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Symmetry-breaking patterns, tricriticalities, and quadruple points in the
quantum Rabi model with bias and nonlinear interaction
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Quantum Rabi model (QRM) is fascinating not only because of its broad relevance but also due to its few-body
quantum phase transition. In practice, both the bias and the nonlinear coupling in QRM are important controlling
parameters in experimental setups. We study the interplay of the bias and the nonlinear interaction with the
linear coupling in the ground state which exhibits various patterns of symmetry breaking and different orders of
transitions. Several situations of tricriticalities are unveiled in the low-frequency limit and at finite frequencies.
We find that the full quantum-mechanical effect leads to transitions, tricriticalities, quadruple points, and a fine
structure of spontaneous symmetry breaking, which are much beyond the semiclassical picture. We clarify the
underlying mechanisms by analyzing the energy competitions and the essential changeovers of the quantum
states, which enables us to extract most analytic phase boundaries.
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I. INTRODUCTION

In the past decade, both experimental [1] and theoret-
ical [2,3] progresses have brought the strong light-matter
interaction to the frontiers of quantum optics and quan-
tum physics. The experimental access to increasingly larger
coupling strengths has opened a regime with a rich phe-
nomenology [1,4] unexpected in weak couplings. Beyond
the Jaynes-Cummings model [5], which is valid in weak
couplings, the quantum Rabi model (QRM) [6] is the most
fundamental model for strong light-matter interaction. The
QRM also has a wide relevance, being a fundamental build-
ing block for quantum information and quantum computation
[1,7–10], closely connected to models in condense matter [4],
and even applied in black hole physics [11]. Theoretically, the
milestone work of revealing Braak integrability [2] for the
QRM has not only heated up the interest in the light-matter
interaction but also triggered an intense dialogue between
mathematics and physics [3,12–42].

The fast experimental advances have pushed the coupling
strength all the way through from weak-, strong-coupling
regimes to ultrastrong-coupling regime and even beyond
[1,43–54]. A most fascinating consequence of continuing
enhancements of the coupling strength is the emergence
of phase-transition-like phenomena [19–22,24–27,55]. As a
usual impression, phase transitions mostly occur in thermo-
dynamical limit in condensed matter. Note that the QRM is
composed of a single qubit or spin-half system in coupling
with a light field or a bosonic mode, thus the few-body
quantum phase transition found in the QRM appears quite
particular. Interestingly via the scaling relation of the criti-
cal behavior it has been established that the few-body phase
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transition can be can be bridged to the phase transition in the
thermodynamic limit [21].

Along with the continuing regime expanding of the QRM
in the frontiers of quantum optics and quantum physics, a
playground for physics in nonlinear quantum optics is also
opened by an extended version of the QRM, so-called two-
photon quantum Rabi model [23,56–63]. The conventional
QRM is a linear model in the sense that it is via a single-
photon process of absorption and emission for the qubit or
spin-half system to couple with a bosonic mode. The in-
teraction in the two-photon model involves a coupling via
two-photon process of absorption and emission, which is
nonlinear. Recently the nonlinear two-photon interaction has
attracted an increasing attention as the model can be imple-
mented in trapped-ion systems [58,59] and superconducting
circuits [56,57] with the interaction strength enhanced to re-
alize the ultrastrong regime. Critical behavior also appears
in such two-photon QRM and a special phenomenon is the
spectral collapse [58,61–63], i.e., its discrete spectrum col-
lapses into a continuous band when the nonlinear interaction
strength approaches to the critical point. It has been no-
ticed that the spectral collapse can be tuned from incomplete
collapse to complete collapse by variation of the system
frequency [23].

An important character of the QRM noteworthy to men-
tion is the symmetry. It is well-known that the QRM has
the so-called parity symmetry. Generally speaking, it is quite
common that only at certain parameter point can a physical
system possess a symmetry and one needs very fine-tuned
conditions to maintain the symmetry, while the realistic con-
ditions in experimental setups may break the symmetry.
Nevertheless, although symmetry is the diamond of physics,
what makes the world of physics really rich is often the
symmetry breaking. As far as the QRM in the light-matter
interaction is concerned, it is known that anisotropy [17,21]
in the coupling will preserve the parity symmetry. However,
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the existence of a bias or a nonlinear interaction will definitely
break the parity symmetry of the linear QRM. Despite that a
pure two-photon model also has a parity symmetry, the mix-
ture of the single-photon coupling and two-photon interaction
will break both the parity symmetries of the linear QRM and
of the two-photon QRM. In such a mixed case novel phe-
nomena could arise, such as the emergence of triple point and
spontaneous symmetry breaking [24]. Recently there is a trend
of growing interest in the mixed model [24,64–67]. So far,
most studies have been focusing on the mixed model without
taking the bias into account, however in realistic conditions
of experimental setups it is more general to have both the
bias and nonlinear interaction in the presence [68]. In such
a situation a full knowledge of the competition and interplay
of the bias and nonlinear interaction is still lacking and very
desirable.

In this work we present a systematic study on a general
realistic model [56,68,69] composed of the linear coupling,
the bias, the nonlinear interaction as well as a nonlinear
Stark term. We focus on the ground state which exhibits
various patterns of symmetry breaking and different orders
of phase transitions. We find that in such a realistic model
tricritical-like behavior can be induced in diverse situations.
It is also interesting to get a contrast of semiclassical picture
in the low-frequency limit and the full quantum-mechanical
effect at finite frequencies. We demonstrate that the quantum-
mechanical effect leads to a much richer phenomenol-
ogy, including transitions, tricriticalities, and quadruple
points.

The paper is organized as follows. In Sec. II we intro-
duce the general model with bias and nonlinear interaction.
In Sec. III we give a primary description of the methods
applied in the present work. Different transition orders are
interpreted by variational energy in Sec. IV. The parity sym-
metry of the conventional QRM is addressed in Sec. V
and different patterns of symmetry breaking are shown in
Sec. VI in the presence of bias and nonlinear interaction. In
Sec. VII we present the full phase diagrams in low-frequency
limit, in the respective or simultaneous presence of the bias
and the nonlinear interaction, together with obtained ana-
lytic boundaries. In the low-frequency limit we reveal a first
tricriticality in Sec. VIII. In Sec. IX we discuss the finite-
frequency case, unveiling more situations of tricriticalities.
We show that there could be three, even four successive
transitions, the analytic phase boundaries are also presented.
Quadruple points are demonstrated in Sec. X. In Sec. XI, we
discuss how the ground-state wave function changes at the
various phase transitions. Section XII is devoted to clarify
the mechanisms underlying the various symmetry-breaking
patterns and successive transitions. We address the semi-
classical picture and the full quantum mechanics effect, the
latter leading to more phase transitions and thus being the
origin of the various tricriticalities and quadruple points.
We explain why different quantities respond to the tran-
sitions differently. We also show the scaling of the Stark
term in the nonlinear interaction. Section XIII provides brief
derivations of the analytic boundaries. In the final section
we summarize the results and discuss the realization regime
for experimental parameters in superconducting circuit
systems.

II. MODEL

Besides the linear coupling of the QRM, experimental
setups in superconducting circuits actually involve both non-
linear coupling and bias, with a Hamiltonian reading as
[56,68]

H = H0 + Ht + Hε,

H0 = ωa†a + �

2
σx + g1σz(a† + a), (1)

Ht = g2σz[(a
†)2 + a2 + χ ñ], Hε = −εσz,

where σx,y,z is the Pauli matrix, a†(a) creates (annihilates) a
bosonic mode with frequency ω. The � term is atomic level
splitting in cavity systems, while in the superconducting cir-
cuit systems it is tunneling between the spin-up and spin-down
states of the flux qubit [70] as represented by σz. Following
Ref. [15], we adopt the spin notation in the superconducting
circuit systems which can realize very strong couplings.

The conventional QRM is described by H0 where the cou-
pling is linear, via the single-photon process of absorption
and emission, with a coupling strength g1. The nonlinear
interaction is denoted by Ht with the coupling strength g2.
Here we have included a Stark-like term [37,56], χ ñ with
ñ = a†a + aa† essentially being the photon number, to re-
trieve the conventional two-photon form [56] by χ = 0 and
the quadratic form (a† + a)2 in experimental setups [68] by
χ = 1. One can also obtain a pure Stark-like term by setting
g2 → 0 while keeping χ inversely proportional to the bare
nonlinear interaction χ ∝ 1/g2. It turns out that for the proper-
ties discussed in present work the Stark-like term contributes
to a scaling factor and by

g̃2 = (1 + χ )g2 (2)

we get similar results. For simplicity, unless otherwise
mentioned, we use g2 to represent general g̃2 throughout
the figures. The origin of the scaling will be clarified in
Sec. XII B. Here it should be mentioned that the Stark-
like term in the superconducting circuits under consideration
[56,68] involves σz rather than σx in the conventional Stark
term [37,40] which may have a different scenario and we shall
address elsewhere. Hereafter, we define

gs =
√

ω�/2, gt = ω/2, (3)

as the scale references for the strengths of linear coupling g1

and nonlinear interaction g2. Actually gs is the critical point
for the QRM H0 [19,20,27,55] and gt is the critical value for
the two-photon quantum Rabi model [23,56–63].

The last term Hε denotes the bias. For a flux qubit in su-
perconducting circuit systems, the Josephson potential energy
as a function of junction phase difference has a double-well
structure which contributes to the two qubit states [70]. When
the two wells are symmetric the two qubit states are degener-
ate, in this case there is no bias. The degeneracy of the two
qubit states can be raised by introducing the bias term which
can be tuned by an external flux and a bias current [68].

063701-2



SYMMETRY-BREAKING PATTERNS, TRICRITICALITIES, … PHYSICAL REVIEW A 103, 063701 (2021)

III. METHODS

To see the exact behavior of the model we use exact diago-
nalization to figure out the ground-state phase diagrams, while
to gain some physical insights we shall apply semiclassical
picture in the low-frequency limit and the polaron picture at fi-
nite frequencies. For the semiclassical picture and the polaron
picture we give a primary description in this section, while

applications for interpretation of transition orders, mechanism
analysis and derivations of analytic boundaries are left in Secs.
IV, XII, and XIII.

A. Upper and lower cutoffs in exact diagonalization

The exact diagonalization can be carried out by expanding
the wave function on the basis |n, σz〉,

|ψ〉 = |ψ+〉 + |ψ−〉 =
∞∑

n=0

(cn,+|n,+〉 + cn,−|n,−〉), (4)

where + (−) labels the up ↑ (down ↓) spin in z direction and n is the quantum number for the eigenstate of quantum harmonic
oscillator (as a representation of the bosonic mode). On the basis the Hamiltonian can be written as a symmetric n × n matrix,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε+
0

�
2 g1 0

√
2g2 0 · · ·

�
2 ε−

0 0 −g1 0 −√
2g2 · · ·

g1 0 ε+
1

�
2

√
2g1 0 · · ·

0 −g1
�
2 ε−

1 0 −√
2g1 · · ·√

2g2 0
√

2g1 0 ε+
2

�
2 · · ·

0 −√
2g2 0 −√

2g1
�
2 ε−

2 · · ·
0 0

√
6g2 0

√
3g1 0 . . .

0 0 0 −√
6g2 0 −√

3g1
...

