin θ cos2

(
θ

2

)
Re

[
exp (−iφ)B(1)

−,n(t )B(1)
0,̃n(t )∗Gñn (̃λ)

] + sin2 θ

2
Re

[
exp (2iφ)B(1)

+,n(t )B(1)
−,̃n(t )∗Gñn(−2̃λ)

]}
.

(4.23)

The preceding discussion allows us to view the hybrid bipartite phase-space quasiprobability distribution as the underlying
structure that produces the appropriate qudit phase-space function after a suitable dimensional reduction.
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FIG. 2. For the factorized initial state (3.1) with c = 0 the time evolution of the entropy for the s = 1 case is studied. (a) For the
strong coupling regime (̃λ = 0.005) the chosen parametric values are as follows: � = 0.16, z = 0.0200, α = 3, r = 0.2. To explore
the near recurrence of the initial state during the evolution the Hilbert-Schmidt distances between the initial state at t0 = 0 and the
states at tA = 1.571 175 × 106, tB = 3.141 990 × 106, tC = 4.712 833 × 106, tL = 6.284 030 × 106 are computed as follows: dHS|tA =
0.900 173, dHS|tB = 1.083 885, dHS|tC = 1.318 340, dHS|tL = 0.007 481. It is evident that the system achieves near reproduction of its initial
state at tL ≡ Trev. Here and elsewhere, all times are specified in the scale ω−1, and for all numerical work we use the unit ω = 1. The quasiperiod
(5.2) of the time evolution of the entropy for the present set of parameters equals 1.570 816 × 106, which is nearly identical to tA. The full revival
time (5.4) now corresponds to n = 4. Locally minimum, but considerably large value of entropy is realized at time, say, tD = 0.785 496 × 106.
The spin states at (tD, tA, tB, tC) are studied in Fig. 3. (b) The nearly pure spin cat type states appearing at the local minima of the entropy
live for moderately long intervals around the exact minima. For instance, the generalized spin cat state realized at the nearly zero-entropy
configuration at tA [Fig. 3(b)] lives for an extended period ranging between tA′ = 1.569 996 × 106 and tA′′ = 1.572 354 × 106. (c) For the
ultrastrong coupling regime we chose λ̃ = 0.2 while all other parameters remain identical to those in diagram (a). It is marked by loss of
quasiperiodicity, and an onset of a stabilized value of entropy that experiences stochastic fluctuations.

V. MULTIPLE TIMESCALES IN
THE EVOLUTION OF ENTROPY

To explore the emergence of transitory spin kitten type
states and other localized configurations during the evolution
generated by the bipartite Hamiltonian (2.1) at moderately
strong coupling λ̃ ∼ O(10−2) we study the qudit entropy
given by

S(ρQ) = −Tr[ρQ ln ρQ], (5.1)

where we have omitted explicit reference to the spin quan-
tum number s. As our bipartite system inhabits a pure state,
the entropies of two individual subsystems are equal [60].
It may be viewed as the entanglement entropy of the hybrid
composite system. The characteristic timescale that governs
the appearance of these kitten type states may be under-
stood as follows. The terms emerging in the expansion of
the Laguerre polynomials present in the off-diagonal ele-
ments of the Hamiltonian for the spin s = 1, 3

2 cases given in
Eqs. (2.5) and (B1), respectively, engender specific timescales
inherent to the process. In the analysis presented here we

explore the first nontrivial dimensionless timescale ω tlong ∼
O{[�

ω
exp(− λ̃2

2 )̃λ2]−1} that originates as a consequence of the
linear term appearing in the Laguerre polynomial. For the set
of parameters considered here, the above timescale is given by
ω tlong ∼ O(106). It is interesting to note that this scale trig-
gering the generation of nontrivial spin states does not depend
on the value of spin s. It may have a practical consequence
that we will later comment upon. To proceed, we consider
the entropy (5.1) for the spin s = 1, 3

2 cases in Figs. 2(a) and
4(a), respectively. One general feature evident in these two
diagrams is the existence of a quasiperiodicity of the system
that implements the entropy reducing to approximately zero
value repeatedly. This, in turn, imparts a near factorizability
to the bipartite composite state. Following previous arguments
this quasiperiod may be quantified as

ωT|quasiperiod = 2π

{[
�

ω
exp

(
− λ̃2

2

)
λ̃2

]−1}
. (5.2)

Our later discussions in the context of Figs. 2 and 4 regard-
ing the evolution of specific states will support the accuracy

(a) (b) (c) (d)

FIG. 3. We display the construction of the diagonal PQ(θ, φ) representation for the s = 1 example studied in Fig. 2(a). The diagrams
(a)–(d) refer, successively, to the times tD, tA, tB, tC therein. The bilocalized spin state, evident in the illustration (a) above, is realized at tD

when the nonzero locally minimum entropy induces a mixed-state density matrix. The spin cat type states depicted in (b), (c), and (d) arise at
times (tA, tB, tC), consecutively. They refer to nearly pure state density matrices reflecting superposition of spin coherent states (Table III).
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(a) (b) (c)

FIG. 4. The quasiperiodic evolution of the entropy for the s = 3
2 case is produced for the factorized initial state (3.1) with c = 0. (a) Here

the chosen parameters are � = 0.15, z = 0.1051, α = 3, r = 0.2, and the coupling strength equals λ̃ = 0.007. The Hilbert-Schmidt distance
is studied to infer the closeness of the evolving state with its initial (t0 = 0) counterpart. At times tA = 0.854 819 × 106, tB = 1.710 040 ×
106, tL = 2.564 985 × 106 the state achieves near-null entropy configurations. The Hilbert-Schmidt distances between the initial state and
the qudit states at these times dHS|tA = 0.917 149, dHS|tB = 0.924 257, dHS|tL = 0.019 044 suggest near duplication of the initial state at time
tL ≡ Trev. For the current set of parameters the quasiperiod (5.2) of the near-null value of the entropy stands as 0.854 876 × 106, which closely
equals tA. The corresponding full revival time (5.4) is given by n = 3. The observed transitory spin kitten type states occurring at times (tA, tB)
are specified in Figs. 5(b) and 5(c). The 3-localized spin state [Fig. 5(a)] observed, say, at time tD = 0.570 000 × 106 corresponds to locally
minimum but markedly large entropy [S(ρQ) � O(ln 4)]. (b) The three-spin kitten type state formed, for instance, at time tA lives for an
elongated time period ranging between tA′ = 0.847 608 × 106 and tA′′ = 0.862 007 × 106. (c) For the ultrastrong coupling regime λ̃ = 0.2 [all
other parameters retain their values considered in (a)] the quasiperiodicity of the evolving state is lost. Random fluctuations occur around a
steady state of entropy.

of this description. Towards checking the true periodicity of
the system we evaluate the Hilbert-Schmidt distance [61]
between the initial qudit state and the evolving state under
investigation. Between any two arbitrary density matrices
((ρQ )1, (ρQ )2) the Hilbert-Schmidt distance is defined as
follows:

[dHS((ρQ )1, (ρQ )2)]2 ≡ Tr[[(ρQ )1 − (ρQ )2]2]

= 4π

2s + 1

∫
[(WQ (θ, φ))1

− (WQ (θ, φ))2]2d�. (5.3)

The equality in (5.3) follows from the definition (4.11). It suc-
cinctly expresses the metric dHS((ρQ)1, (ρQ)2) on the Hilbert
space via the corresponding spin Wigner WQ(θ, φ) distri-
butions. The distance measures between the initial state and
various states in question are quoted in Figs. 2(a) and 4(a).
In these illustrations we notice that the system returns, in a
timescale, say Trev, close to its initial state after an integral
number of its arrivals to the approximately zero-entropy con-
figurations. Roughly speaking, we obtain

Trev ≈ nT|quasiperiod, (5.4)

where n is a small positive integer. The near reproduction of
the original state in the phase space may be considered as
a spin analog of the quantum revival of a wave packet [62].
We will later observe (Sec. VI A) that the approximately zero-
entropy configurations [S(ρQ) � 1], which are significantly
distinct from the initial state as measured by the metric (5.3)
[dHS(ρQ (t0), ρQ (t )) ∼ O(1)], display characteristic proper-
ties of generalized spin kitten states. Being endowed with
near-null values of entropy, these qudit states are almost pure
in nature. Another feature noticed in Figs. 2(a) and 4(a) is
the almost periodic manifestation of the locally minimum,
but, nonetheless, appreciably large entropy configurations
S(ρQ) � O[ln(2s + 1)]. The eigenvalues of the spin density

matrix ρQ at these times are dominated by several large en-
tries. This suggests that mixed qudit states at considerable
distances from nearly pure ones are realized at these instants.
The formation of these entropy minima states has close cor-
respondence with the fractional revival of the wave packets
[62]. Akin to the system of wave packets, the present bipar-
tite system also maintains the time of manifestation of the
quantum fractional revivals as k

�
Trev, where (k, �) are coprime

integers [63]. For the spin s = 1 case the locally minimum, but
significantly large, entropy states occur at times (tD, tE, tF, tG)
in Fig. 2(a). The PQ representation, say, at time tD [Fig. 3(a)]
is bilocalized in two approximately antipodal domains of
the spherical phase space. As the spin increases, more com-
plex localized phase-space distributions start appearing due
to the feasibility of wider distribution of the eigenvalues
of the density matrix ρQ generated at these entropy mini-
mum configurations. For the spin s = 3

2 case we investigate
the evolving state at time (tD) considered in Fig. 4(a). The
corresponding spin PQ representation [Fig. 5(a)] depicts a
3-localized distribution of the quasiprobability density.

