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Non-Abelian Thouless pumping in a photonic lattice
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Non-Abelian gauge fields emerge naturally in the description of adiabatically evolving quantum systems
having degenerate levels. Here we show that they also play a role in Thouless pumping in the presence of
degenerate bands. To this end we consider a photonic Lieb lattice having two degenerate nondispersive modes
and show that, when the lattice parameters are slowly modulated, the propagation of the photons bears the
fingerprints of the underlying non-Abelian gauge structure. The nondispersive character of the bands enables
a high degree of control on photon propagation. Our work paves the way to the generation and detection of
non-Abelian gauge fields in photonic and optical lattices.
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I. INTRODUCTION

To describe the dynamics of a quantum system whose
Hamiltonian depends on some external classical parameters
in the energy eigenstate basis, one is naturally led to introduce
a gauge field [1] that keeps track of how the eigenstates
transform in parameter space. As first noted by Simon [2],
Berry’s phase [3] is the holonomy associated with this gauge
structure when the evolution of the system takes place in an
isolated nondegenerate eigenstate. If the evolution involves
a degenerate energy eigenspace the underlying gauge theory
becomes non-Abelian [4].

Among the most fascinating and studied manifestations of
Berry’s curvature [5,6] are those that involve transport with
the closely related phenomena of quantum Hall effect [7]
and Thouless pumping [8]. Thouless pumping refers to the
transport of charge in the absence of any external bias by cy-
cling adiabatically in time a one-dimensional lattice potential
confining the charge. It is considered as a natural probe of
Berry’s geometric phase [9–14] and of the Chern numbers
[8,15–22].

Here we show that, in the presence of degenerate bands,
Thouless pumping can be exploited to probe the underly-
ing non-Abelian gauge structure. The non-Abelian analog of
Berry’s phase, the holonomy of Wilczek and Zee [4], keeps
track of how the degenerate subspace deforms along a path in
parameter space and it depends on the geometric and topolog-
ical structure of the Hilbert space. We establish a relation be-
tween the Wilczek and Zee holonomy and Thouless pumping.

To exemplify our findings we consider a simple one-
dimensional lattice model that we name for simplicity
non-Abelian Lieb chain (naL) since it is reminiscent of the
two-dimensional Lieb lattice model [23], recently at the focus
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of pioneering experiments on light confinement in photonic
waveguide lattices [24,25]. We show that the slow cyclic
modulation of the model parameters yields a current that can
be directly connected to the holonomy generated during the
cycle. The non-Abelian Lieb chain can be experimentally
realized in a photonic waveguide lattice and the non-Abelian
holonomy can be read out from the photon beam displace-
ment along its propagation. Our results thus point at a
straightforward approach to generate and detect Wilczek-Zee
non-Abelian holonomies. In this respect, we remark that, in
spite of a few theoretical proposals [26–32], only two experi-
mental verifications of Wilczek-Zee non-Abelian holonomies
exist so far, namely, the pioneering nuclear quadrupole res-
onance experiment of Ref. [33] and the circuit QED [34]
implementation of Abdumalikov et al. [35].

Photonic waveguide lattices are the ideal playground to
realize topological lattice models [36]. In these systems,
consisting of arrays of evanescently coupled single-mode
waveguides [37], light propagation can be modeled by means
of a Schrödinger equation where the role of time is played
by the coordinate along the waveguide, z, and the Hamil-
tonian describes the hopping of bosonic particles across the
array. Such lattice-based description has long been applied to
describe light propagation in photonic waveguide arrays and
it can be derived using coupled-mode theory, as discussed
in various textbooks [38] and briefly outlined in Sec. V.
To implement Thouless pumping, the diagonal elements of
the lattice Hamiltonian can be modulated along z by tuning
the waveguide diffraction index and the lateral confinement
length, while the hopping matrix elements can be controlled
by changing the overlap of the evanescent tails of neighboring
waveguides, e.g., modifying the lattice spacings. Recently,
modulated photonic waveguides were employed to implement
adiabatic population transfer [39] in a tripod system corre-
sponding to a single unit cell of the naL lattice proposed
below.
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FIG. 1. (a) Illustration of the waveguides array with z-dependent
couplings. (b) Structure of the non-Abelian waveguide lattice, which
features two dispersive and two degenerate flat bands.