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ε
σz
n = nω − σzε + σz(2n + 1)χg2. In principle, the

wave function expansion and the Hamiltonian matrix involve
an infinite number of n. Nevertheless, since we are focusing
on the ground state, as usual one can introduce an upper cutoff
nmax which should guarantee the numerical convergence with
a required accuracy. The upper cutoff nmax will grow with the
coupling strengths g1, g2 and also depends on the frequency.
For a strong coupling a lower frequency requires a larger nmax,
e.g., at ω = 0.001� the upper cutoff may be several thousands
for a coupling strength g1 in a range [1gs, 3gs]. It may be
worthwhile to mention that one can also apply a lower cutoff
nmin to reduce the computational cost in strong couplings,
since the distribution of the basis weight cn,σz has a peaklike
profile in strong couplings and the basis weight for small n
may also become negligible as large n, as illustrated by Fig. 1.

In the present work we focus on the ground-state proper-
ties. With the ground state obtained by exact diagonalization,
one can calculate the physical expectations over the ground
state

〈Ô〉 = 〈ψ |Ô|ψ〉, 〈Ô〉σ = 〈ψσ |Ô|ψσ 〉, (5)

where Ô is an operator and the wave function has been nor-
malized by 〈	|	〉 = 1. We will investigate various physical
quantities, including 〈σz〉, 〈σx〉, 〈x̂〉, and 〈x̂〉σ , where x̂ =
(a† + a)/

√
2, which are sensitive to different transitions.

B. Effective spatial coordinate representation

To facilitate the understanding in further discussions we
rewrite the bosonic mode in the model Hamiltonian in terms
of the quantum harmonic oscillator. By the transformation
a† = (x̂ − i p̂)/

√
2, a = (x̂ + i p̂)/

√
2, we transfer to the space

of the effective position x̂ and the momentum p̂. Thus, the
Hamiltonian takes the form

H =
∑
σz=±

(
hσz |σz〉〈σz| + �

2
|σz〉〈σ z|

)
, (6)

which is composed of the effective free-particle part (the hσz

term) and tunneling part (the � term). Here σ z = −σz labels
the spin as in Eq. (4). The effective free-particle Hamiltonian
in the spin components can be rearranged to be

h± = ω

(
p̂2

2m±
+ v±

)
+ e0, v± = v

hp
± + b± + b0 ∓ ε,

(7)

FIG. 1. Distribution of basis weight Cn,σ (plotted by absolute
value) in exact diagonalization for linear coupling strengths g1 =
1.5gs and g1 = 2.0gs, at bias ε = 0.5gt and nonlinear interaction
g2 = −0.02gt and frequency ω = 0.001�. Here we have defined
gs = √

ω�/2 and gt = ω/2.
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where

v
hp
± = 1

2 m±
 2
±[x − x0,±]2, (8)

b± = ± g̃′
2g′2

1

2
(
1 − g̃′2

2

) , (9)

b0 = −g′2
1 /[2

(
1 − g̃′2

2

)
]. (10)

We have defined g′
1 = √

2g1/ω, g′
2 = 2g2/ω and e0 = −ω/2.

Here m± = (1 ∓ g′
2 ± χg′

2)−1 is the effective mass and

± = [(1 ± χg′

2)2 − g′2
2 ]1/2 is frequency renormalization.

The x0,± = ∓g′
1/(1 ∓ g̃′

2) is the potential displacement for the
potential bottom shifting horizontally from the origin, while
b0 is the vertical shift which is both downward for the two spin
components. In this picture we see the different roles played
by the physical parameters of the model: the linear coupling g1

separates the potentials of the two spin components, the bias
ε shifts the potentials downwards or upwards oppositely for
the two spin components, while the nonlinear interaction g2

not only leads to asymmetry in frequency 
± and potential
displacement x0,± but also results in the vertical potential
difference b±.

In this representation we can apply a variational method
such as the polaron picture by decomposing the ground-state
wave function into four wave packets [20],

|ψ〉 = (α+ϕ+
α + β+ϕ+

β )|↑〉 + (α−ϕ−
α + β−ϕ−

β )|↓〉, (11)

where ϕ±
α corresponds to polaron and ϕ±

β represents antipo-
laron induced by tunneling effect, α± and β± are weight
coefficients. Practically ϕ±

α and ϕ±
β can be approximated by

the ground states of quantum harmonic oscillators with opti-
mized displacements and frequency renormalizations.

We shall apply the polaron picture to provide an under-
standing for the various phase transitions, explain why the
quantities 〈σz〉, 〈σx〉, 〈x̂〉, and 〈x̂〉σ , respond differently to
the transitions, and extract analytic phase boundaries at finite
frequencies.

C. Semiclassical energy in low-frequency limit

Semiclassical picture can provide a good description for
the transitions in the low-frequency limit. This can be seen
from a scale estimation of either the wave-packet size or the
contribution of the kinetic energy.

In fact, the ground-state wave function basically can be
decomposed into ground states of quantum harmonic oscilla-
tors with displacement and frequency renormalizations [20].
The wave-packet size is of order 1 in the aforepresented
dimensionless formalism. The potential size, represented by
the distance of the potential bottoms in two spins, at phase
transitions can be estimated by x0,±, being of order g′

s =√
2gs/ω ∝ √

�/ω. Thus, the ratio between the wave-packet
size and the potential size is of order

√
ω/� which becomes

smaller at a lower frequency. In the low-frequency limit,
ω/� → 0, with the wave-packet size relatively negligible,
one can regard the effective particle as a classical mass point
in the effective spatial space, without a spatial structure of
probability distribution as in quantum mechanics. Thus, the
spatial part can be treated as a classical part. However we
keep the leading tunneling effect in the spin space, which

is quantum part. In such a semiclassical consideration, the
ground state is motionless with a vanishing kinetic energy
(p2 = 0).

We can also draw the same conclusion from the quantum
mechanical consideration of the kinetic energy. This can been
seen from an order estimation of the contribution of the kinetic
energy. We take the transition of the QRM as an example.
The transition occurs at g1 = gs and before the transition the
particle resides around the origin x = 0 to gain a maximum
tunneling energy. In such a situation the potential energy is of
an order ωv

hp
± ∼ ω[g′

s]
2 = ω[

√
2gs/ω]2 ∝ �, which is indeed

competing with the the tunneling energy to give rise to the
transition. Note that the kinetic energy is of an order ω, like
the quantum harmonic oscillator, which in the low-frequency
limit becomes negligible relatively to the order of the potential
energy and tunneling energy. Thus, in the low-frequency limit
we can set p̂2 → 0, which is equivalent to the semiclassical
ground-state energy for a quantum particle (spin space) in a
classical external potential (effective spatial part).

We can get the variational energy readily in the above
semiclassical picture. The spin part can be formulated in the
following eigenequation in matrix form,(

ε+ �
2

�
2 ε−

)(
β+
α−

)
= ε

(
β+
α−

)
, (12)

where ε± = ω v± + ε0 has a zero kinetic energy. The eigenen-
ergy for the ground state is determined by

ε = 1
2 [(ε+ + ε_) −

√
(ε+ − ε_)2 + �2]. (13)

Note ε = ε(x) is a function of the spatial position x as v± is
position dependent, one also needs to minimize the energy in
the spatial part by

∂ε(x)

∂x
= 0, (14)

which decides the final ground-state energy in the semiclas-
sical picture. This variational energy provides a convenient
analysis for transition orders and also enables us to obtain the
analytic phase boundaries in the low-frequency limit.

IV. DIFFERENT ORDERS OF PHASE TRANSITIONS

The QRM H0 has a phase transition at g1 = gs in the
low-frequency limit [19,20,27,55]. This phase transition is
of second order. With the additional competitions from the
nonlinear interaction and the bias our model H will involve
different orders of transitions. These different order transi-
tions can be readily seen from the energy competition in the
semiclassical picture. In Fig. 2 we illustrate the semiclassi-
cal variational energy as a function of x before transitions
[blue (upper) solid lines], at transitions [black (middle) dashed
lines] and after transitions [orange (lower) solid line] in differ-
ent situations.

Figure 2(a) presents the case of the conventional QRM
without the bias and the nonlinear interaction. Before the
transition at g1 = gs the energy minimum is located at the
origin, after the transition the origin becomes an unstable
saddle point while the ground state lies in the formed two
symmetric minima which are moving away from the origin.
At the transition point the minimum bottom becomes flat
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FIG. 2. Energy competitions and transition orders. Semiclassi-
cal variational energy ε before [blue (upper) solid lines], at [black
(middle) dotted lines] and after [orange (lower) solid lines] transi-
tions, with respect to the effective particle position x for (a) ε = 0
and g2 = 0, (b) ε = 0 and g2 = 0, (c) ε = 0 and g2 = 0, (d) ε =
0 and g2 > 0, (e) ε = 0 and g2 < 0 nearby |g2| = |gt |, (f) ε = 0
and g2 < 0 nearby g2 = 0. Here ε0 = −(ω + �)/2. (The actual
plotting parameters are (a) ε = 0, g2 = 0, and g1/gs = 0.5, 1.0,
1.1; (b) ε = 0.015�, g2 = 0, and g1/gs = 0.5, 1.0, 1.1; (c) ε = 0,
g2 = 0.7gt and g1/gs = 0.695, 0.714, 0.729; (d) ε = 0.05�, g2 =
0.7gt , and g1/gs = 0.748, 0.767, 0.782; (e) ε = 0.05�, g2 = −0.7gt ,
and g1/gs = 0.648, 0.667, 0.682; (f) ε = 0.05�, g2 = −0.5gt , and
g1/gs = 0.765, 0.784, 0.799. We set ω = 0.001� and � = 1 is taken
as the unit and x is dimensionless as indicated by the transformation
x̂ = (a + a†)/

√
2.)

with a vanishing second derivation ∂2ε/∂x2 = 0. Although
the transition turns the minimum number from one to two, this
transition is continuous as two minimum positions separate
continuously from the origin.

The presence of the bias breaks the symmetry in the energy
profile in any regime of the linear coupling, as illustrated
in Fig. 2(b). The profile difference of single minimum and
double minima in energy leads to different response to the
bias before and after the transition. Before the transition point
gs the energy has no competition as the single minimum is
the only choice. With the bias this single minimum moves
gradually away from the origin. After the transition, there are
two minima which are degenerate in the absence of the bias.
Any tiny strength of bias will immediately break the symme-
try and raise the degeneracy. Changing the sign of the bias the
ground state will shift from one side of the minimum to the
other side. Either the bias opening or a sign change will lead
to an abrupt jump in polarization, leading to a discontinuous
first-order transition.

The scenario of energy competition is different in the pres-
ence of nonlinear interaction, as demonstrated in Fig. 2(c).
There are two local energy minima both before and after
the transition [here the transition moves from gs to g1c in
Eq. (15)], one at the origin, the other away from the origin.
Before the transition, the ground state lies in the minimum
at the origin while the other local minimum is higher in
energy. At the transition the higher minimum is lowered to
get degenerate with the one at the origin. After the tran-
sition, the energy preference gets reversed and the ground
state turns to the lower minimum away from the origin. Note
that, in a sharp contrast to the continuous variation of the
minimum position in Fig. 2(a), the transition here in Fig. 2(c)
is companied with a sudden shift of minimum position. This

discontinuous shift of minimum position results in a first-
order transition.