For a quantitative comparison of the localization achieved
at various states during the evolution we adopt the measure
of complexity introduced in [64], and utilized by authors of
Ref. [65] for analyzing the spin phase-space distributions.
Employing the second moment of the non-negative qudit
QQ (θ, φ) function it represents the effective phase-space vol-
ume occupied by the quantum state:

W2(QQ ) = [M2(QQ )]−1, M2(QQ ) =
∫

(QQ (θ, φ))2 d�.

(5.5)
The evaluations of W2(QQ ) quoted in Tables I and II suggest
that compared to the spin kitten type states and other localized
states, the high-entropy configurations [marked, for instance,
by black broken lines in Figs. 2(a) and 4(a)] involve wider
spread of phase-space distributions.
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FIG. 5. For the initial state (3.1) with c = 0 we produce the spin quasiprobability PQ(θ, φ) representation for the s = 3
2 case at various

times considered in Fig. 4(a). The parametric choices here are identical to those in Fig. 4(a). The generalized spin kitten states arising at times
tA and tB, when almost zero-entropy configurations trigger formation of nearly pure states, are illustrated in diagrams (b) and (c), respectively.
Reconstruction of these states is discussed in Table III. The locally minimum, but significantly large, entropy structure realized at time tD

produces 3-localized spin state [diagram (a)] represented by a mixed-state density matrix.

Following our explicit verification (Fig. 9) of the effec-
tiveness of the adiabatic approximation for the ultrastrong
coupling domain λ̃ ∼ O(10−1) under the restriction of the
present parametric regime, we consider the corresponding
evolution of the entropy [Figs. 2(c) and 4(c)]. In contrast
to the preceding discussion, the ultrastrong coupling domain
incorporates a large number of interaction modes and their
harmonics with a wide range of characteristic timescales
O{[�

ω
exp(− λ̃2

2 )̃λ2n]−1}, where n ∈ (0, 1, 2, . . .). As a conse-
quence, the phase correlations among the interacting modes in
the system are lost causing the disappearance of any collapse
and revival pattern. The randomization of the phases induces
the quasiperiodicity of the qudit entropy to vanish, and the
system does not return close to its initial configuration in a
finite time. A stabilization of the value of entropy [Figs. 2(c)
and 4(c)] sets in, while a random stochastic fluctuation around
the stabilized value of entropy is also observed.

VI. NONCLASSICAL FEATURES IN THE PHASE SPACE

A. Generalized spin kitten states

In general, the spin kitten type states may be understood
as a linear superposition of suitably small number of spin
coherent states. These pure state density matrices are charac-
terized by zero value of the qudit entropy. An observation of
Figs. 2(a) and 4(a) suggests that during the dynamical evolu-
tion the near-null values of entropy are recurrently reproduced
at integral multiples of the quasiperiod (5.2). In addition, if
these instances do not correspond to full revival (5.4), then
the respective states reside, as measured by the metric (5.3),
significantly far away from the factorized initial state. The
descriptions following Figs. 2(a) and 4(a) suggest that the
Hilbert-Schmidt distances between the states in question and
the corresponding initial states maintain an order of mag-
nitude estimate of the metric: dHS(ρQ(t0), ρQ(t )) ∼ O(1).
Moreover, as these states are realized at locally minimum

values of entropy during the evolution, they are relatively
stable. To quantitatively characterize these approximate gen-
eralized spin kitten states, we consider their reconstruction via
a variational technique based on minimization of the Hilbert-
Schmidt distance between the dynamical state and a trial
state comprising of a pure part, and an accompanying small
component of a mixed state:

ρ̃
(s)
Q = τ

(̃
ρ

(s)
Q

)
pure

+ (1 − τ )
(̃
ρ

(s)
Q

)
mixed

, 0 � τ � 1,

(6.1)
where the index τ measures the purity of the reconstructed
state. The pure density matrix in (6.1) employs an ensemble
of p′(> 1) superposed spin coherent states:(̃

ρ
(s)
Q

)
pure = |�〉 〈�| , |�〉 =

p′∑
k=1

ck |z′k〉 ,

z′k = tan

(
θ ′

k

2

)
exp(−iφ′

k ), 〈�|�〉 = 1. (6.2)

The state |�〉 in the above construction represents generalized
spin kitten state. Making a slight departure from the standard
[26,27] display of kitten states we admit in the construction
given above unequal values of the norm of the complex co-
efficients {ck}. Our generalized spin kitten states, therefore,
contain asymmetrical superposition of spin coherent states.
The mixed-state component (6.1) contains a convex combi-
nation of p′′ spin coherent state density matrices:

(̃ρ (s)
Q )mixed =

p′′∑
�=1

g� |z′′�〉 〈z′′� | ,

z′′� = tan

(
θ ′′
�

2

)
exp(−iφ′′

� ), 0 � g� � 1,

p′′∑
�=1

g� = 1. (6.3)

TABLE I. For the s = 1 case, we compute the complexity variable W2 measuring the occupancy of the phase space at the locally minimal
entropy configurations, and at a time t = 1.941 000 × 106 [black broken line in Fig. 2(a)] when the entropy attains a near-maximal value:

S(ρ (1)
Q ) = 1.038 41. The complexity value increases with the increment of the entropy of the state indicating the consequent larger spread of

the quasiprobability density on the qudit phase space.

Time given in Fig. 2(a) tD tA tB tC 1.941 × 106

Complexity: W2(QQ ) 11.95705 8.38795 10.45519 8.35376 12.39729
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TABLE II. The complexity measure W2 is computed for s = 3
2

case at times when the mixed localized qudit state (tD) as well as
the nearly pure generalized spin kitten states (tA, tB) form. For com-
parison, the measure is also provided at time t = 1.189 300 × 106

[black broken line in Fig. 4 (a)], when the increased value of entropy

S(ρ
( 3

2 )
Q ) = 1.222 53 causes a spreading of the spin QQ function.

Time given in Fig. 4(a) tD tA tB 1.1893 × 106

Complexity: W2(QQ ) 11.54365 9.09614 9.15175 11.58050

The identifying parameters (τ, p′, {ck}, {z′k}, p′′, {g�}, {z′′�}) of
the marker state (6.1) are varied to enact a numerical
minimization of the Hilbert-Schmidt distance between the
investigated state appearing at specified time and its trial re-
construction: dHS(ρ (s)

Q (t ), ρ̃ (s)
Q ). Our results are summarized in

Table III. Towards pursuing the said numerical minimization
process we start with the least number of real parameters
required for reconstruction. For instance, if the entropy of the
evolving qudit state at a particular time has near-null value
and three peaks are evident in the PQ representation, then
an obvious candidate for the construction of its marker state
(6.1)–(6.3) is given by superposition of three spin coherent
states constituting the overwhelmingly large pure component,
while a smaller contribution of the mixed-state density matrix
is added to facilitate the minimization process. Moreover,
close proximity of the values of the complexity variable (5.5)
of the dynamical state and its trial entry serves as another
benchmark of the selection process. This acts as a useful
check against, say, a wrong choice of the value of p′. In
the iterative optimization process we have varied two real
parameters at a time. The iterations are continued until the
Hilbert-Schmidt distance achieves a converged value. If the
above minimization process indicates a linear superposition of
p′ spin coherent states in the reconstruction of the vector |�〉
given in (6.2), we refer to the corresponding density matrix as
the generalized p′-spin kitten state.

Another pertinent feature regarding the formation of gen-
eralized spin kitten states is their lifetime. The period of
existence of these states is specifically marked in Figs. 2(b)
and 4(b). For our parametric range these transient states
live approximately for time span O(104). We observe that
decreased values of qudit gap (�) as well as the coupling
strength (λ) lead to enhanced time of existence of the tran-
sitory spin kitten type states.

B. Second-order spin correlation function

Towards further study on the coherence properties of the
nearly pure kitten type and other localized mixed qudit states
we use the normalized second-order spin correlation function
[23,27] defined as

gs(t ) = 〈S2
+S2

−〉
〈S+S−〉2 , 〈�〉 ≡ Tr[ρQ (t ) �]. (6.4)

The correlation function (6.4) determines [23] possible ex-
istence of antibunching effect in the emission spectrum of
photons. When the initial state (3.1) reduces to a spin coherent
state (3.3) for the c = 0 choice, the correlation function (6.4)

TA
B

L
E

II
I.