The paper is organized as follows. After introducing the
naL chain model in Sec. II, we present our main results
concerning the relation between Wilczek-Zee holonomy and
Thouless pumping in Sec. III; eventually, in Secs. IV and V
we illustrate the results starting from specific examples of
pumping cycles. In Sec. V we outline the derivation of the
lattice model equations from coupled mode theory and we
discuss some experimental requirements to discern genuine
geometric effects from nonadiabatic transitions.

II. NON-ABELIAN LIEB CHAIN

The naL chain consists of a one-dimensional lattice with
four sites per unit cell, indicated respectively as A, B, C, and
D. As shown in Fig. 1, the lattice lies in the (x, y) plane and it
has two dangling bonds in each unit cell; it is an extension of
the one-dimensional Lieb lattice considered in Refs. [40,41].
The inter- and intracell hopping amplitudes along x are in-
dicated as Jb1 and Jb2, while Jc and Jd denote the hopping
amplitudes along the dangling bonds. The Hamiltonian thus
reads as follows:

HnaL =
∑

i

(
Jb1a†

i bi + Jb2a†
i bi−1 + Jca†

i ci + Jd a†
i di + H.c.

)
,

(1)
where ai, bi, ci, di and a†

i , b†
i , c†

i , d†
i are bosonic annihila-

tion and creation operators on the A, B, C, and D sites of cell
i. Switching to k space we can recast HnaL as follows:

HnaL =
∑

k

(
Jba†

kbk + Jca†
kck + Jd a†

kdk + H.c.
)
, (2)

where ak, bk, ck , and dk denote k-space creation and annihi-
lation operators and Jb = Jb1 + Jb2eik .

Thouless pumping requires the cyclic modulation of the
parameters defining the lattice potential. Clearly, rather than a
charge current, photonic lattice pumping yields a z-dependent
displacement of the photon beam across the lattice [16–19].
Specifically, assuming that the system is initialized in a Wan-
nier state, the role of the pumped charge is played by the
displacement of the Wannier center, whose geometric and
topological significance was first elucidated in the context of

polarization theory [6]. Below we establish a general relation
between displacement and non-Abelian holonomies.

III. DISPLACEMENT AND HOLONOMIES

As schematically shown in Fig. 1(a), we assume that the
hopping amplitudes Jμ with μ = b1, b2, c, d are periodic
functions of the longitudinal coordinate z and we indicate with
λ0 the wavelength of their modulation.

To calculate the photon beam displacement, �x, generated
along a cycle we start from the following general expression:

�x =
∫ λ0

0
∂z(〈ψ (z)|x̂|ψ (z)〉)dz, (3)

where |ψ (z)〉 indicates the electromagnetic field’s amplitude,
solution of a Schrödinger equation of the form [42],

i∂z|ψ (z)〉 = HnaL(z)|ψ (z)〉, (4)

and x̂ denotes the position operator. Assuming that λ0 is the
largest relevant length scale, in the adiabatic limit, a suitable
basis to expand the field |ψ (z)〉 is the Bloch eigenmodes basis,
{|ψνa(k, z)〉} that diagonalizes the naL Hamiltonian for each
value of k and z. See Appendix A for more details. It consists
of two dispersive modes with longitudinal momenta κ±(k) =
±�(k), �(k) =

√
|Jb(k)|2 + J2

c + J2
d and two dispersionless

degenerate modes, |ψ01〉 and |ψ02〉, with longitudinal momen-
tum κ0 = 0, defined as

|ψ01〉 = Jc|dk〉 − Jd |ck〉
δ

, (5)

|ψ02〉 = δ2|bk〉 + J∗
b (Jc|ck〉 + Jd |dk〉)