In the presence of both the bias and the nonlinear interac-
tion, there are three situations which should be distinguished.
Figure 2(d) shows the first case in which the bias ε and the
nonlinear interaction g2 have the the same sign. In his case the
bias pushes the minimum at the origin away to the opposite
side of the higher minimum. In this case the transition also
is discontinuous (first-order), similar to Fig. 2(c). Figure 2(e)
shows the second case with the sign of g2 opposite to ε and
the amplitude of g2 closer to gt . In this case the two energy
minima are located on the same side but still far away enough
to have a barrier between them. Thus, the transition also has a
discontinuous shift of the minimum position, being first-order.
The third situation shown in Fig. 2(f) still has opposite signs of
g2 and ε but with a small amplitude of g2. In this case the two
local energy minima are too close to have a barrier to separate
them explicitly. Although the minimum position may have a
quick shift but the variation is continuous. Thus, the first-order
transition is softened, being second-order-like or even fading
away.

V. PARITY SYMMETRY OF THE QRM

The conventional QRM H0 possesses the parity symmetry
P̂ = σx(−1)a†a which commutes with H0. The parity oper-
ation P̂ simultaneously reverses the spin sign and inverses
the effective spatial space x → −x. The spin sign reversion
can be seen directly from σx = (σ+ + σ−). The space in-
version can be conveniently shown by expanding the wave
function on the basis of quantum harmonic oscillator as in
Eq. (4). Then the action of the parity operation leads to
P̂|ψ〉 = ∑∞

n=0(−1)n(cn,+|n,−〉 + cn,−|n,+〉). In the spatial
coordinate it means the transform

P̂ : ψ±(x) →
∑

n

(−1)ncn,∓φn(x)

=
∑

n

cn,∓φn(−x) = ψ∓(−x),

where we have applied the fact that the eigenstate of quan-
tum harmonic oscillator, φn(x), is an odd (even) function
of x for an odd (even) quantum number n. Thus, we see
the space inversion x → −x, besides the spin reversion. The
parity symmetry requires ψ±(x) = Pψ∓(−x) where P = ±1.
The ground state of QRM has a parity P = −1. Apparently,
either in the negative or positive parity symmetry, the spin
expectation 〈σz〉 along z direction is vanishing, which is a
characteristic of the parity symmetry. In the present work we
focus on the symmetry breaking in the ground state of the
general model H with the bias, the nonlinear interaction and
the Stark coupling.

VI. DIFFERENT PATTERNS OF SYMMETRY BREAKING

Either the bias or the nonlinear interaction will break the
parity symmetry of the linear QRM H0. Interestingly different
scenarios arise in the interplay of linear coupling with the bias
and the nonlinear interaction, leading to various patterns of
symmetry breaking. On the one hand, the linear QRM has a
critical point at g1 = gs which also turns out to be a critical
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FIG. 3. Different patterns of symmetry breaking. (a–f)
Spin expectation 〈σz〉 in the cases of (a) paramagnetic-like,
(c) antiferromagnetic-like, (b, d) the spontaneous symmetry
breaking, (e) paramagnetic+first- or second-order-transition, and
(f) antiferromagnetic+first- or second-order-transition. These cases
are illustrated by fixed parameters at g2 = 0 with g1 = 0.9gs

(a) or g2 = 0 (b), at ε = 0 with g1 = 0.9gs (c) or g1 = 1.2gs (d),
at g1 = 0.7gs (e) with g2 = 0.6gt (green, upper) or g2 = 0.65gt

(red, lower), at ε = 1gt (f) with g2 = −0.02gt (green, upper) or
g2 = 0.02gt (red, lower), given a frequency ω = 0.001�.

point for change of symmetry-breaking patterns (though, by
a perspective view in Sec. VII, this pattern critical point may
be shifted when both the bias and the nonlinear interaction
are present). The regimes below and above the critical point
respond to the symmetry breaking with completely different
sensitivities. On the other hand, within a same linear-coupling
regime, the processes of symmetry breaking may be essen-
tially different in the presence of the bias and nonlinear
interaction.

Figure 3 illustrates the different patterns of symmetry
breaking in response to the bias and the nonlinear interaction,
as calculated from exact diagonalization. Figure 3(a) shows
the evolution of the spin expectation 〈σz〉 with respect to the
variation of the bias ε, below gs of linear coupling and in
the absence of the nonlinear interaction g2. We see that the
amplitude of 〈σz〉 increases gradually with the bias strength,
which is paramagnetic-like. Figure 3(c) shows the dependence
of 〈σz〉 on the strength of the nonlinear interaction below gs.
We see that 〈σz〉 has no response to the nonlinear interaction
g2 and remains vanishing until the strength of g2 reaches
some critical point g2c. Once g2 goes beyond g2c, the spin
expectation 〈σz〉 jumps abruptly to a finite value and then starts
approaching to saturation. This pattern with a threshold for
polarization is antiferromagnetic-like. We see the essentially
different patterns of symmetry breaking: there is a first-order
phase transition induced by the nonlinear interaction, while
there is no transition in introducing the bias. Above the critical

FIG. 4. Phase diagrams and analytic phase boundaries in low-
frequency limit. Spin expectation 〈σz〉 at a fixed parameter (a) g2 = 0,
(b) ε = 0, (c) g2 = 0.5gt , (d) ε = 10gt , (e) g1 = 0.7gs, (f) g1 =
1.2gs. Here ω = 0.01�. All panels share the same color legend for
〈σz〉 as (a). The dashed or dot-dashed curves are analytic boundaries
Eqs. (16) and (17), the vertical lines in (c) are marking gs as a
reference for the boundary moving.

point gs of the linear coupling, both the bias and the nonlinear
interaction bring another pattern. In Figs. 3(b) and 3(d), we
see that a tiny strength of either the bias or the nonlinear
coupling will lead to dramatic change in 〈σz〉 which jumps to
a finite value. This is the pattern of spontaneous symmetry
breaking. This means the system is extremely sensitive to
the perturbation of the bias or the nonlinear interaction, in
a sharp contrast to both the paramagnetic-like pattern and
antiferromagnetic-like pattern. Furthermore, as in Fig. 3(e),
the interplay of the bias and the nonlinear interaction may lead
to a paramagnetic-like pattern followed by a second-order-
like transition (green upper line) or first-order transition (red
lower line). It is also interesting to see that in the interplay
with both the bias and the nonlinear interaction increasing
g1 could bring about an antiferromagnetic-like pattern but
with the aforementioned first-order transition replaced by a
second-order transition, as illustrated by the green (upper) line
in Fig. 3(f). This occurs for the opposite signs of the bias and
the nonlinear interaction. When the signs are the same another
pattern could emerge, i.e., antiferromagnetic-like pattern plus
successive transitions of second-order and first-order types, as
shown by the red (lower) line in Fig. 3(f).

VII. PHASE DIAGRAMS AND ANALYTIC TRANSITION
BOUNDARIES IN THE LOW-FREQUENCY LIMIT

To get a perspective view we plot the phase diagrams in
the full parameter spaces, as in Fig. 4. Figure 4(a) shows the
dependence of 〈σz〉 on the bias and the linear coupling, in the
absence of the nonlinear interaction. The spin expectation 〈σz〉
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has a positive value in the red (upper) region for ε > 0 and a
negative value in the blue (lower) region for ε < 0. The white
line at ε = 0, with vanishing 〈σz〉, is parity-symmetry line
from the conventional QRM. As we see, for the weak linear
coupling regime |g1| < |gs|, when the bias is getting stronger,
the color gradually turns from white to red (dark gray) or blue
(light gray), which indicates no phase transition. Differently,
for the whole strong coupling regime |g1| > |gs|, there is a
sharp color change across the parity-symmetry line, indicating
the spontaneous symmetry breaking. Figure 4(b) shows the
behavior of 〈σz〉 in the interplay of the nonlinear interaction
and the linear coupling in the absence of the bias. We see
that, besides the parity-symmetry white line at g2 = 0, another
white round region is opened where the parity symmetry for
the ground state is also unbroken. The antiferromagnetic-like
pattern occurs in the regime of the round region. The dashed
line along the circumference of the round region in Fig. 4(b)
is the analytic boundary

|g1c| = gs

√
1 − g̃2

2/g2
t , (15)

where g̃2 = (1 + χ )g2, which reproduces the numerical
boundary.

Figures 4(c) and 4(d) illustrate the mutual influence of the
bias and the nonlinear interaction over their phase diagrams.
Figure 4(c) is plotted as function of bias and linear coupling,
in the presence of a finite nonlinear interaction g2 = 0.5gt.

Here gt = ω/2, as defined in Eq. (3), is the physical limit
for the nonlinear interaction, beyond the limit the system
energy becomes negatively unbound thus being unphysical.
We see that, in the presence of a finite nonlinear interaction,
the first order phase transition line for 〈σz〉 gets tilted from
the horizontal line in zero-g2 case. Furthermore, the transition
boundary enters the regime [−gs, gs] where originally there
is no transition in the absence of the nonlinear interaction.
Figure 4(d) is plotted in the g1/g2 plane in the presence of
a finite strength of the bias ε = 0.1�. We see for g2 > 0 the
connection of the circle and the horizontal line originally in
ε = 0 case [Fig. 4(b)] now becomes round, with the boundary
changing from a dome shape to be a hill shape. In this reshap-
ing the transition at the boundary remains to be first order.
For g2 < 0, some section of the first-order round boundary
disappears, with the jump of 〈σz〉 closed and softened, turning
the original half-circle boundary to be an arc shape. Let us
label by gE

2 the critical nonlinear interaction for the ends of
the arc boundary. The analytic expression of gE

2 will be given
in Eq. (33) and the dependence on the bias strength plotted in
Fig. 16(b) in Sec. XIII A. Meanwhile, the arc spanning angle
gets narrower than the half circle, i.e., |g1c| is smaller at the
same value of g2. The rest first-order arc boundary, remaining
in the large-g2-amplitude regime, shrinks with an enhanced
bias.

Figures 4(e) and 4(f) show the phase diagrams at fixed
linear couplings below gs [Fig. 4(e)] and above gs [Fig. 4(f)].
Below gs there are two first-order boundaries in the variations
of the bias and the nonlinear interaction, which are separated.
When the linear coupling gets stronger the two boundaries are
curved, with their ends getting closer and finally connected to
form one first-order boundary above gs.

For a quantitative description, we extract the analytic
boundary marked by g1c or εc as follows:

|g1c| = gs

[
1 + gtε

g̃2�

]√
1 − g̃2

2/g2
t , (16)

εc = g̃2

gt

[ |g1|/gs√
1 − g̃2

2/g2
t

− 1

]
�. (17)

We leave the analytic derivation in Sec. XIII A. Note here,
whereas for g2ε > 0 the extension of boundary is unlimited,
for g2ε < 0 the validity regime is |g2| < gE

2 which is the arc
boundary. We leave the detail of derivation in Sec. XIII. Set-

ting ε = 0 retrieves the round boundary |g1c| = gs

√
1 − g̃2

2/g2
t

in the absence of bias [24]. We plot the analytic boundaries by
the dashed or dot-dashed lines in Figs. 4(b)–4(f), which are in
good agreements with the numerical boundaries.

VIII. TRICRITICALITY-(I) IN THE
LOW-FREQUENCY LIMIT

In Fig. 4(b) one may notice on each side g1 = ±gs is a
triple point where the round boundary and horizontal line
are crossing. Unlike the conventional tricritical point where
a second-order boundary and a first-order boundary meet,
this triple point connects two first-order boundaries. Still it
is particular as both the two first-order boundaries become
second-order at this triple point. In the presence of the bias,
this triple point will move and turn to a conventional tricritical
point.