T
he

fir
st

bl
oc

k
of

ro
w

s
in

th
e

ta
bl

e
de

sc
ri

be
s

th
e

ge
ne

ra
liz

ed
sp

in
ki

tte
n

st
at

es
(s

=
1)

de
pi

ct
ed

in
Fi

gs
.3

(b
)–

3(
d)

co
rr

es
po

nd
in

g
to

re
sp

ec
tiv

e
tim

es
(t

A
,
t B

,
t C

)g
iv

en
in

Fi
g.

2(
a)

.
A

lm
os

t
pu

re
ge

ne
ra

liz
ed

ki
tte

n
st

at
es

fo
rm

ed
he

re
ar

e
ex

pr
es

se
d

as
su

pe
rp

os
iti

on
of

tw
o

sp
in

co
he

re
nt

st
at

es
.T

he
fo

llo
w

in
g

bl
oc

k
of

ro
w

s
re

co
ns

tr
uc

t
th

e
ki

tte
n

ty
pe

st
at

es
(s

=
3 2
)

ob
se

rv
ed

in
Fi

gs
.5

(b
)

an
d

5(
c)

ap
pe

ar
in

g,
co

ns
ec

ut
iv

el
y,

at
tim

es
(t

A
,
t B

)
[F

ig
.4

(a
)]

.T
he

se
ge

ne
ra

liz
ed

ki
tte

n
st

at
es

em
bo

dy
su

pe
rp

os
iti

on
of

th
re

e
sp

in
co

he
re

nt
st

at
es

.T
ow

ar
ds

st
ud

yi
ng

th
e

fo
rm

at
io

n
of

ge
ne

ra
liz

ed
ki

tte
n

st
at

es
w

he
n

th
e

in
iti

al
st

at
e

(3
.1

)
is

en
ta

ng
le

d,
w

e
co

ns
id

er
th

e
ex

am
pl

e
s

=
3 2
,c

=
i

in
th

e
fin

al
ro

w
of

th
e

ta
bl

e.
T

he
ne

ar
ly

pu
re

sp
in

ki
tte

n
ty

pe
st

at
e

ob
se

rv
ed

at
t A

in
Fi

g.
11

(a
1
)

m
ay

be
co

m
po

se
d

of
a

su
pe

rp
os

iti
on

of
th

re
e

sp
in

co
he

re
nt

st
at

es
.I

n
al

lo
f

th
e

ab
ov

e
re

co
ns

tr
uc

tio
ns

w
e

ad
d

a
sm

al
lc

on
tr

ib
ut

io
n

of
a

co
he

re
nt

de
ns

ity
m

at
ri

x
to

w
ar

ds
di

m
in

is
hi

ng
th

e
m

et
ri

ca
ld

is
ta

nc
e.

t
p′

,
p′′

S
(ρ

(s
)

Q
(t

))
,S

(̃ρ
(s

)
Q

)
τ

θ
′ k
|k

=
1,

··
·,

p′
φ

′ k
|k

=
1,

··
·,

p′
c k

|k
=

1,
··

·,
p′

θ
′′ �

|�
=

1,
··

·,
p′′

φ
′′ �
|�

=
1,

··
·,

p′′
g �

|�
=

1,
··

·,
p′′

d H
S
( ρ

(s
)

Q
(t

),
ρ̃

(s
)

Q
)

s
=

1,
c

=
0

t A
2,

1
0.

00
00

77
,0

.0
07

22
7

0.
99

8
1.

14
48

27
,0

.2
34

03
9

−3
.0

29
56

3,
2.

57
20

28
−0

.9
61

96
1

−
0.

71
28

82
i,

1.
35

70
50

+
0.

12
02

45
i

0.
10

00
00

−3
.1

41
59

2
1

0.
00

49
13

t B
2,

1
0.

00
01

60
,0

.0
08

29
3

0.
99

8
0.

60
21

72
,2

.7
24

22
0

−0
.7

51
88

6,
2.

18
81

10
−0

.5
36

97
7

−
0.

47
48

48
i,

0.
70

11
77

−
0.

06
21

29
i

1.
69

00
00

−2
.2

40
00

0
1

0.
00

43
22

t C
2,

1
0.

00
02

08
,0

.0
22

90
3

0.
99

6
1.

78
44

20
,3

.1
40

42
0

−2
.6

82
16

0,
2.

62
78

40
−0

.2
80

79
8

−
0.

91
84

42
i,

0.
92

42
92

+
0.

08
18

99
i

0.
75

00
00

1.
71

00
00

1
0.

00
52

27

s
=

3 2
,c

=
0

t A
3,

1
0.

00
11

78
,0

.0
35

04
8

0.
99

2
2.

53
33

50
,0

.2
52

96
7,

0.
90

70
40

1.
65

37
10

,−
0.

40
62

94
,
0.

68
37

06
0.

55
87

71
+

0.
37

83
80

i,
0.

54
99

72
,
0.

03
73

98
+

0.
52

35
73

i
0.

16
00

00
0

1
0.

02
29

58

t B
3,

1
0.

00
08

19
,0

.0
22

22
6

0.
99

5
2.

52
11

00
,0

.5
42

83
0,

3.
13

98
20

−2
.7

07
05

0,
0.

04
61

32
,0

.8
36

13
2

−0
.0

64
72

5
−

0.
52

75
16

i,
0.

57
60

61
+

0.
54

69
34

i,
0.

75
00

00
0

1
0.

01
57

68

0.
31

39
21

+
0.

33
01

02
i

s
=

3 2
,c

=
i

t A
3,

1
0.

14
04

08
,0

.1
30

25
2

0.
94

7
2.

75
20

70
,0

.6
07

44
9,

3.
02

66
10

−2
.8

41
18

0,
−3

.0
01

17
9,

0.
80

88
21

−0
.7

86
28

5i
,0

.7
09

19
9

+
0.

24
66

78
i,

0.
98

15
72

+
0.

54
47

47
i

2.
34

04
78

−0
.5

32
89

5
1

0.
02

89
34

063703-12



GENERALIZED SPIN KITTEN STATES … PHYSICAL REVIEW A 103, 063703 (2021)

FIG. 6. For the factorized initial state (3.1) with c = 0 the time evolution of the second-order correlation function gs(t ) is studied. For
the s = 1 case in the strong coupling regime considered in the diagram (a1), the coupling strength, other parameters, and the marked times
of revival are taken to be identical to those in Fig. 2(a). Similarly the diagram (b1) depicts the correlation function for the example s = 3

2
where the coupling strength, other parametric values, and the times of total as well as fractional revivals are exactly same as those in Fig. 4(a).
Compared to the other instances of revival, the fluctuations in gs(t ) as observed for 3-localized mixed qudit states at times tC, tD in (b1) are
lesser as the corresponding dips in the entropy [Fig. 4(a)] are marginal. A distinctive feature between the insets in (a1) and (b1) reveals that
the condition of antibunching of the emitted photons gs(t ) < 1 is more strongly satisfied for the lesser spin s = 1 case. Diagrams (a2) and (b2)
study the incoherent chaotic behavior of gs(t ) at the ultrastrong coupling regime λ̃ = 0.2. Other parametric values of (a1)/(b1) are retained in
(a2)/(b2). Here also the validity of the antibunching condition occurs far more frequently for the lower-spin s = 1 example than its higher-spin
analog.

reads as [66]

gs(t = 0) =
(

2s − 1

s

)[
2s + tan2

(
θ̃

2

)]−2

×
[

tan4

(
θ̃

2

)
+ 2(2s − 1) tan2

(
θ̃

2

)
+ s(2s − 1)

]
.

(6.5)

In the strong coupling regime studied here, we explore
the time dependence of the correlation function (6.4) to dis-
tinguish the temporal generalized kitten and other localized
spin states from the residue characterized by high-entropy
configurations noticed, say, in Figs. 2(a) and 4(a). The qudit
density matrices for s = 1 and 3

2 examples given in Eqs. (3.8)
and (B7), respectively, now furnish the corresponding time-
dependent spin correlation function (6.4). For the examples

considered here, the function gs(t ) given in (6.4) may be
expressed via the ensemble averages listed below:

〈S+S−〉s=1 = 2
∞∑

n=0

(∣∣B(1)
+,n(t )

∣∣2 + ∣∣B(1)
0,n(t )

∣∣2),
〈S2

+S2
−〉s=1 = 4

∞∑
n=0

∣∣B(1)
+,n(t )

∣∣2, (6.6)

〈S+S−〉s= 3
2

=
∞∑

n=0

[
3
(
B(2,2)

n,n (t ) + B(−1,−1)
n,n (t )

) + 4B(1,1)
n,n (t )

]
,

〈S2
+S2

−〉s= 3
2

= 12
∞∑

n=0

(
B(2,2)

n,n (t ) + B(1,1)
n,n (t )

)
. (6.7)

The total and fractional revivals observed in the strong cou-
pling domain [Figs. 6(a1) and 6(b1)] are symbolized by nearly
sinusoidal, large-amplitude, and short-range oscillations in the
time evolution of gs(t ). These oscillations with time period
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∼O(ω−1) are visible in the insets of Figs. 6(a1) and 6(b1).
Qualitatively, this may be understood as follows. These revival
times are rational multiples of T|quasiperiod given in (5.2). At
the time of revival there is a drop in entropy of the qudit.
Relatively few modes of quantum fluctuations present at the
instants of revival interfere coherently and give rise to tran-
sient harmonic fluctuations observed at those times. Away
from these periods the qudit inhabits a highly mixed state and
the entropy returns to its near-maximal value. For the high-
entropy states a randomization of the phases of the fluctuation
modes sets in. This, in turn, leads the oscillations to largely
annihilate each other. This is evident [Figs. 6(a1) and 6(b1)] in
the collapse of the fluctuations of the function gs(t ) at instants
off the revival times.

Another characteristic of the normalized correlation func-
tion gs(t ) evident in Figs. 6(a1) and 6(b1) is that successive
antibunching and bunching of the emitted radiation appear
during the short-range coherent oscillations generated at the
moments of revival. For the correlation function in the range
gs(t ) < 1 (gs(t ) > 1) antibunching (bunching) of the emis-
sion process takes place. On the occasions of antibunching
of the radiation the photoevents are said to be anticorrelated,
i.e., occurrence of one makes the next one less likely. Os-
cillations observed in the correlation function gs(t ) at the
instants of revival [insets of Figs. 6(a1) and 6(b1)] demon-
strate the consecutive display of antibunching and bunching
effects. Collective interaction of the atoms with the photon
field is known [23] to diminish the antibunching of radiation.
In our context, it is revealed in a comparison of the insets in
Figs. 6(a1) and 6(b1). For the spin s = 3

2 example the minima
of gs(t ) achieved during revivals are comparatively higher
than those realized for spin s = 1 case. This points towards
the reduction of antibunching effects with increasing spin.

As observed before the ultrastrong coupling domain λ̃ �
O(1) generates a progressively large number of interaction
modes with widely distributed characteristic timescales. As
a consequence, the phase correlations among the interacting
modes endowed with incommensurate frequencies are com-
pletely lost. The randomization of the phases eliminates all
quasiperodic patterns. In particular, the time evolution of gs(t )
in this domain exhibits [Figs. 6(a2) and 6(b2)] chaotic behav-
ior without any quantum collapse and revival structure. In this
fully randomized realm it is, however, observed [Figs. 6(a2)
and 6(b2)] that for the s = 1 case, in contrast to the higher
spin s = 3

2 example, the correlation function exhibits gs(t ) <

1 property far more frequently. Therefore, the antibunching
effect on the emitted photons survives in the chaotic regime
for the low-spin qudits, and gradually disappear for larger spin
quantum numbers where cooperative effects among the atoms
become increasingly dominant.

C. Generation of spin-squeezed states

In order to study the emergence of the spin-squeezed states
during the time evolution of the qudit-oscillator system, we
follow the description given by the authors of Ref. [34]. The
spin is regarded [34] to be squeezed if the variance of one spin
component, perpendicular to the mean spin vector determined
by the density matrix, assumes less value than the variance for
a spin coherent state. The mean spin direction and its normal

vectors are specified [37,45] via the following ordered triplet:

�n1 ≡ (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ ),

�n2 ≡ (− sin ϕ, cos ϕ, 0), (6.8)

�n3 ≡ (− cos ϑ cos ϕ,− cos ϑ sin ϕ, sin ϑ ),

where the polar and azimuthal angles are determined by the
spin expectation values:

ϑ = cos−1 〈Sz〉
| 〈�S〉 | , ϕ =

{
cos−1 〈Sx〉

|〈�S〉| sin ϑ
if 〈Sy〉 > 0,

2π − cos−1 〈Sx〉
|〈�S〉| sin ϑ

if 〈Sy〉 � 0.

(6.9)

In (6.9) we have used the notation | 〈�S〉 | =√
〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2 . An arbitrary vector normal to the

mean spin direction reads as �n⊥ = �n2 cos χ + �n3 sin χ , and the
corresponding spin component is given by S⊥ ≡ �S · �n⊥ . The
defining property (6.9) imposes the constraint 〈S⊥〉 = 0, and,
therefore, the dispersion of the normal spin component reads
as (�S⊥ )2 = 〈S2

⊥〉. Using the notation S�nk = �S · �nk, k ∈ {2, 3}
the minimum variance of the normal spin component is now
given by [37,45]

min(�S⊥ )2 = 1
2

( 〈
S2

�n2

〉 + 〈
S2

�n3

〉 ) − 1
2

[( 〈
S2

�n2

〉 − 〈
S2

�n3

〉 )2

+ 〈(
S�n2 S�n3 + S�n3 S�n2

)〉2 ] 1
2 . (6.10)

The spin-squeezing measure provided in Ref. [34] is the ra-
tio of the above minimum dispersion with the corresponding

variance in a spin coherent state: ξ 2
s = 2 min(�S⊥ )2

s . The spin
squeezing is realized [34] when the quantum correlation re-
duces the fluctuations in one spin component normal to the
mean spin direction less than its coherent state limit.

In the presence of the spin squeezing, a quasiprobability
density, say, the Wigner WQ distribution, assumes an ellipti-
cal shape in contrast to an isotropic form that is evident for
a spin coherent state. Quantum uncertainties are deformed
by effective nonlinear interactions that twist the fluctuations
as observed in Fig. 7. Nonlinear interactions triggering the
spin-squeezing effect are produced in the low-energy limit
of the effective Hamiltonian for the bipartite interaction (2.1)
considered here. For instance, adopting the technique devel-
oped in [67] we may obtain the lowest order of nonlinear
interactions in the present model, which, in particular, in-
cludes a term ∼ωλ̃2S2

z that activates one axis twisting of the
quasiprobability densities. This effective Hamiltonian has also
been achieved [53] using another technique. The mean spin
direction and the optimal squeezing direction vary with time.
We also note that accompanying the spin squeezing various
degrees of eddylike structures are present in the WQ distri-
bution. The dominance of the said swirl causes limitations in
the minimum attainable uncertainty, which, in turn, gives rise
to relatively higher values of the squeezing parameter ξ 2

s . For
the s = 1 and 3

2 examples we study the evolutionary behavior
of the squeezing parameter ξ 2

s in Fig. 7. With the choice
c = 0, the factorized initial state (3.1) does not experience
any squeezing at t = 0 (Fig. 7). Owing to the nonlinear terms
in the effective Hamiltonian, squeezing develops dynamically
for the evolving state.
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FIG. 7. The qudit Wigner WQ distributions are plotted for the initial state (3.1) with c = 0, which represent a spin coherent state. (a) First
row refers to spin s = 1 case with the parametric choices � = 0.12, λ̃ = 0.005, z = 0.3249, α = 0.5, r = 0. Diagram (a1) depicts the long
time evolution of the squeezing parameter, while (a2) and (a3) refer, consecutively, to WQ distributions at times t = 0.120 717 × 106, t =
2.137 004 × 106. The corresponding squeezing coefficients equal ξ 2

1 = 0.3712 and 0.3492. (b) The WQ distributions displayed in the second
row study the s = 3

2 example. Other parameters read as � = 0.1, λ̃ = 0.01, z = 0.3249, α = 0.5, r = 0. The long time evolution of the
squeezing parameter is portrayed in (b1), whereas (b2) and (b3) represent WQ distributions at respective times t = 0.031 685 × 106, t =
0.659 013 × 106 with the corresponding squeezing coefficients given by ξ 2

3
2

= 0.4242 and 0.4223.

VII. QUANTUM SPIN STATE TOMOGRAPHY

In the previous sections we have described the evolution
of the interacting spin-oscillator system via the phase-space
quasiprobability distributions. Various tomographic schemes,
however, develop representations of quantum states of sys-
tems in terms of the measurable normalized probability
densities. Advancing a formulation of tomography of the
spin states, the authors of Ref. [51] produced an invariant
expression for the elements of the density matrix of spin s

via a kernel function that is a measurable probability. The
probability distribution function is a diagonal density matrix
element of the spin state in an arbitrarily rotated frame de-
scribed by the corresponding Euler angles denoted below as
(a, b, g).

To describe the tomography scheme for the discrete spin
variable, the authors of Refs. [51,52] employed the Wigner
D matrices expressing the matrix elements of the irreducible
representations of the rotation group:

D j
m′m(a, b, g) = exp(iam′) exp(igm) d j

m′m(b),

d j
m′m(b) =

√
( j + m′)!( j − m′)!
( j + m)!( j − m)!