In Fig. 5(a), in the absence of the bias by the purple
dot-dashed line (ε/gt = 0) we show the spin expectation dis-
continuity �σz, i.e., the jump of 〈σz〉 across the boundary, with
the finite value of �σz representing the first-order transition.
The transition becomes second-order at gs as indicated by the
vanishing of �σz. In the presence of the bias, this second-
order transition also turns to be first order, as we illustrate
by ε/� = 0.001, 0.01, and 0.04 in the low-frequency limit
(ε/gt = 1, 10, and 40 if taking ω = 0.001�). With the bias
increasing, the shape of the �σz minimum evolves from a
sharp dip into a round valley. Figure 5(b) provides a view of
�σz in the g2 dimension, which includes both boundaries in
the positive and negative g2 regimes. The vanishing-�σz point
at zero bias is extending into a vanishing-�σz window at finite
biases. In the negative g2 regime the remaining finite-�σz

section in Fig. 5(b) corresponds to the boundary arc. In the
positive g2 regime, it is worthwhile to follow the evolution of
the minimum position of �σz, which is moving away from
the original point g2 = 0. As aforementioned, this minimum
point is originally a triple point in the absence of the bias, now
in the presence of the bias it will turn out to be an imprint of
tricriticality.

Indeed, when scanning g1 in Fig. 5(c), as demonstrated
by the case g2 = 0.1gt [blue (right) line] we see a three-
phase-like scenario: first, a flat region in spin expectation 〈σz〉;
second, a fast-rising region; finally, jumping into a region
with opposite sign. The three phases look more distinct in
the evolution of the spin expectation in x direction, 〈σx〉, as
shown by the blue (right) line in Fig. 5(d). Essential changes
of the three phases may be indicated by 〈a+ + a〉 which is
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FIG. 5. Tricriticality-(i) in low-frequency limit. (a) Spin expec-
tation discontinuity �σz along the transition boundary in g2 > 0
regime as a function of g1 for ε = 0gt (purple dot-dashed), 1gt (green
solid), 10gt (black dotted), and 40gt (blue dashed) at ω = 0.001�.
(b) �σz as a function of g2. (c–f) Three-phase behavior of 〈σz〉 (c),
〈σx〉 (d, e), 〈̂x〉 (f) for ε = 40gt . Panels (c, d, f) give illustrations
with fixed g2 = 0.1gt (blue, right), g2 = 0.2gt (green, middle), and
g2 = 0.45gt (gray, left), while (e) is a contour plot.

effective spatial particle position x (we shall discuss more
in Secs. XI and XII). As shown in Fig. 5(f), the effective
particle resides closely around the origin in the first phase,
moves obviously away from origin in the second phase and
jumps abruptly to the other side in the third phase. These
three phases are separated by two transition-like points, the
first transition is second-order-like and the second one is of
first order. When the bias strength increases, the two transi-
tions get closer to each other and finally meet, as illustrated
by g2 = 0.2gt [green (middle) lines] and g2 = 0.45gt [gray
(right) lines] in Figs. 5(c), 5(d), and 5(f). Such a scenario of
two separate transitions converging to one transition forms a
tricritical-like point, which can be seen more clearly by the
contour plot of 〈σx〉 in Fig. 5(e). This tricritical-like point is
located around the aforementioned �σz minimum position.

IX. NOVEL TRICRITICALITIES AND TRIPLE POINTS AT
FINITE FREQUENCIES

The low-frequency limit discussed in previous sections is
also the semiclassical limit, as the wave-packet size is so
small that it can be regarded as a semiclassical mass point (as
discussed in Sec. III C). In such a semiclassical limit, in each
quadrant of the phase diagrams in Fig. 4 the nonlinear interac-
tion induces only one transition in the absence of the bias and
at most two transitions in the interplay with the bias. However,
the spontaneous symmetry breaking occurs immediately upon
any tiny strength of the bias or nonlinear interaction. In this

FIG. 6. Tricriticality-(ii) induced by frequency ω. Phase dia-
grams of different quantities by frequency variation (ω) at ε =
0.001gt with g2 = 0 (a,c,e) and g2 = 0.0001gt with ε = 0 (b, d, f)
for (a) 〈σx〉, (b) 〈x̂〉+, (c) 〈σz〉, (d) 〈x̂〉−/|x0,−| (x̂ = (a + a†)/

√
2), (e)

〈x̂〉/|x0,+|, and (f) x̃+ = 〈x̂〉+/(|x0,+|ρ+). The dashed lines in panels
(b–e) are gII

1c extracted from analytic Eqs. (18) and (19).

section, we shall see that the full quantum-mechanical effect
at finite frequencies will change this picture and lead to richer
scenarios. We find that additional transitions appear, tricriti-
calities and triple points arise, and the spontaneous symmetry
breaking exhibits a fine structure.

A. Additional transition and Tricriticality-(ii) induced by the
frequency, respectively, in the bias or the nonlinear interaction

The tricriticality in Sec. VIII occurs in the low-frequency
limit. The transitions and the tricriticality arise from the com-
petition and interplay of the bias, the nonlinear interaction
and the linear coupling. In such a situation, different physical
quantities exhibit imprints of each transition at a same tran-
sition point, as one can see from Figs. 5(c), 5(d), and 5(f).
Here we show another kind of tricriticality induced by the
frequency which has a different nature and transition positions
diverge for different physical quantities.

In Fig. 6, we show a variety of physical quantities with the
dependence on the frequency ω, under a fixed bias ε = 0.1 �

in Figs. 6(a), 6(c), and 6(e) or a fixed nonlinear interaction
g2 = 0.01gt in Figs. 6(b), 6(d), and 6(f). The two-parameter
cases have similar behavior despite some detail and sign dif-
ference for some quantities. As expected, in the low-frequency
limit both 〈σx〉 [Fig. 6(a)] and 〈σz〉 [Fig. 6(c)] show one
transition at a same point around g1 = gs. However, when the
frequency is raised, 〈σx〉 and 〈σz〉 respond differently. In fact,
the transition in 〈σx〉 is not much affected by the frequency
except for some softening of the transition, whereas the transi-
tion in 〈σz〉 is moving obviously toward the larger-g1 direction.
The diverging evolutions of the transition positions of 〈σx〉
and 〈σz〉 indicate an additional transition induced by the finite
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frequency, thus the one transition in the low-frequency limit
becomes two transitions at finite frequencies. It also seems
peculiar that the spin expectations 〈σx〉 and 〈σz〉 respond to
the two transitions, respectively: the first transition induces re-
sponse in 〈σx〉 but leaves no imprints in 〈σz〉, while the second
transition shows a strong onset signal in 〈σz〉 but gives no sign
in 〈σx〉. This additional transition can also be seen from the
effective particle position or displacement 〈̂x〉 =〈a† + a〉/√2,
as shown in Fig. 6(e).

The two diverging transitions can be also detected si-
multaneously by a single physical quantity, such as the
spin-filtered displacement 〈̂x〉±= 〈a† + a〉±/

√
2 which only

counts the contribution from one spin component, as
shown in Figs. 6(b) and 6(d), where it is quite clear to
visualize two boundaries corresponding to the two tran-
sitions. To have unified upper and lower bounds for
plotting we also introduce the normalized spin-filtered dis-
placement x̃± = 〈a† + a〉±/(

√
2ρ±|x0,sign(−g̃2 )|), where ρ± =

〈ψ±|ψ±〉 = (1 ± 〈σz〉)/2 is the spin-component weight and
x0,± is the potential displacement [as defined in Eq. (8)].
Besides the normalization, x̃± provides another convenience
that it has three regimes of values, respectively, for the three
phases separated by the two transitions. Thus, the three phases
can can be distinguished by three colors, as shown in Fig. 6(f).
It should be mentioned that at higher frequencies there is
some discrepancy for the second transition point from x̃±.
This spurious transition discrepancy is simply coming from
the cancellation effect around the transition from its numer-
ator 〈a† + a〉± and denominator ρ±, while separately both
〈a† + a〉± and ρ± have the right second transition point. Nev-
ertheless, the discrepancy at low frequencies is negligible so
we can still use it for further discussions by the advantages of
its normalization and value(color)-phase correspondence.

Reversely in lowering the frequency, the two boundaries
of the three phases will converge to one point, thus forming
a triple point and another kind of tricriticality. In a conven-
tional tricriticality each two adjacent phases adjoin through a
boundary, here among the three phases there are two adjacent
phases connected by one critical point at zero frequency. It
should be noted that the tricriticality of this case, as labeled
by (ii), is distinguished from Tricriticality-(i) in Sec. VIII.
Tricriticality-(i) happens in the presence of both the bias and
the nonlinear interaction, while Tricriticality-(ii) here occurs
in the respective presence of the bias or the nonlinear interac-
tion. From the mechanism clarification in Sec. XII we will
see that the additional transition and tricriticality originate
from a full-quantum-mechanical effect, in a contrast to the
semiclassical effect in the low-frequency limit.

B. Tricriticality-(iii) induced by the bias or the nonlinear
interaction at finite frequencies

It will provide another view by fixing a finite frequency and
varying the bias or the nonlinear interaction. As described in
Sec. VII, in the low-frequency limit we see from Figs. 4(a) and
4(b) that in each quadrant of the phase diagrams there is no
more than one transition. As revealed in Sec. IX A, at a finite
frequency the single transition turns to be two successive tran-
sitions. The variation of the bias or the nonlinear interaction

FIG. 7. Tricriticality-(iii) induced by the bias or the nonlinear
interaction at a finite frequency. Phase diagrams at ω = 0.1� for
variation of ε at g2 = 0: (a) 〈σx〉, (c) 〈σz〉, (e) x̃−. Phase diagrams
for variation of g2 at ε = 0: (b) 〈σx〉, (d) 〈σz〉, (f) x̃+. The dot-dashed
lines in panels (a, b) are analytic gI

1c and the dashed lines in panels
(c, d) are analytic εII

c and gII
2c in Eqs. (18) and (19). The base of the

logarithm is 10 throughout the paper.

will influence the transitions and induce a third tricriticality
which we label by Tricriticality-(iii).

The successive transitions can be seen more clearly from
a zoom-in view by a logarithm scale for the variations of ε

and g2, as illustrated by Fig. 7 at a finite frequency ω = 0.1�.
Figures 7(a), 7(c), and 7(e) present the phase diagrams for the
pure bias dependence without the nonlinear interaction and
Figs. 7(b), 7(d), and 7(f) for the nonlinear interaction in the
absence of the bias. To distinguish the two transitions we label
the transition in 〈σx〉 by gI

1c and that in 〈σz〉 by gII
1c. We see in

Figs. 7(a) and 7(b) that the first transition (second-order-like)
in 〈σx〉 does not vary at weak strengths of ε or g2, except
that the transition point at low frequencies shifts a bit from

g1c ∼ gs to gI
1c ≈

√
ω2 + √

ω4 + g4
s [20] due to the width of

wave packet in the wave-packet splitting. In a sharp contrast,
the second transition is very sensitive to the variation of the
bias and the nonlinear interaction. In fact, as demonstrated by
Figs. 7(c) and 7(d), the transition point gII

1c has a logarithmic
dependence on ε and g2. Analytically we find the second
boundary as a function of g1 (see the derivation in Sec. XIII):

∣∣εII
c

∣∣ = (1 − t )�

4δcζ
exp

[
− ζ 2g2

1�

2ω

]
, for g2 = 0, (18)

∣∣̃gII
2c

∣∣ = (1 − t )gt

δcζ 3g2
1

exp

[
− ζ 2g2

1�

2ω

]
, for ε = 0, (19)

where g1 ≡ g1/gs, δc = e−1, t = (1 − ζ )2/2 + ω/(g2
1�) and

ζ = (1 − g−4
1 )1/2. The analytic boundaries εII

2c and gII
2c are

plotted as the dashed lines in Figs. 7(c) and 7(d), in good
agreements with the numerical results.
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With the strength increase of the bias or the nonlinear inter-
action, the two transitions, respectively, reflected in 〈σx〉 and
〈σz〉 are getting closer and finally meet to form Tricriticality-
(iii). A better view of this tricriticality can be obtained from
x̃± as in Figs. 7(e) and 7(f) where three phases are distinctly
represented by three colors (value regimes). Above the tricriti-
cal point it is one transition of first-order type, while below the
tricritical point the transition is bifurcated into a second-order-
like transition and a first-order-like one. Exactly speaking, in
the bias case the transition above the tricritical point is a short
extension from the first-order transition below the tricritical
point. This transition soon gets softened and fades away when
the linear coupling g1 is reduced to below gs. In the nonlinear
interaction case, the first-order-like transition covers the entire
g2 regime thus also the whole g1 regime.