(
cos

b

2

)m′+m(
sin

b

2

)m′−m

Pm′−m,m′+m
j−m′ (cos b), (7.1)

where the Jacobi polynomials [58] are given by Pa,b
� (x) = ∑

k

(
�+a
�−k

)(
�+b

k

)
( x−1

2 )k ( x+1
2 )�−k . Parametrized by Euler angles, the

diagonal entries of the qudit density matrix provide [51,52] a positive-definite probability distribution of the allowed spin
components in a direction specified by the corresponding rotations:

ω̃(s) (m; a, b, g) ≡
s∑

m′, m′′=−s

Ds
m m′ (a, b, g) (ρQ)(s)

m′ m′′ Ds
m m′′ (a, b , g)∗. (7.2)

As the discrete probability distribution (7.2) is constructed via utilizing the representation (7.1) of the rotation group, its
dependence on the Euler angle a disappears:

ω̃(s) (m; a, b, g) ≡ ω(s) (m; b, g),
s∑

m=−s

ω(s) (m; b, g) = 1. (7.3)
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In the example studied here, the construction (7.2) may be directly implemented as the evolution of the qudit density matrix
is known under the adiabatic approximation scheme. For instance, the qudit density matrix (3.8) for s = 1 case immediately
provides the corresponding tomogram that may be considered as the reconstruction of the state via the positive-definite
probability distribution:

ω(1)(m; b, g) = 1

2

(
sin b

2

)2m

(1 − m)!(1 + m)!
∞∑

n,̃n=0

{(
cot

b

2
Pm−1,m+1

1−m (cos b)

)2

×B(1)
+,n(t )B(1)

+,̃n(t )∗ δñn +
(

tan
b

2
Pm+1,m−1

1−m (cos b)

)2

B(1)
−,n(t )B(1)

−,̃n(t )∗δñn

+ 2
[
Pm,m

1−m(cos b)
]2B(1)

0,n(t )B(1)
0,̃n(t )∗ δñn + 2

√
2Pm,m

1−m(cos b)
[

tan
b

2

× Pm+1,m−1
1−m (cos b)Re

(
exp (ig)B(1)

0,n(t )B(1)
−,̃n(t )∗ Gñn(−λ̃)

) + cot
b

2

× Pm−1,m+1
1−m (cos b)Re

(
exp (ig)B(1)

+,n(t )B(1)
0,̃n(t )∗ Gñn(−λ̃)

)]
+ 2 Pm−1,m+1

1−m (cos b)Pm+1,m−1
1−m (cos b)Re

(
exp (2ig)

× B(1)
+,n(t )B(1)

−,̃n(t )∗ Gñn(−2̃λ)
)}

. (7.4)

Continuing further, we also employ our approximate evaluation of the s = 3
2 qudit density matrix given in (B7) to procure the

corresponding tomogram:

ω( 3
2 )(m; b, g) = 1

6

(
sin b

2

)2 m (
3

2
− m

)
!

(
3

2
+ m

)
!

∞∑
n,̃n=0

{
δñn

[
cot3 b

2

(
P

m− 3
2 ,m+ 3

2
3
2 −m

(cos b)
)2

B(2,2)
n,̃n (t )

+ 3 cot
b

2

(
P

m− 1
2 ,m+ 1

2
3
2 −m

(cos b)
)2

B(1,1)
n,̃n (t ) + 3 tan

b

2

(
P

m+ 1
2 ,m− 1

2
3
2 −m

(cos b)
)2

B(−1,−1)
n,̃n (t )

+ tan3 b

2

(
P

m+ 3
2 ,m− 3

2
3
2 −m

(cos b)

)2

B(−2,−2)
n,̃n (t )

]
+ 2

√
3 P

m− 3
2 ,m+ 3

2
3
2 −m

(cos b)
[

cot2 b

2

× P
m− 1

2 ,m+ 1
2

3
2 −m

(cos b) Re
(
exp(ig) B(2,1)

n,̃n (t )Gñn(−λ̃)
) + cot

b

2
P

m+ 1
2 ,m− 1

2
3
2 −m

(cos b)

× Re
(
exp(2ig) B(2,−1)

n,̃n (t )Gñn(−2̃λ)
)] + 2

√
3 P

m+ 3
2 ,m− 3

2
3
2 −m

(cos b)
[

tan2 b

2

× P
m+ 1

2 ,m− 1
2

3
2 −m

(cos b) Re
(
exp(ig) B(−1,−2)

n,̃n (t )Gñn(−λ̃)
) + tan

b

2
P

m− 1
2 ,m+ 1

2
3
2 −m

(cos b)

× Re
(
exp(2ig) B(1,−2)

n,̃n (t )Gñn(−2̃λ)
)] + 2 P

m+ 3
2 ,m− 3

2
3
2 −m

(cos b) P
m− 3

2 ,m+ 3
2

3
2 −m

(cos b)

× Re
(
exp(3ig) B(2,−2)

n,̃n (t )Gñn(−3̃λ)
) + 6 P

m+ 1
2 ,m− 1

2
3
2 −m

(cos b) P
m− 1

2 ,m+ 1
2

3
2 −m

(cos b)

× Re
(
exp(ig) B(1,−1)

n,̃n (t )Gñn(−λ̃)
)}

. (7.5)

Towards expressing the phase-space quasiprobability densities via the true tomographic probability distribution explicitly
determined here, one may proceed as follows. Applying the orthogonality relations of the Wigner 3 j coefficients [48] the authors
of Ref. [51] inverted the defining property (7.2) and expressed the qudit density matrix elements in the angular momentum basis
via an integral over all possible rotations:

(−1)m′′
(ρQ)(s)

m′ m′′ =
2 s∑

σ=0

σ∑
m̃=−σ

(2 σ + 1)2
s∑

m=−s

(−1)m

(
s s σ

m −m 0

) (
s s σ

m′ −m′′ m̃

)

×
∫

ω(s) (m; b, g) Dσ
0 m̃ (a, b, g)

dW
8 π2

, (7.6)

where the measure of the angular variables is given by
∫

dW = ∫ 2π

0 da
∫ π

0 sin b db
∫ 2π

0 dg = 8π2. Extending this approach,
we use the tomographic composition (7.6) of the qudit state to express its density matrix in the spherical tensor basis (4.4) as
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FIG. 8. The tomogram ω( 3
2 )(m; b, g) for the s = 3

2 case is considered for the time tB given in Fig. 4(a). The positive-definite probability
distributions for spin projections m = ± 1

2 show the emergence of three peaks.

follows:

(�Q)(s)
k q = (2 k + 1)

3
2

∑
m

(−1)s−m+q

(
s s k
m −m 0

) ∫
ω(s) (m; b, g) Dk

0 −q(a, b, g)
dW
8 π2

. (7.7)

The above integral on the Euler angular variables admits a
consistency check between our expressions of the tomograms
evaluated in (7.4) and (7.5) for the respective cases s = 1, 3

2
on one hand, and the corresponding expressions of the qudit
density matrix in the spherical tensor basis produced in (4.5)
and (B10) on the other. The phase-space quasiprobabilities
such as the qudit PQ representation, Wigner WQ distribu-
tion, and the QQ function, given in Eqs. (4.8), (4.11), and
(4.13), respectively, may now be explicitly formulated using
the positive-definite probability distribution ω(s)(m; b, g) as-
sociated with spin projections in arbitrarily rotated frames.

Towards demonstrating the tomographic representation of
the qudit generalized kitten states we, for instance, exam-
ine the configuration at time tB given in Fig. 4(a) for the
s = 3

2 example. The construction (7.5) yields the correspond-
ing tomogram displayed in Fig. 8. Figures 8(a)–8(d) therein
specify the probability distributions for the spin projections
corresponding to the generalized qudit three-kitten state. The

probability densities ω( 3
2 )( ± 1

2 ; b, g) observed in Figs. 8(b)
and 8(c) exhibit emergence of three uneven peak regions for
this state, which, in turn, may be used to determine the qudit
PQ representation via the structures (7.7) and (4.8).