To distinguish Tricriticality-(iii) from Tricritcalities (i) and
(ii) let us mention the differences. Tricritcality-(i) in the low-
frequency limit revealed in Sec. VIII occurs in the presence
of both the bias and the nonlinear interaction. Tricriticality-
(iii) here needs only the bias or the nonlinear interaction.
Tricriticality-(ii) unveiled in Sec. IX A is induced by the varia-
tion of the frequency, here Tricriticality-(iii) is induced by the
bias or nonlinear interaction at a fixed finite frequency.

The scenario of Tricriticality-(iii) also gives rise to a fine
structure of the spontaneous symmetry breaking for the finite
frequency case. Note that the negative-ε(g2) regime has the
same tricritical scenario as the positive-ε(g2) regime, except
for being antisymmetric for 〈σz〉 and symmetric for 〈σz〉 in
the quadrants of the phase diagrams. Thus, rather than an
immediate jump of 〈σx〉 from zero to a finite value upon the
opening of the bias or the nonlinear interaction, there is now
a window within which the parity symmetry of the ground
state is maintained to some large extent, as indicated by the
vanishing 〈σz〉. Out of the window the symmetry is broken.
This window becomes narrower when the linear coupling gets
stronger, but can be widened by a higher frequency.

C. Sensitivity competition of the bias and the nonlinear
interaction in spontaneous symmetry breaking

The spontaneous symmetry breaking means that the sym-
metry is vulnerable to the perturbation of the bias or the
nonlinear interaction. It may be worthwhile to compare the
symmetry-breaking sensitivity to the bias and the nonlin-
ear interaction. As described in the paramagnetic-like and
antiferromagnetic-like symmetry patterns in Secs. VI and VII,
let us remind that in the weak linear coupling regime g1 < gs

the polarization 〈σz〉 is more sensitive to the bias but respon-
seless to the nonlinear interaction within a threshold g2c. We
find this sensitivity tendency is reversed in the strong linear
coupling regime g1 > gs. It turns out that in this regime the
symmetry breaking finds a higher sensitivity to the nonlinear
interaction than the bias. In Fig. 8(a), we demonstrate that
the symmetry breaking occurs earlier in the nonlinear inter-
action (orange dashed line, ε = 0) in the sense that the bias
needs to have a relatively stronger strength (blue dot-dashed
line, g2 = 0) to bring about the transition. Figure 8(b) shows
the ratio of the critical-like strengths between the bias and
the nonlinear interaction. One sees the critical strength of the

FIG. 8. Sensitivity competition for spontaneous symmetry
breaking. (a) 〈σz〉 depending on ε at g2 = 0 (orange dashed) and
on g2 at ε = 0 (blue dot-dashed) at g1 = 1.5gs and ω = 0.1�.
(b) Threshold ratio εII

c /gII
2c depending on g1. The base of the loga-

rithm is 10 throughout the paper.

bias is one or two orders larger than the nonlinear interaction.
Moreover, this ratio is growing with the linear coupling g1.

One can see more clearly from the analytic boundary
Eqs. (18) and (19). We obtain the ratio between the critical
bias and nonlinear interaction∣∣εII

c

∣∣∣∣̃gII
2c

∣∣ = ζ 2g2
1�

4gt
. (20)

On the one hand, the low-frequency contributes to the order
difference as gt = ω/2. On the other hand, the ratio is pro-
portional to g2

1 which grows parabolically with the strength of
the linear coupling. In addition, ζ [defined below Eq. (19)]
starts for a small value at g1 = gs and soon approaches to
the value 1 in the increase of g1, which also contributes to
the ratio growing at the beginning. Thus, unlike in the regime
below gs, the parity symmetry in the regime beyond gs is more
sensitively broken by the perturbation of nonlinear interaction
than that of the bias, unless nearby gs. This sensitivity priority
of the nonlinear interaction comes from the entanglement of
the nonlinear interaction and the linear coupling, as indicated
by Eq. (9) in Sec. XII.

D. Tricriticality plus another triple point (iv) induced by the
interplay of the bias and the nonlinear interaction at

finite frequencies

In Tricriticality-(iii) we have considered the bias and the
nonlinear interaction, respectively. Now we should address
how the transitions and the fine structure of spontaneous
symmetry breaking are affected by the interplay of the bias
and nonlinear interaction. We illustrate in Figs. 9(a)–9(d) the
phase diagrams by variation of the bias in the presence of a
fixed nonlinear interaction, and in Figs. 9(e)–9(h) the phase
diagrams by variation of the nonlinear interaction in the pres-
ence of a fixed bias. As one can see, besides the transition
boundaries I and II, two more boundaries appear as we mark
by III and IV. As expected, the onset of transition I can be seen
by the start of increasing in 〈σx〉, as shown in Figs. 9(a) and
9(e). Transitions II, III, and IV can be clearly observed in 〈σz〉
as demonstrated in Figs. 9(b) and 9(f).

Although transition I is missed by 〈σz〉, all the transitions
I–IV leave some imprints in x̃± as in Figs. 9(c), 9(d) and 9(g).
The boundaries can also be all visualized by the peaks of the
susceptibility dx̃±/dg1, as illustrated in Fig. 9(h). For a fixed
nonlinear interaction in Figs. 9(b)–9(d), the boundary IV is
tilted upwards, with the critical bias increasing with the linear
coupling. For a fixed bias in Figs. 9(f)–9(h), the boundary
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FIG. 9. Tricriticality plus another triple point (iv) in the interplay of the bias the nonlinear interaction. Phase diagrams at ω = 0.1� for
variation of ε at g2 = 10−4gt : (a) 〈σx〉, (b) 〈σz〉, (c) x̃+, (d) x̃−. Density plot for variation of g2 at ε = 10−3gt : (e) 〈σx〉, (f) 〈σz〉, (g) x̃+, (h)
dx̃−/dg1 scaled by the local peak amplitude. The lines are our analytic gI

1c in panels (a, e), εII
c , εIII

c , εIV
c in panel (b), and gII

2c gIII
2c, gIV

2c in panel (f)
[see Eqs. (21)–(26)]. The base of the logarithm is 10 throughout the paper.

IV is tilted downwards, with the critical nonlinear interaction
decreasing with the linear coupling.

In Fig. 9 the crossing of the boundaries I and II forms
a first triple point around g1 = 1.2gs, which actually is
tricriticality-(iii) in the presence of only the bias or the nonlin-
ear interaction. Now in the presence of both the bias and the
nonlinear interaction, with the enhancement of the linear cou-
pling the boundaries II and III get closer to the tilted boundary
IV and seem to form a second triple point around g1 = 1.6gs.
We label such a situation with coexisting tricriticality and
another triple point by (iv).

We extract in the leading order the analytic boundaries
expressed by the bias as a function of the linear coupling and
the nonlinear interaction

εII
c = (1 − t )�

4δcζ
exp

[
− ζ 2g2

1�

2ω

]
+ 1

4
ζ 2g2

1g2�, (21)

εIII
c = − (1 − t )�

4δcζ
exp

[
− ζ 2g2

1�

2ω

]
+ 1

4
ζ 2g2

1g2�, (22)

εIV
c = 1

4
ζ 2g2

1g2�, (23)

or tracked by the nonlinear interaction in variations of the
linear coupling and the bias

g̃II
2c = (1 − t )gt

δcζ 3g2
1

exp

[
− ζ 2g2

1�

2ω

]
+ 4ε

ζ 2g2
1�

gt, (24)

g̃III
2c = − (1 − t )gt

δcζ 3g2
1

exp

[
− ζ 2g2

1�

2ω

]
+ 4ε

ζ 2g2
1�

gt, (25)

g̃IV
2c = 4ε

ζ 2g2
1�

gt, (26)

where g2 = g̃2/gt . As shown in Figs. 9(b) and 9(f) the analytic
boundaries match the numerical ones fairly well. We see that
the interplay of the bias and the nonlinear interaction con-
tributes to the second term of the boundaries II and III, as an
additional term to Eqs. (18) and (19). Exactly speaking, since
the second term is equal to εIV

c or g̃IV
2c, the mathematical triple

point (iv) is at the infinity of linear coupling. However, in real-

ity, although boundary IV is actually composed of boundaries
II and III with g̃IV

2c or εIV
c as their center, they are too close to

be distinguished when the boundaries are tilted in the regime
of the strong linear coupling. Thus, effectively triple point (iv)
appears at a finite value of the linear coupling.

E. Tricriticality plus another triple point (v) induced by
frequency in the interplay of the bias and the

nonlinear interaction

Now let us come back to the frequency dimension. In
Sec. IX A, we have seen that the frequency induces a tricritical
point in the respective presence of the bias or the nonlinear
interaction. Now we consider frequency effect in the presence
of both the bias and the nonlinear interaction. Imagine we
are standing at the boundary IV in Fig. 9, Eqs. (21)–(26)
indicate that increasing the frequency would open the gap
between the boundary IV and the boundaries II, III, thus
inducing another triple-like point. We show such a scenario
by Fig. 10 in the g1-ω plane. As one can see, apart from
the first frequency-induced tricritical point [tricriticality-(ii) as

FIG. 10. Tricriticality plus another triple point (v) induced by
frequency variation. Phase diagram of 〈x̂〉+/|x0,+| in g1-ω plane at
ε = 0.5 × 10−4� and log[g2/gt] = −4.5. P1, P2, P3, and P4 mark
the different phases. The blue long-dashed, black dot-dashed, and
green dashed lines are analytic boundaries II, III, and IV, respectively.
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aforelabeled] around g1 = 1.0gs, another triple point appears
around g1 = 2.5gs which is the location of gIV

1c at a fixed bias
ε = 0.0001� and a nonlinear interaction log[g2/gt] = −4.5.
More generally, from Eq. (26) we extract the location of the
second frequency-induced triple point as

gIV
1c = gs

√√√√2ε +
√

4ε2 + g2
2�

2

�g2
. (27)

We label this situation with coexisting tricriticality and an-
other triple point by (v). Exactly speaking, this triple point
is mathematically located at ω = 0, but effectively the triple
point seems to form at some finite frequency as boundaries II
and III are already too close to be distinguished at the finite
frequency.

F. Tendency for four successive transitions

From the discussions in Sec. VIII, we know that in the low-
frequency limit there are at most two transitions in increasing
g1. The various situations for the occurrence of tricriticality
described above in Secs. IX D and IX E demonstrate that finite
frequencies can lead to three transitions. Still, it might be
possible to go even further. A closer look at Fig. 10, we can see
the boundaries II and III forms a dip shape around g1 = 2.5gs.

The boundary III is actually a nonmonotonic function of g1.

Around ω = 0.22�, in fact increasing g1 goes across the
boundary III twice. Let us mark the different phases by P1,
P2, P3, P4. In increasing g1 one starts with phase P1. After
the first second-order transition the system enters phase P2.
Then the first time across boundary III brings the system from
phase P2 to phase P3. By the second time across boundary III
the system re-enters Phase P2. After the short re-entrance of
phase P2, the system transits to phase P4 through boundary
II. Thus, in this regime the system actually experiences four
successive transitions, i.e., transitions I, III, III, and II, going
through phases P1, P2, P3, P2, P4. This tendency of the
second additional transition indicates that finite frequencies
induces a subtle energy competition beyond the semiclassical
picture.

X. QUADRUPLE POINTS AND TETRACRITICALITY

In last section we have seen that at finite frequencies the
system can have four phases P1, P2, P3, and P4 with three,
even four transitions. We have addressed a variety of situa-
tions in which tricriticality may occur. Since we have four
phases totally, one may wonder whether it is possible for
all the four phases to meet and form a quadruple point and
tetracriticality. We find this can happen indeed. The possibility
is indicated from the last transition point Eq. (27) which, if
the bias ε is being reduced, approaches to the first transition
gI

1c = gs in the low-frequency limit. This process of transition
converging is shown in Fig. 11, where we set ε = 0.0005gt

which is proportional to the frequency. As one sees, all three
transitions boundaries finally collapses to one point around
g1 = gs, thus forming a quadruple point and a kind of tetracrit-
icality. Again here, the direct connection boundary for phases
P1 and P4 is a critical point at zero frequency rather than a
boundary line as in conventional case.

FIG. 11. Quadruple point and tetracriticality. Phase diagram of
〈x̂−〉/|x0,−| in g1-ω plane at log[g2/gt] = −4.5 with ε = 0.0005gt . In
low-frequency limit the four phases P1, P2, P3, and P4 meet around
g1 = gs, forming a quadruple point and a tetracriticality.

The quadruple point is illustrated for a small value of g2.
One would also get similar quadruple points in other values of
g2. The track by varying g2 continuously would yield a section

of quadruple line along |g1| = gs

√
1 − g̃2

2/g2
t which is actually

the transition boundary Eq. (15) in the absence of the bias.
Since the quadruple line is parabolic in small values of g̃2, in
weak nonlinear interactions the quadruple points turn out to
be around |g1| = gs in the leading order, as we have seen in
the illustrated Fig. 11.

XI. CHANGEOVERS OF THE WAVE FUNCTION IN THE
PHASE TRANSITIONS

To see the essential changes of quantum state in the tran-
sitions we shall monitor the evolution of the wave function.
In Fig. 12 we show the spin-up and spin-down components
of the wave function that goes through successive transitions
in the variation of the linear coupling, under fixed values
of bias and nonlinear interaction. Figures 12(a) and 12(b)
are in the low-frequency limit, while Figs. 12(c)–12(f) are
finite-frequency cases. Note different choices of frequency
will change gt which is taken to be the strength reference of
the nonlinear interaction as well as the bias. Nevertheless by
fixing two ratios g̃2/gt and ε/� we have the same transition
point of the last transition IV, around g1 ∼ 2.5gs, which is
the common one in the different frequency illustrations, as
indicated by Eq. (27).

In the low-frequency limit (illustrated by ω = 0.001�) the
wave packet is very thin, just like a mass point of an effective
particle, as one sees from Figs. 12(a) and 12(b). Starting from
g1 = 0 till the first transition g1 ∼ 1.0gs the effective particle
always stays at the origin x = 0. Beyond the first transition it
starts to go away from the origin, and shifts to the other side
at the next transition around g1 ∼ 2.5gs.

At a finite frequency ω = 0.1� in Figs. 12(c) and 12(d) the
wave packet is obviously broadened, but still remaining in a
single-branch structure and staying around the origin before
the first transition. After the first transition the wave packet
splits into two branches in both the spin components, which
is different from the low-frequency limit. Strengthening more
the linear coupling g1 triggers the second transition around
g1 ∼ 1.6gs where one branch of the wave packet is broken.
In such a broken-branch state the wave packet on one side
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FIG. 12. Variations of the wave function components −ψ−(x) (a,
c, e) and ψ+(x) (b, d, f) in phase transitions. The minus sign is added
for ψ−(x) to have the same color reference of zero value as ψ+(x). (a,
b) ω = 0.001�, ε = 0.1gt . (c, d) ω = 0.1�, ε = 0.001gt . (e, f) ω =
0.2�, ε = 0.0005gt . Here we fix log[g2/gt] = −4.5 and the effective
spatial position is scaled by xc = √

2gs/ω.

vanishes in both spin components and all the weight goes to
the branch on the other side. Further increase of g1 induces
the third transition, around g1 ∼ 2.5gs, which switches the
broken-branch state from one side to the other side. These
three successive transitions correspond to the boundaries I, III,
and IV in Figs. 9(e) and 9(f) and Fig. 10. Besides the different
feature of the two-branch structure after the first transition, the
second transition is additional relative to the low-frequency
limit. At a higher frequency ω = 0.2� in Figs. 9(e) and 9(f)
the second transition point moves to a stronger linear coupling
around g1 ∼ 2.2gs. We also see that in the first transition the
splitting of the wave packet is continuous, which corresponds
to the second-order transition in 〈σx〉. The changeover of the
wave-function structure is discontinuous-like in the second
and third transitions, which matches the first-order-like tran-
sitions in 〈σz〉.

The example is illustrated at small values of bias and
nonlinear interaction. It might be worth mentioning that at a
fixed frequency a stronger bias or nonlinear interaction can
lead to a mixed quantum state, i.e., one spin component in the
two-branch state and the other spin component in the broken-
branch state. Further potential imbalance from the bias or
nonlinear interaction will finally drive both spin components
into broken-branch states.

XII. MECHANISMS

In this section we shall clarify the mechanisms under-
lying the various patterns of symmetry breaking, scaling
of the Stark-like term and the successive transitions in the
tricriticalities and the tetracriticality. We will also explain why

FIG. 13. Semiclassical mechanisms for the different patterns of
symmetry breaking. The potentials v±(x) in spin-up [blue (dark
gray)] and spin-down [orange (light gray)] components for (a–c)
ε = 0, g2 = 0, (d–f) ε = 0, g2 = 0, and (g–i) g2 = 0, ε = 0. The
linear coupling regimes are (a, d, g) g1 = 0, (b, e, h) g1 < gs, and
(c, f, i) g1 > gs. The dots mark the effective semiclassical particle
positions in the spin-up and spin-down potentials.

the quantities, 〈σz〉, 〈σx〉, 〈x̂〉, and 〈x̂〉σ , respond differently to
the transitions.

A. Semiclassical picture for the various patterns of
symmetry breaking

The various patterns of symmetry breaking in the low-
frequency limit can be readily explained in the semiclassical
consideration introduced in Sec. III C. Here, rather than the
variational total energy, we shall give a physical picture for
the competitions of different energy parts. Since the contribu-
tion of the kinetic energy to the ground state is vanishing in
the semiclassical limit, the phase transitions and the system
properties are decided by the competition of the potential v±
and the tunneling �. In Fig. 13, according to different patterns
of symmetry breaking we plot the potentials v+ [blue (dark
gray)] for up spin and v− [orange (light gray)] for down spin.
The dots mark the positions of the effective mass point and
the spin tunneling is indicated by the gray dashed lines.

Figures 13(a)–13(c) present the situation of the conven-
tional QRM, in the absence of the bias and the nonlinear
interaction. Starting from the zero linear coupling g1 = 0 in
Fig. 13(a), the spin potentials are identical, with the effec-
tive particle staying at the origin where the potential minima
are located. The increase of g1 separates the potentials hor-
izontally by x0,± while the potential values at the origin
remain equal and invariant v+(0) = v−(0) = 0, as indicated
in Fig. 13(b). However, with a linear coupling below gs, the
effective particle in the two spin components does not follow
the potential separation but remains at the origin instead.
This is because moving away from the origin would lose
much of the negative tunneling energy due to the unequal
spin weights in the potential difference, while staying at the
origin keeps the maximum tunneling energy due to equal spin
weights in the degenerate potentials. Increasing g1 beyond
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the critical point, the downward potential shift by b0 enlarges
the potential difference between the bottom and the origin
as in Fig. 13(c), so that moving toward the potential bottom
will gain more potential energy than the tunneling energy.
Therefore the transition occurs and the particle leaves the
origin. Note that either before or after the transition the spin
distributions are spatially symmetric around the origin and the
weights remain equal under spin exchange, thus the parity
symmetry is preserved throughout.

Figures 13(d)–13(f) denote the situation of adding a bias to
the linear coupling. A bias separates vertically the potentials
of the up and down spins at g1 = 0, as in Fig. 13(d), which
breaks the spin balance and the parity symmetry from the
beginning, thus being paramagnetic-like in polarization. In
weak linear coupling regime, the bias moves the potential
crossing point away from the origin which breaks the space
inversion symmetry of the potential. However, the crossing
point is moving to a higher potential which is not energet-
ically favorable. So the parity symmetry is broken in both
the spatial and spin parts. In a strong linear coupling beyond
the critical point, as in Fig. 13(f), any strength of the bias
will break the two-side balance maintained by the linear cou-
pling in Fig. 13(c), thus a spontaneous symmetry breaking
occurs. Note the state on each side is polarized due to the
finite difference in spin-up and spin-down energy. Before
the spontaneous symmetry breaking, the polarization or spin
expectation 〈σz〉 cancels between the two sides. After the
spontaneous symmetry breaking, without the two side cancel-
lation, the polarization jumps to a finite value.

Figures 13(g)–13(i) show the situation of adding a non-
linear interaction to the linear coupling. The nonlinear
interaction makes the frequency asymmetric between the up
and down spins as in Fig. 13(g) and also shifts the spins in
vertically opposite directions as in Fig. 13(h). However, the
potential crossing always keeps invariant at the origin. Thus,
the parity is well preserved even in the presence of a finite
nonlinear interaction. Note that the vertical spin-dependent
shift b± in Eq. (9) has an entangled form of the linear coupling
g1 and the nonlinear interaction g2, increasing the nonlinear
interaction at a fixed linear coupling will enlarge the vertical
potential difference between the two spin directions. This
vertical potential difference, in addition to b0, will finally
surpass the tunneling energy at the origin and lead to symme-
try breaking with a first-order transition. So the polarization
behavior is ferromagnetic-like. In a strong linear coupling
beyond the gs, also a tiny strength of nonlinear interaction will
break the balance on the two sides in Fig. 13(c), leading to a
spontaneous symmetry breaking from Fig. 13(c) to Fig. 13(i).

From the basic competitions discussed in the above one
can also understand similarly the other mixed patterns of
symmetry breaking.

B. Scaling of the Stark term

As mentioned around Eq. (2), the properties with the Stark-
like term are similar by including the scaling factor, unless the
frequency is high. We illustrate the scaling in Fig. 14 where it
is shown that different Stark couplings under a fixed value of
g̃2 = (1 + λ)g2 have the same spin expectation and the same
successive transition points (around g1/gs ∼ 1.0, 1.6, 2.6).