VIII. CONCLUSION

Applying an adiabatic approximation method, we study a
hybrid qudit-oscillator interacting system in the strong as well
as the ultrastrong interaction regimes. Starting with a pure
state of the bipartite system, we observe its evolution via the
phase-space dynamics. The quasiprobability distributions in
the hybrid factorized phase space are constructed. The corre-
sponding distributions of one sector are procured from their
hybrid analogs via a dimensional reduction process achieved
by integrating the phase-space variables of the complementary
sector. In the strong coupling domain, the system displays
a quasiperiodic behavior when it returns close to its initial
configuration. Excluding the near duplication of the initial
state, other interesting possibilities also emerge during the
evolution. Starting with a factorizable initial state we observe
that at the local minimum values of the entropy, either almost
pure generalized spin kitten states or mixed qudit states, which
are, however, localized in the phase space, originate. The
spin kitten type states are realized for the entropy constraint

S(ρQ) � 1 that holds in conjunction with the metrical re-
quirement dHS(ρQ(t = 0), ρQ(t )) ∼ O(1) for the states in
question. On the other hand, mixed localized qudit states arise
when the locally minimum entropy during the evolution satis-
fies the order-of-magnitude estimate S(ρQ) � O[ln(2s + 1)].
It has been argued in the context of (5.2) that up to the validity
of our approximation the timescale of emergence (T|quasiperiod)
of the above spin states does not depend on s. In a large-s
bipartite system, therefore, generalized nearly pure spin kitten
states may be observed before the decohering effects destroy
the phase correlations at a timescale t � T|quasiperiod.

Another feature of nonclassicality observed is that due to
presence of the quadratic terms of the spin generators in the
effective Hamiltonian, the initial spin coherent state dynami-
cally and recurrently evolves to squeezed spin states when the
system undergoes quantum fluctuations. For the ultrastrong
coupling strength, the quasiperiodicity of the evolution dis-
appears and the entropy shows stabilization in the presence
of a randomized fluctuation. Moreover, both in the strong
and ultrastrong coupling regimes, antibunching of the emitted
photons is observed particularly for the low-spin (s = 1) case.
We also note that it is important to estimate the extent of
nonclassicality of the quantum states in the ultrastrong cou-
pling regime [Figs. 2(c) and 4(c)] where an equilibriumlike
behavior sets in. This will be pursued elsewhere.

Now, we briefly comment on the experimental observation
of the nearly pure generalized spin kitten states discussed
in this work. Specifically, experimental feasibility of high-
precision tomographic reconstruction of a spin density matrix
via repeated measurements on an ensemble of identical states
has been discussed [68]. The reconstructed matrix elements
involve statistical errors that can be made arbitrarily small
[68] by increasing the number of observations. Experimen-
tal realization of complete quantum spin state tomography
for quadrupolar nuclei by employing global rotations of the
spin structure has been reported [69]. A tomographic map of
the full density matrix of an exciton-based qubit in a single
quantum dot has been demonstrated [70] by utilizing arbi-
trary rotation of the measurement basis. This reconstruction
of the density matrix may be extended [70] to multiqubit
systems. For the density matrices which are closely pure, a
tomographic reconstruction that provides major performance
improvement for large systems has been suggested [71]. A
recent work achieved [72] experimental reconstruction of the
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TABLE IV. Lists (a) and (b) compare the energy eigenvalues [insets in Figs. 9(a) and 9(b), sequentially] without and with the adiabatic
approximation for the s = 1 and 3

2 cases, respectively. For the list (a) the ultrastrong coupling is chosen as λ̃ = 0.33 [marked by black vertical
dotted line in the inset of Fig. 9(a)], whereas the energy eigenvalues for the list (b) are analogously given for the coupling λ̃ = 0.32 [another
black vertical dotted line in the inset of Fig. 9(b)]. Additional parameters in (a) and (b) are maintained equal to those in Figs. 9(a) and 9(b),
respectively. The close proximity of the energy eigenvalues quoted here without and with the assumption of adiabatic approximation points
towards the accuracy of the said approximation in the parametric range studied here.

(a) (b)

E (1)
j ,n E (1)

−,9
E (1)

0,9
E (1)

+,9
E

±, 3
2

�,n E
−, 3

2
+1,6 E

−, 3
2

−1,6 E
+, 3

2
+1,6 E

+, 3
2

−1,6

Without approx. 8.88208 8.89332 9.00664 Without approx. 5.75043 5.76052 5.92712 6.04642
With adiabatic approx. 8.88202 8.89110 9.00908 With adiabatic approx. 5.74932 5.75813 5.92902 6.05153

quantum state of an electronic spin qubit linked to nitrogen-
vacancy center in diamond at room temperature, and studied
its nonclassicality by employing its Wigner W distribution on
a spherical phase space. Time evolution of a quantum spin
state undergoing a dephasing process has also been observed
[72] in this system. In the context of the above experimen-
tal developments, a tomographic realization of the present
transitory spin kitten type states may be possible. As our gen-
eralized kitten states are nearly pure, the mapping described
in [71] is particularly relevant here, especially for higher-spin
qudits. The evaluation of measurable probability densities in
Sec. VII then admits a direct comparison with experiments.
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APPENDIX A: VALIDITY OF THE ADIABATIC
APPROXIMATION

Towards examining the accuracy of the adiabatic approx-
imation in our parametric regime, we, following [46], now
compare the low-lying energy eigenvalues extracted via the
numerical diagonalization of the Hamiltonian (2.1) expressed
in the basis set {|s, m; nm〉}, and an alternate evaluation of
the said eigenvalues by employing its reduction to the block-
diagonal form [Eqs. (2.5) and (B1)] achieved under the
approximation method described in Sec. II. For instance, in
the s = 1 case, we may recast the Hamiltonian (2.1) utilizing
the inner product of the displaced oscillator states as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −�̃〈1|01〉 0 0 −�̃〈2|01〉 0 . . .

H (s=1)
0 �̃〈1|01〉 0 −�̃〈1−1 |0〉 −�̃〈2|01〉 0 −�̃〈2−1 |0〉 . . .

0 �̃〈1−1 |0〉 0 0 −�̃〈2−1 |0〉 0 . . .

0 �̃〈1|01〉 0 0 −�̃〈2|11〉 0 . . .

−�̃〈1|01〉 0 �̃〈1−1 |0〉 H (s=1)
1 �̃〈2|11〉 0 −�̃〈2−1 |1〉 . . .

0 −�̃〈1−1 |0〉 0 0 �̃〈2−1 |1〉 0 . . .

0 −�̃〈2|01〉 0 0 �̃〈2|11〉 0 . . .

−�̃〈2|01〉 0 −�̃〈2−1 |0〉 −�̃〈2|11〉 0 �̃〈2−1 |1〉 H (s=1)
2 . . .

0 −�̃〈2−1 |0〉 0 0 −�̃〈2−1 |1〉 0 . . .

...
...

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A1)

where the diagonal blocks follow from (2.5), and the
scaled atomic frequency reads as �̃ = �√

2
. The order of the

rows and columns in (A1) is given by the set {|m; nm〉|m =
1, 0,−1; n = 0, 1, . . .}. The approximation entails curtailing
the matrix (A1) to its block-diagonal form [46] that may
be justified in the � � ω limit. Physically, it requires ex-
istence of a much shorter characteristic timescale of the
oscillator compared to that of the slow-moving atom [47].
For the s = 3

2 case exactly parallel structure as (A1) may be
reproduced.

Figure 9(a) quantitatively provides the λ̃ dependence of
the approximate energy eigenvalues of the s = 1 Hamiltonian.
For our numerical analysis, the Hamiltonian (A1) containing
the off-diagonal submatrices is retained up to the 39 × 39
elements. Its diagonalization furnishes the low-lying energy
eigenvalues computed numerically without application of the
adiabatic approximation. At the next step, the approxima-
tion is implemented by discarding the off-block terms and
truncating the Hamiltonian matrix (A1) to the block-diagonal
form. A comparison of these two sets of nearly equal energy
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FIG. 9. The diagrams compare numerical solutions of low-lying energy levels obtained without assuming the adiabatic approximation
(red crosses) to the corresponding levels computed under the said approximation (blue lines) in (a) and (b) for the s = 1 and 3

2 examples,
respectively. Interacting with the slow-moving qudit (� = 0.16 for s = 1 and � = 0.15 for s = 3

2 ) the fast-moving oscillator (ω = 1) sets up
the scale making the approximation valid up to the ultrastrong coupling domain λ̃ � 0.5 considered here. Numerical estimates of the above
two sets of energy eigenvalues for typical ultrastrong couplings [marked by vertical black dotted lines in the insets of diagrams (a) and (b)],
obtained via the said dissimilar procedures, are listed in Tables IV(a) and IV(b), respectively.

eigenvalues in Fig. 9(a) up to the ultrastrong coupling regime
λ̃ � 0.5 validates our claim on the accuracy of the adiabatic
approximation in this domain. Sample numerical estimates of
a set of eigenenergies employing the above two contrasting
procedures for an ultrastrong coupling value, marked by a
vertical black dotted line in the inset of Fig. 9(a), are quoted in
Table IV(a). Analogously, for the choice s = 3

2 , the compar-
ative structure of the two sets of energy eigenvalues, without
and with the adiabatic approximation mechanism, is described
in Fig. 9(b) [and Table IV(b)] up to the said ultrastrong cou-
pling domain λ̃ � 0.5. For the numerical evaluation in the s =
3
2 case sans [Fig. 9(b)] the adiabatic approximation we have
considered 40 × 40 Hamiltonian matrix in the displaced os-
cillator basis {|m; nm〉|m = 3

2 , 1
2 ,− 3

2 ,− 1
2 ; n = 0, 1, . . .}. Put

together, the graphical representations in Fig. 9 suggest that
in our domain of interest � � ω the adiabatic approximation
remains dependable in the strong and ultrastrong interaction
regimes considered in this work. The large detuning sets apart
the respective timescales of the qudit and the oscillator, and
may be regarded as the underlying reason for the validity of
the approximation. For the s = 1 case the adiabatic approxi-
mation has been applied before in Ref. [73] for an ultrastrong
coupling value.