FIG. 14. Scaling of the Stark term. 〈x̂−〉/(ρ−xc ) versus g1 with
different Stark couplings χ = 0 (blue dots), χ = 1 (gray squares),
and g2 = 0, χg2 = 0 (green diamonds) at a same value of g̃2 = (1 +
χ )g2. Here ω = 0.1�, ε = 0.001gt and log[̃g2/gt] = −4.5.

This scaling can be simply understood from the semiclassical
picture aforeformulated. In fact, from Eq. (7) we have seen
that the potential displacement x0,±, the effective bias b± and
and the uniform shift b0 are all functions of g̃′

2 = (1 + χ )g′
2. It

should be noted that, although the effective mass m± and 
±,
respectively, are not functions of g̃′

2, their joint contribution in
v

hp
± is still a function of g̃′

2 as

m±
 2
± =

[
(1 ± χg′

2)2 − g′2
2

]
(1 ∓ g′

2 ± χg′
2)

= (1 ± g̃′
2). (28)

Namely, except for the kinetic term neglected in the semiclas-
sical picture in the low-frequency limit, all contributions of
the Stark-like term to v± can be scaled into a function of g̃′

2.

Thus, one will get the same phase diagrams for the presence
of the Stark-like term by the scaling factor (1 + χ ).

C. Full-quantum-mechanical effect for the successive
transitions in the tricriticalities and tetracriticality

In the aforediscussed semiclassical picture there is no spa-
tial structure of wave function or probability distribution over
the effective spatial space. This simplification will miss some
physics that becomes important at finite frequencies. Indeed,
as described in Sec. IX, the successive transitions and tri-
criticalities emerge at a finite frequencies, which cannot be
captured by the semiclassical picture. To understand these
phenomena we shall fall back on a full-quantum-mechanical
picture. By full-quantum-mechanical picture we refer to two
points: first, not only the spin part but also the spatial part
should be considered in quantum-mechanical picture; second,
the spatial part is described by a wave function with wave-
packet structure instead of a classical mass point. To include
all the quantum states in one example we follow the wave
function evolution in Figs. 12(c) and 12(d) where there are
four quantum states. Accordingly, in Fig. 15, we sketch the
spin potentials (upper panels) and the wave-function profiles
(lower panels). The wave function is decomposed into left
and right wave packets, as analyzed in a polaron-antipolaron
picture [20] introduced in Sec. III B with Eq. (11), due to the
barrier indicated in Fig. 2. Each wave packet is represented
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FIG. 15. Full-quantum-mechanical mechanisms for additional
transition in successive transitions. (a–d) Effective potentials for
the spin-up (blue) and spin-down (orange) components, the arrows
represents the spins and gray dashed lines denotes the tunneling
channels. (e–h) Schematic decomposed wave functions (plotted by
amplitude) in the spin-up (blue) and spin-down (orange) compo-
nents. The dashed lines in panel (g) show the vanishing left-right
wave-packet overlap and indicate the disappearing wave packets.

by a displaced ground state of quantum harmonic oscillator
[20,71] and the heights indicate the weights.

There are three transitions in the illustrated case, going
through transitions I, III, and IV in Figs. 9(e) and 9(f). Before
the first transition, the tunneling energy is dominating. As
in Figs. 15(a) and 15(e), the single wave packets in both
spins reside around the origin where the potential cross-
ing point is located. The degeneracy at the crossing point
yields equal weights of the two spin components. Both the
single-wave-packet profiles and equal spin weights help to
gain a maximum tunneling energy. The equal spin-component
weight and the full overlapping yield a vanishing spin expec-
tation 〈σz〉 and a saturation of 〈σx〉.

Transition-I: Increasing the linear coupling separates the
potentials more and lower the potential bottoms, so that the
potential energy comes to compete with the tunneling energy.
After the first transition, as in Figs. 15(b) and 15(f), the wave
function splits into four wave packets. Differently from the
semiclassical picture there are now four channels of tunneling.
The left-right tunneling arises due to the left-right overlaps
of the wave packets, while the semiclassical particle has no
such left-right overlap in any case. These left-right tunneling
channels come to play an important role to balance potential
asymmetry caused by the bias or the nonlinear interaction.
Note in such a four-channel state, the polarizations of the
two sides are canceling each other so that 〈σz〉 still remains
almost vanishing at the presence of a weak bias and nonlinear
interaction. Therefore, 〈σz〉 does not have an obvious change
across the first transition thus the first transition leaves little
imprint in 〈σz〉. However, the separated wave packets are
moving away from the origin, the potential difference leads
to unequal weights of the two spin components on each side.
This weight difference lead to the reduction of spin flipping
amplitude thus 〈σx〉 is decreasing in strength. As a result,
〈σx〉 is sensitive to the first transition and exhibits a critical
behavior of second-order transition.

Transition-III: Further increase of g1 will separate the wave
packets more so that the left-right overlap becomes vanishing,
as indicated in Fig. 15(g). Thus, the left-right channels of

tunneling in a vanishing strength cannot balance the potential
asymmetry any more. As a result, the wave packets on the
higher-potential side disappear and the second transition oc-
curs. Note that at a higher frequency would have wider wave
packets, thus the left-right overlap survive till larger g1 and
the transition occurs later. After this transition, the left-right
cancellation does not exist in the one-side state so that 〈σz〉
jumps from a vanishing value to a finite value. Consequently
this transition can find a clear signal in 〈σz〉. However, the state
on the two sides have a similar amplitude of difference in the
weights for the spin components. Note the strength of 〈σx〉 is
decided by the weight difference of the two spins no matter
which spin component has more weight. Thus, 〈σx〉 does not
respond to this transition unless the potential asymmetry is
large in the presence of strong bias and nonlinear interaction.
Transition II has the same nature as transition III, although not
present in the example of Fig. 15.

Transition-IV: An even larger g1 will enhance much the
entangled effective bias b± which is proportional to g2

1. This
enhanced bias will surpass the system bias ε which is origi-
nally stronger in small-g1 regime. This strength reversion of
the two competing biases (b± and ε) triggers transition IV.
In principle, at the reversion the system should return to the
four-wave-packet state. However, the left-right overlap is too
small to maintain four-wave-packet state long enough to open
a phase, unless the frequency is higher to get more-broadened
wave packets. Hence, transition IV simply appears as one
sharp transition. At a higher frequency the wave packets could
be more broadened so that some left-right overlap could still
remain, in such a situation transition IV could be bifurcated
into two close transitions as mentioned for the tendency of
four successive transitions in Sec. IX F. Since the state shifts
from one side to the other, the sign of 〈σz〉 gets reversed so
that 〈σz〉 exhibits a first-order change at this transition. In the
same reason as in Transition-III 〈σx〉 still shows no sign at
transition IV.

From the above understanding we see that 〈σx〉 can be
sensitive to measure the first transition and 〈σz〉 is useful
to track all the other transitions. The spin-filtered quantity
〈a† + a〉±/ρ± is the spin displacement in our picture, i.e., the
effective wave-packet position in each spin component. So it
is naturally sensitive to the side shifting in transitions II, III,
IV. Moreover, in the four-wave-packet state after transition
I, each spin component has imbalanced weights of the left-
side wave packet and the right-side wave packet, due to the
potential difference within v+ or v− as shown in Fig. 15(b).
Indeed 〈a† + a〉±/ρ± reflects the effective mass center of each
spin component, which is moving away from the origin after
transition I. In consequence, 〈a† + a〉±/ρ± is also responding
to transition I, thus useful to detect all transitions simultane-
ously.

XIII. FINDING ANALYTIC BOUNDARIES

In previous Secs. VII–X we have given the analytic phase
boundaries in the description of the phase diagrams. In Secs.
in III C, XI, and XII we have got a basic understanding of
the different transitions from the wave function changeovers
and energy competitions. This would facilitate the finding
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of analytic boundaries. Now we try to provide some brief
derivations for the analytic phase boundaries.

A. Analytic boundaries in low-frequency limit

1. Analytic first-order boundaries

With the clarifications of the mechanisms for the transi-
tions in the presence of the bias and the nonlinear interaction,
we can extract the analytic phase boundaries. In the low-
frequency limit, the boundary can be obtained from the
semiclassical picture in Secs. III C and XII A. The energy
minima can be available by minimization of the variational
energy ε in Eq. (13) with respect to the position,

∂

∂x
ε(x) = 0, (29)

which gives three roots xR, xS, xL from the right side to the
left side, as indicated by Figs. 2(c)–2(e). The root xS in the
middle between the other two xR, xL on the right and left sides,
respectively, is a saddle point which has a higher energy and
does not enter the energy competition for the ground state.
The transition boundary is then decided by

ε(xR) = ε(xL). (30)

As mentioned in Sec. II, the bias is added to tune level dif-
ference for the qubit states in the two wells of the Josephson
potential energy. So a relevant bias strength ε should be in a
similar order of the potential well energy which is character-
ized by the frequency ω. Thus, in the low-frequency case, we
can presume that ε is also small relatively to �. By keeping
the leading order of ε/� in Eq. (30) we obtain

|g1c| = gs[1 + gtε

g̃2�
]
√

1 − g̃2
2/g2

t , (31)

which gives Eqs. (16) and (17).

2. Critical point for ending of the first-order arc boundary

Note that, as mentioned for Fig. 4(d), in the regime of
negative g2, the above boundary Eq. (31) is an arc. Along this
arc boundary the transition is of first order. At the ends of
the arc the transition becomes second order and the first-order
boundary closes at a critical point gE

2. As revealed in Sec. III C,
the first-order transition occurs in the presence of the energy
saddle point xS which separates two competing minima at xR

and xL . Disappearing of the energy saddle will mean fading
away of the first-order transition. The critical point comes with
a flattened saddle. We show this saddle flattening in Fig. 16(a).
Here, the green dashed line illustrates the minimum-saddle-
minimum profile of the variational energy ε at a point along
the first-order boundary, while the gray solid line shows the
situation at the ends of the boundary where a flattened bottom
can be clearly seen. This critical point can be figured out by
vanishing of the first and second derivatives of the variational
energy

∂ε(x)

∂x
= 0,

∂2ε(x)

∂x2
= 0. (32)

It should be mentioned Eq. (32) is a necessary condition
but not a sufficient one. We give an example by the blue
dot-dashed line in Fig. 16(a), where the middle point of the

FIG. 16. Saddle point flattening and ending points of the first-
order arc boundary. (a) Semiclassical variational energy at the end
of the arc boundary g1 = 0.763gs, g2 = −0.554gt (gray solid), in the
arc g1 = 0.7gs, g2 = −0.665gt (green dashed) and at an infection
point g1 = 0.5gs, g2 = −0.81gt (blue dot-dashed). Here ε = 10gt

and ω = 0.001�. (b) Critical value gE
2 at the end of the first-order

arc boundary versus the bias ε from numerics (dots) and the analytic
result (blue dashed).

shoulder shape fulfills Eq. (32) but it is an inflection point
instead of a saddle point. Nevertheless, we can combine con-
dition Eq. (32) and boundary Eq. (31) to extract the critical
point,

gE
2 ≈ 3

(
ε

5�

)1/3

+ 226ε

75�
− 362 011

27 000

(
ε

5�

)5/3

, (33)

approximately for a weak bias and a nonlinear interaction.
Figure 16(b) shows the above analytic gE

2 (dashed line) in
comparison with the numerical ones (dots). It is interesting
to see in the weak-bias regime gE

2 is in a fractional power law,
which means gE

2 increases quickly with a small strength of the
bias. So a small bias could break and open much the ring of
the round boundary in Fig. 4(b).