APPENDIX B: SPIN DENSITY MATRIX FOR s = 3
2

Adhering to the recipe described in Sec. II, the adiabatic
approximation for the spin s = 3

2 example may be summa-
rized as given below. The nth photonic block Hamiltonian now
reads as

H
(s= 3

2 )
n = ω

⎛⎜⎜⎜⎜⎜⎜⎝
n − (

3̃λ
2

)2
√

3
2�n 0 0√

3
2�n n − (

λ̃
2

)2 √
2 �n 0

0
√

2 �n n − (
λ̃
2

)2
√

3
2�n

0 0
√

3
2�n n − (

3̃λ
2

)2

⎞⎟⎟⎟⎟⎟⎟⎠.

(B1)

The eigenenergies of the Hamiltonian (B1) are listed as

E
±, 3

2
�,n = ω

(
n − 5̃λ2

4
+ �

�n√
2

± χ (�)
n

)
,

χ (�)
n =

√
λ̃4 + �

√
2 λ̃2 �n + 2 �2

n, � ∈ {±1}, (B2)

while the corresponding eigenvectors read as∣∣∣E±, 3
2

�,n

〉
= 1

N±, 3
2

�,n

(∣∣∣∣3

2
,

3

2
; n 3

2

〉
+ �

(±)
�

∣∣∣∣3

2
,

1

2
; n 1

2

〉

+ � �
(±)
�

∣∣∣∣3

2
,−1

2
; n

− 1
2

〉
+ �

∣∣∣∣3

2
,−3

2
; n

− 3
2

〉)
(B3)

and the coefficients therein are given by

�
(±)
� = 1√

3

(
�±

√
2
χ (�)

n ± λ̃2

�n

)
,N±, 3

2
�,n =

√
2[1 + (�(±)

� )2]
1
2 .

(B4)

The orthocompleteness relations for the states (B3) hold in the

nth photonic sector: 〈Eκ ′, 3
2

�′,n |Eκ, 3
2

�,n 〉 = δ��′δκκ ′ (κ, κ ′ ∈ {±}), and∑
�,κ |E

κ, 3
2

�,n 〉〈Eκ, 3
2

�,n | = I.

The basis states |E±, 3
2

�,n 〉 listed in (B3) facilitate the approx-
imate determination of the evolution of the initial state (3.1)
for the spin s = 3

2 case:

∣∣ψ 3
2
(t )

〉 =
∑
κ∈±

∑
�∈±1

∞∑
n=0

Aκ, 3
2

�,n exp
(
−iE

κ, 3
2

�,n t
)∣∣∣Eκ, 3

2
�,n

〉
,

A±, 3
2

�,n ≡
〈
E

±, 3
2

�,n

∣∣∣ψ 3
2
(0)

〉
, (B5)

which, in turn, furnishes the corresponding
pure state bipartite density matrix ρ (s= 3

2 )(t ) ≡
|ψ 3

2
(t )〉 〈ψ 3

2
(t )|. The explicit evaluation
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of the coefficients in (B5) reads as

A±, 3
2

�,n =
N 3

2

N±, 3
2

�,n (1 + |z|2)
3
2

[
[z3 + �(−1)nc] exp

(
−i

3 λ̃

2
Im(α)

)
Sn

(
α + 3 λ̃

2
, ξ

)

+ �[1 − �(−1)nc z3] exp

(
i

3 λ̃

2
Im(α)

)
Sn

(
α − 3 λ̃

2
, ξ

)
+

√
3 �

(±)
� [z2 − �(−1)nc z]

× exp

(
−i

λ̃

2
Im(α)

)
Sn

(
α + λ̃

2
, ξ

)
+ �

√
3 �

(±)
�

[
z + �(−1)nc z2

]
exp

(
i

λ̃

2
Im(α)

)
Sn

(
α − λ̃

2
, ξ

)]
. (B6)

The evolution of the state (B5) now readily yields the spin density matrix for the s = 3
2 example:

ρ ( 3
2 )

Q
(t ) =

∞∑
n,̃n=0

⎛⎜⎜⎜⎝
B(2,2)

n,̃n (t )δñn B(2,1)
n,̃n (t )Gñn(−λ̃) B(2,−1)

n,̃n (t )Gñn(−2̃λ) B(2,−2)
n,̃n (t )Gñn(−3̃λ)

B(1,2)
n,̃n (t )Gñn (̃λ) B(1,1)

n,̃n (t )δñn B(1,−1)
n,̃n (t )Gñn(−λ̃) B(1,−2)

n,̃n (t )Gñn(−2̃λ)
B(−1,2)

n,̃n (t )Gñn(2̃λ) B(−1,1)
n,̃n (t )Gñn (̃λ) B(−1,−1)

n,̃n (t )δñn B(−1,−2)
n,̃n (t )Gñn(−λ̃)

B(−2,2)
n,̃n (t )Gñn(3̃λ) B(−2,1)

n,̃n (t )Gñn(2̃λ) B(−2,−1)
n,̃n (t )Gñn (̃λ) B(−2,−2)

n,̃n (t )δñn

⎞⎟⎟⎟⎠, (B7)

where the elements are expressed via the factorized structure

B(ı,j )
n,̃n (t ) ≡ B( 3

2 )
ı,n (t )B( 3

2 )
j ,̃n (t )∗, ı, j ∈ {±1,±2} (B8)

of the following linear combinations

B( 3
2 )

±1,n(t ) = A+, 3
2

1,n (t )�(+)
1

N+, 3
2

1,n

+ A−, 3
2

1,n (t )�(−)
1

N−, 3
2

1,n

± A+, 3
2

−1,n(t )�(+)
−1

N+, 3
2

−1,n

± A−, 3
2

−1,n(t )�(−)
−1

N−, 3
2

−1,n

,

B( 3
2 )

±2,n(t ) = A+, 3
2

1,n (t )

N+, 3
2

1,n

+ A−, 3
2

1,n (t )

N−, 3
2

1,n

± A+, 3
2

−1,n(t )

N+, 3
2

−1,n

± A−, 3
2

−1,n(t )

N−, 3
2

−1,n

(B9)

containing the time-dependent phases A±, 3
2

�,n (t ) ≡ A±, 3
2

�,n exp(−iE
±, 3

2
�,n t ). The constraint Trρ

( 3
2 )

Q (t ) = 1 is obeyed by the qudit-
reduced density matrix (B7). For the s = 3

2 example the composition of the qudit-reduced density matrix in the spherical tensor
basis is also assembled by employing the constructions (B7) and (4.4):

�Q
kq(t )

∣∣
s= 3

2

=
√

2k + 1

(3 − k)!(4 + k)!

∞∑
n,̃n=0

(
δñnδq,0

[
6
(
B(2,2)

n,̃n (t ) + (−1)kB(−2,−2)
n,̃n (t )

) − 2(k2 + k − 3)

× (
B(1,1)

n,̃n (t ) + (−1)k B(−1,−1)
n,̃n (t )

)] + δq,−1

√
(k + 1)!

(k − 1)!
Gñn (̃λ)

(
2
√

3 B(1,2)
n,̃n (t )

− (k2 + k − 6)B(−1,1)
n,̃n (t ) − (−1)k 2

√
3 B(−2,−1)

n,̃n (t )
) + δq,1

√
(k + 1)!

(k − 1)!
Gñn(−λ̃)

× ( − 2
√

3 B(2,1)
n,̃n (t ) − (−1)k (k2 + k − 6) B(1,−1)

n,̃n (t ) + (−1)k 2
√

3 B(−1,−2)
n,̃n (t )

)
+
√

3
(k + 2)!

(k − 2)!

[
δq,−2 Gñn(2̃λ)

(
B(−1,2)

n,̃n (t ) + (−1)k B(−2,1)
n,̃n (t )

)
+ δq,2 Gñn(−2̃λ)

(
B(2,−1)

n,̃n (t ) + (−1)k B(1,−2)
n,̃n (t )

)] +
√

(k + 3)!

(k − 3)!