B. Analytic boundaries for the successive
transitions at finite frequencies

Based on the physical picture analyzed in Sec. XII C we
can obtain the phase boundaries in the tricritical scenarios at
finite frequencies. As depicted in Fig. 15(b), there are four
channels of tunneling including same-side ones and left-right
ones, respectively. Unlike in the semiclassical picture, now
the left and right states can simultaneously get involved in a
ground state via left-right tunneling. Note in a strong coupling
around the transitions the same-side tunneling is dominating
while the left-right tunneling is much weaker. Thus, we can
decompose the wave function into right (R) and left (L) states
|	〉 = cR|ψR〉 + cL|ψL〉, up to a normalization factor, and
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take the left-right tunneling as an perturbation. The right and
left states, respectively, consist of two spin components,

|ψL〉 = α+ϕ+
α |↑〉 + β−ϕ−

β |↓〉, (34)

|ψR〉 = α−ϕ−
α |↓〉 + β+ϕ+

β |↑〉, (35)

where α±, β± represent the weight coefficient of the wave
packet ϕ±

j ∈ {ϕ+
α , ϕ−

β , ϕ−
α , ϕ+

β } and for the ground state they
have opposite signs for different spins. Now we can defined
the tunneling energy �i j = wi j

�
2 Si j for the same-side ones

(�αβ and �βα) and left-right ones (�αα and �ββ), as ϕ+
α , ϕ−

β

are on a same side (left) and ϕ−
α , ϕ+

β are on the other same side
(right). Here wi j is the weight product of α± and β±. Note in
�i j the wave-packet overlap Si j = 〈ϕ+

i |ϕ−
j 〉 involves opposite

spins.
The right and left states, respectively, are formed in the

same-side tunneling �αβ and �αβ. The left state is decided
by the lower eigenstate of the matrix equation(

h−
ββ

1
2 Sαβ�

1
2 Sαβ� h+

αα

)(
β−
α+

)
= εL

(
β−
α+

)
, (36)

where h±
i j = 〈ϕ±

i |(h± − b0 − ε0)|ϕ±
j 〉 and the irrelevant con-

stants b0, ε0 have been substracted. One can get the right state
similarly. The corresponding energy can be easily obtained as

εL = 1
2

[
(h−

ββ + h+
αα ) −

√
(h−

ββ − h+
αα )2 + S2

αβ
�2

]
, (37)

εR = 1
2

[
(h+

ββ + h−
αα ) −

√
(h+

ββ − h−
αα )2 + S2

βα�2
]
. (38)

The wave packet ϕ±
j can be well approximated by the dis-

placed ground state of quantum harmonic oscillator, with the
displacement ζi,±x0,± (i = α, β) renormalized from the posi-
tion of the potential bottom x0,±[20]. Explicitly we have

h±
ii = ω

2

{

± − [1 − (1 − ζi,±)2]g′2

1

(1 ± g̃′
2)

}
∓ ε, (39)

and Sαβ ≈ Sβα ≈ 1 in gaining the maximum tunneling energy.
The successive transitions occur in weak bias ε and nonlinear
interaction g2, in such situations the displacements can be
approximated by those of the conventional QRM. Thus, in the
leading order, the energy difference of the left and right states
reads

εL − εR = g2g2
1ζ

2

⎡
⎣ (1 + ζ/2)√(

ζ 2 + g−4
1

) − 1

⎤
⎦� − 2ζ ε√(

ζ 2 + g−4
1

) ,

(40)

where we have applied ζi,± ≈ ζ and ζ = (1 − g−4
1 )1/2 is

the displacement renormalization from the conventional
QRM [20].

Standing in a phase of the two-branch state described in
Sec. XI and Figs. 15(b)–15(f), we can judge the onset of the
transitions to broken-branch states by an exponential decay
of the state weight on one side, δc = (cR/cL)±1 ∼ e−1, where
±1 depends on which broken-branch state the system is tran-
siting to. Exactly speaking, there is a transition width due to
the process of weight shifting. Nevertheless, this transition
width is quite narrow as the right-left wave-packet overlap is

decaying exponentially. Setting δc ∼ e−1 is within this narrow
transition width, thus being a good approximation to represent
the transition boundary. Thus, at the transition we can treat
by a perturbation from the left-right tunneling energy (�αα ,
�ββ ) as well as the single-particle left-right overlap energy
(t+

αβ, t−
βα )

δc = (�αα + �ββ + t+
αβ + t−

βα )/[ηLR(εL − εR)], (41)

where we have defined t±
i j = wi jh

±
i j and ηLR = ±1 is decided

by which side of state has a lower energy. With the aforemen-
tioned approximation for ϕ±

j and ζi,±, in the leading order, we
get

�αα + �ββ ≈ −�

2
Sαα, (42)

t+
αβ + t−

βα ≈ αβ

[
ω + (1 − ζ )2g2

1
�

2

]
Sαβ, (43)

where Sαβ ≈ Sβα ≈ Sαα ≈ Sββ ≈ exp[−ζ 2g2
1�/(2ω)] is ap-

proximate left-right wave-packet overlap, and the weight co-
efficients α± ≈ ±α, β± ≈ ±β, with α = √

(1 + ζ )/2, β =√
(1 − ζ )/2, are the leading contributions from the conven-

tional QRM [20]. For �αα + �ββ we have used α2 + β2 = 1.
It should be noted here that, unlike the opposite spins in Sαα =
〈ϕ+

α |ϕ−
α 〉, the wave-packet overlap Sαβ = 〈ϕ+

α |ϕ+
β 〉 involves

the same spin thus also being a left-right overlap, as indicated
by Eqs. (34) and (35).

Combining Eqs. (40)–(43), we get the analytic expressions
for boundaries II and III,

g̃II,III
2c = ± (1 − t )gt

δcζ 3g2
1

exp

[
− ζ 2g2

1�

2ω

]
+ 4ε

ζ 2g2
1�

gt. (44)

Transition-IV is the shifting between pure left state and pure
right state, thus setting εL − εR = 0 we find

g̃IV
2c = 4ε

ζ 2g2
1�

gt + O

[(
ε

�

)3]
. (45)

As we have seen from Figs. 6, 7, 9, 10, and 11 in Sec. IX, these
analytic boundaries work quite well in comparisons with the
numerics.

XIV. CONCLUSIONS AND DISCUSSIONS

By combining exact diagonalization and analytic meth-
ods in a semiclassical picture and a full quantum-mechanical
picture, we have presented a thorough study on the ground
state of the quantum Rabi model in the presence of the bias
and the nonlinear interaction. The model exhibits different
patterns of symmetry breaking, including the paramagnetic-
like, antiferromagnetic like, spontaneous symmetry breaking,
paramagnetic-like plus first- or second-order transitions,
antiferromagnetic-like plus first- or second-order transitions.
These symmetry-breaking patterns bring a rich and colorful
world of phase diagrams. We have obtained the full phase
diagrams and the analytic phase boundaries, both in the low-
frequency limit and at finite frequencies. Various situations
for the occurrence of tricriticality are unveiled, respectively:
(i) induced by the competition of the linear coupling and
nonlinear interaction in the presence of the bias, in the low-
frequency limit. (ii) induced by raising the frequency in the
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respective presence of the nonlinear interaction or the bias.
(iii) induced by the competition of linear coupling with the
nonlinear interaction or the bias, under fixed finite frequen-
cies. We also show two situations for tricriticality coexisting
with another triple point, respectively, labeled by (iv), which
is induced by the interplay of linear coupling with both the
nonlinear interaction and the bias under fixed finite frequen-
cies, and (v), which is induced by varying the frequency in
the interplay of the nonlinear interaction and the bias. The
system could have four different quantum phases, we have
revealed that all four phases can meet to form a quadru-
ple point and tetracriticality. The low-frequency-limit phase
boundary of nonlinear interaction in the absence of bias turns
out to be a quadruple line. In comparison with the semi-
classical low-frequency limit, the finite frequencies lead to
more phase transitions. By analyzing the energy competi-
tions and monitoring the essential changes of quantum states
in the transitions, we have clarified the semiclassical and
quantum-mechanical mechanisms underlying the aforemen-
tioned phenomena. We see that the full quantum-mechanical
effect leads to much richer physics than the semiclassical
picture, including additional phase transitions, tricriticalities,
and formation of quadruple points as well as a fine structure
of spontaneous symmetry breaking.

Note that the model we consider can be implemented
in the experimental setups as in the superconducting circuit
system [56,68]. It is convenient to cool the superconducting
circuits down to the ground state. The model parameters are
controllable as the superconducting systems are composed
of LC circuits of which the frequency parameters are quite
tunable. It is worthwhile to give an estimation on the regime
of experimental parameters that is favorable for detections of
the phenomena we address in the present work, such as suc-
cessive transitions and tricricalities. The symmetry-breaking
patterns, second- or first-order transitions and tricriticality-(i)
in the low-frequency limit are illustrated at frequencies of
order ω = 0.001 ∼ 0.01�, while the nonlinear interaction g2

has an order similar to ω and the bias is in a range of order
around ε = 0 ∼ 10ω. A typical experimental strength for the
tunneling strength � is of order 10 GHz [72] in supercon-
ducting circuit systems, although the order can reach 50 GHz

in microwave cavities and even 350 THz in optical cavities.
For the superconducting systems we are more concerned, the
frequency ω = 0.001 ∼ 0.01� corresponds to the order 10 ∼
100 MHz. The additional transitions and the tricricalities oc-
cur at the finite frequencies of order around ω = 0.1 ∼ 1�,
while ε and g2 are illustrated in a range of 10−5 ∼ 10−1gt

where gt is of the same order of ω. In LC circuits these pa-
rameters would correspond to ω = 1 ∼ 10 GHz and ε, g2 =
10−2 ∼ 103 MHz. These parameter regimes would open a
wide window accessible for the circuit systems.

Our results would be relevant for the growing interest in the
nonlinear effect [23,24,56,58,59,64–68,73,74] in the context
of continuing enhancements of experimental light-matter cou-
plings [1,43–50,52–54]. Our analytic phase boundaries and
physical analysis may provide some convenience and insights.
The various situations for the occurrence of tricriticality
and tetracriticality unveiled here also give a paradigmatic
illustration for a single-qubit system exhibiting a rich phe-
nomenology of multicriticality. Similar analysis shows that
other realistic conditions, such as the presence of anisotropy,
can also bring multicriticality [75]. It should be mentioned
that tricriticality and multicriticality are of broad interest in
physics, e.g., tricritical behavior can be also observed in Bose-
Einstein condensates in cold atoms [76]. Interestingly the
Hamiltonian of the quantum Rabi model with anisotropy can
be mapped to a model with Rashba spin-orbit coupling [75]
which has some similarities with the single-particle Hamil-
tonian of spin-orbit coupled two-component Bose-Einstein
condensates [76] and Rashba spin-orbit coupling nanowires
[77–79]. Thus, we speculate that our analysis might also
provide some insights for possible extended applications in
cold atoms and nanowires. As a final remark, we think the
phenomena revealed in this work concerning nonlinearity
might also leave imprints in the Bloch-Siegert effect [80] and
dynamics [12,19,81], which we shall discuss in some other
works.
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