× (
(−1)k δq,3 Gñn(−3̃λ)B(2,−2)

n,̃n (t ) + δq,−3 Gñn(3̃λ) B(−2,2)
n,̃n (t )

))
. (B10)

APPENDIX C: QUASIPROBABILITY DISTRIBUTIONS FOR s = 3
2

We now concisely list the analytic expressions for the quasiprobability densities in the phase space for the spin s = 3
2 case

with the following objective in mind. The generalized spin kitten configurations for higher values of s admit more extensive
superposition of states existing in a larger Hilbert space. Consequently, spin kitten type states with increasingly complex
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phase-space structures possessing, say, multiple peaks are likely to appear for larger s. The s = 3
2 spin phase-space quasiproba-

bility distributions following from (4.8), (4.11), and (4.13) read as follows:

P
( 3

2 )
Q (θ, φ) = 1

32π

∞∑
n,̃n=0

{
(18 − 45 cos θ + 30 cos 2θ − 35 cos 3θ ) B(2,2)

n,̃n (t ) δñn + (18 + 45 cos θ

+ 30 cos 2θ + 35 cos 3θ )B(−2,−2)
n,̃n (t )δñn + (−2 + 55 cos θ − 30 cos 2θ + 105 cos 3θ )

× B(1,1)
n,̃n (t ) δñn − (2 + 55 cos θ + 30 cos 2θ + 105 cos 3θ ) B(−1,−1)

n,̃n (t ) δñn + 10
√

3(3 sin θ

− 4 sin 2θ + 7 sin 3θ )Re
(
exp (iφ)B(2,1)

n,̃n (t )Gñn(−λ̃)
) + 40

√
3(1 − 7 cos θ ) sin2 θ

× Re
(
exp (2iφ)B(2,−1)

n,̃n (t )Gñn(−2̃λ)
) + 280 sin3 θ Re

(
exp (3iφ)B(2,−2)

n,̃n (t )

× Gñn(−3̃λ)
) − 10(sin θ + 21 sin 3θ ) Re

(
exp (iφ)B(1,−1)

n,̃n (t )Gñn(−λ̃)
)

+ 40
√

3(1 + 7 cos θ ) sin2 θ Re
(
exp (2iφ)B(1,−2)

n,̃n (t )Gñn(−2̃λ)
) + 10

√
3(3 sin θ

+ 4 sin 2θ + 7 sin 3θ )Re
(
exp (iφ)B(−1,−2)

n,̃n (t )Gñn(−λ̃)
)}

, (C1)

W
( 3

2 )
Q (θ, φ) = 1

160π

∞∑
n,̃n=0

{(
3(8

√
15 +

√
35) cos θ + 5(8 + 2

√
5 + 6

√
5 cos 2θ +

√
35 cos 3θ )

)
× B(2,2)

n,̃n (t )δñn + (−3(8
√

15 +
√

35) cos θ + 5(8 + 2
√

5 + 6
√

5 cos 2θ −
√

35 cos 3θ )
)

× B(−2,−2)
n,̃n (t )δñn + (

(8
√

15 − 9
√

35) cos θ − 5(−8 + 2
√

5 + 6
√

5 cos 2θ

+ 3
√

35 cos 3θ )
)
B(1,1)

n,̃n (t )δñn + (
(−8

√
15 + 9

√
35) cos θ + 5(8 − 2

√
5 − 6

√
5 cos 2θ

+ 3
√

35 cos 3θ )
)
B(−1,−1)

n,̃n (t )δñn + 4
√

5
(
3(4 +

√
21) + 20

√
3 cos θ + 5

√
21 cos 2θ

)
× sin θ Re

(
exp(iφ)B(2,1)

n,̃n (t )Gñn(−λ̃)
) + 40

√
15(1 +

√
7 cos θ ) sin2 θ

× Re
(
exp(2iφ)B(2,−1)

n,̃n (t )Gñn(−2̃λ)
) + 40

√
35 sin3 θ Re

(
exp(3iφ)B(2,−2)

n,̃n (t )Gñn(−3̃λ)
)

+ 8
√

5(4
√

3 + 3
√

7 − 15
√

7 cos2 θ ) sin θ Re
(
exp(iφ)B(1,−1)

n,̃n (t )Gñn(−λ̃)
)

+ 40
√

15(1 −
√

7 cos θ ) sin2 θ Re
(
exp(2iφ)B(1,−2)

n,̃n (t )Gñn(−2̃λ)
) + 4

√
5[3(4 +

√
21)

− 20
√

3 cos θ + 5
√

21 cos 2θ ] sin θ Re
(
exp(iφ)B(−1,−2)

n,̃n (t )Gñn(−λ̃)
)}

, (C2)

Q
( 3

2 )
Q (θ, φ) = 1

8π

∞∑
n,̃n=0

{
8 sin6

(
θ

2

)
B(2,2)

n,̃n (t )δñn + 24 sin4

(
θ

2

)
cos2

(
θ

2

)
B(1,1)

n,̃n (t )δñn + 24 cos4
(

θ
2

)
sin2

(
θ
2

)
× B(−1,−1)

n,̃n (t )δñn + 8 cos6

(
θ

2

)
B(−2,−2)

n,̃n (t )δñn + 8
√

3 sin θ sin4

(
θ

2

)
Re

(
exp (−iφ)

× B(1,2)
n,̃n (t )Gñn (̃λ)

)
+ 8

√
3 sin θ cos4

(
θ
2

)
Re

(
exp (−iφ)B(−2,−1)

n,̃n (t )Gñn (̃λ)
)

+ 4
√

3 sin2 θ sin2

(
θ

2

)
Re

(
exp (−2iφ)B(−1,2)

n,̃n (t )Gñn(2̃λ)
) + 4

√
3 sin2 θ cos2

(
θ

2

)
× Re

(
exp (−2iφ)B(−2,1)

n,̃n (t )Gñn(2̃λ)
) + 6 sin3 θ Re

(
exp (−iφ)B(−1,1)

n,̃n (t )Gñn (̃λ)
)

+ 2 sin3 θ Re
(
exp (−3iφ)B(−2,2)

n,̃n (t )Gñn(3̃λ)
)}

. (C3)

Similar to the observation in Sec. IV A the above qudit
quasiprobability distributions follow from the corresponding
bipartite structures via an integration over the oscillator phase

space. Our descriptions of the generalized kitten states (Sec.
VI A) and other localized spin states (Sec. V) for the s = 3

2
example are based on the structure (C1)–(C3) outlined above.
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FIG. 10. For s = 3
2 case we assume c = i in (3.1), and main-

tain other parameters in Fig. 4(a) unaltered. The qudit entropy
returns, at its local minima (tA = 0.856 011 × 106, tB = 1.711 003 ×
106, tL = 2.564 398 × 106) to the configuration S(ρQ) � 1. The re-
spective Hilbert-Schmidt distances of these configurations from the
initial state read as dHS|tA = 1.062 185, dHS|tB = 1.050 424, dHS|tL =
0.012 075. As argued previously, generalized spin kitten states de-
velop at tA and tB, while at tL the system nearly returns to its
original state. On the other hand, at the local minimum indicated
by tD = 0.284 499 × 106 the entropy behaves as S(ρQ)|tD � O(ln 4).
Consequently, a localized state with a largely mixed density matrix
forms at tD.

In particular, the generalized three-kitten states emerge at
times tA and tB in Fig. 5.

APPENDIX D: PHASE-SPACE DENSITIES FOR INITIALLY
ENTANGLED STATES

In this work so far we have considered factorized initial
state characterized by c = 0 in (3.1), and studied the time
evolution of the system by employing the PQ representation.
Here, we briefly consider bipartite initial states which are
entangled. We also comment on the relative utility of different
qudit quasiprobability distributions in the present problem.
In particular, for spin s = 3

2 case we choose c = i in the
initial state (3.1) while retaining other parametric values listed
in Fig. 4(a) unchanged. The resulting evolution of entropy
(Fig. 10) indicates that the composite system approximately
returns (5.4) to its initial state at tL. Based on the earlier
discussions, we note that the generalized spin kitten states
are produced at tA and tB. A numerical reconstruction of the
state at tA is given in Table III. The general features of the
evolution of entropy in Fig. 10 are similar to those in Fig. 4(a).
Comparing the diagrams in Figs. 11(a1)–11(a3) we note that
for the phase-space description of the largely pure generalized
spin kitten states, the PQ representation [Fig. 11(a1)] appears
to be most suitable tool for characterization of the state as
it, compared to the other distributions, embodies maximum
variation in the phase-space density. On the other hand, the
illustrations in Figs. 11(b1)–11(b3) indicate that the phase-
space description of the localized mixed qudit states are more
robust in the sense that the broad characteristics of all distri-
butions (PQ , WQ , QQ ) are qualitatively similar.

FIG. 11. The diagrams (a1), (a2), and (a3) study, respectively, the spin quasiprobability densities PQ , WQ , QQ for the generalized spin
kitten state at tA (Fig. 10). The remaining diagrams (b1), (b2), and (b3) illustrate the said PQ , WQ , QQ distributions realized at tD (Fig. 10) for
the mixed qudit state endowed with locally minimum but substantially large value of the entropy.
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