δ�(k)
, (6)

with δ =
√

J2
c + J2

d .
To keep the discussion general, we assume that the system

is initialized, at z = z0, in the Wannier state centered at the
site n belonging to the mode κν ; we thus set

|ψ (z0)〉 = |wνa(n, z0)〉 =
∑

ka

ca|ψνa(k, z0)〉eikn, (7)

where k runs over the reciprocal lattice sites, ν = 0,±, and
the subscript a, not to be confused with the operator a, enu-
merates the basis states within the degenerate subspace, i.e.,
a ∈ [1, . . . , dν], with dν indicating the dimension of the de-
generate mode subspace. For the naL lattice we have d0 = 2
and d+ = d− = 1.

Since the modulation of the lattice parameters preserves
the translational invariance of the lattice for all z, the quasi-
momentum, k, is a good quantum number both in the driven
and undriven system and the adiabatic evolution operator,
U (z, z0), can be factorized as follows:

U (z, z0) �
∏
μk

Uμk (z, z0). (8)

In the above equation Uμk (z, z0) describes the evolution start-
ing from a local Bloch eigenmode with quasimomentum k and
longitudinal momentum κμ,

Uμk (z, z0) =
∑

ab

[Wμ]ab(z, z0)|ψμa(k, z)〉〈ψμb(k, z0)|, (9)

063518-2



NON-ABELIAN THOULESS PUMPING IN A PHOTONIC … PHYSICAL REVIEW A 103, 063518 (2021)

where the symbol [. . . ]ab denotes the ab element of the matrix
inside the brackets, a and b span a degenerate subset, and
Wμ(z, z0) is [4]

Wμ(z, z0) = ei
∫ z

z0
κμ(z)dz P exp

[
i
∫ z

z0

	z
μdz

]
, (10)

with P denoting the path ordering and 	z
μ indicating the

Wilczek-Zee connection,[
	z

μ

]
ab

= 〈ψμa(k, z)|i∂z|ψμb(k, z)〉. (11)

When κμ corresponds to a single nondegenerate mode, 	z
μ

reduces to the standard Berry connection.
Using the adiabatic evolution operator defined in Eqs. (8)–

(11) and the initial condition given in Eq. (7), we obtain
the following expression for the field at z = z1 > z0 in the
adiabatic limit:

|ψ (z1)〉 =
∑
kab

ca[Wν (z1, z0)]ba|ψνb(k, z1)〉eikn. (12)

From the above equation, it correctly emerges that the adi-
abatic dynamics in the presence of N degenerate modes is
invariant under z-dependent changes of basis in the degenerate
subset, i.e., SU(N ) gauge transformations. Consequently, W
transforms as

W (z, z0) → M†(z)W (z, z0)M(z0)

and for cyclic transformations it behaves as a rank-2 tensor. It
yields, apart from an irrelevant phase factor, the Wilson loop,
W (λ0, 0), on the fiber bundle that is locally the product of
the z-varying parameters’ space and the degenerate modes’
subset.

Replacing Eq. (12) in Eq. (3), we can derive a transparent
and simple expression for the displacement introducing the
non-Abelian connection along k, i.e., [	k

ν ]ab = 〈ψνa|i∂k|ψνb〉,
that is the non-Abelian version of the Zak phase [43]. By
doing so, following the derivation described below, we arrive
at our final expression for the photon beam displacement:

�x =
∑

ab

c∗
acbDν

ab, (13)

where the displacement matrix Dν
ab can be expressed as fol-

lows:

Dν
ab = 1

2π

∫ λ0

0
dz

∫ π

−π

dk
[
W †

ν F ν
kzWν

]
ab, (14)

with F ν
kz = ∂k	

z
ν − ∂z	

k
ν + i[	z

ν, 	
k
ν ] denoting the non-

Abelian field strength matrix.
Equations (13) and (14) relate the photon beam displace-

ment to the non-Abelian holonomy generated along a cycle
when the evolution involves a degenerate eigenmodes’ sub-
space. It clearly shows that, in general, the displacement, �x,
will bear the consequence of the non-Abelian nature of the dy-
namics while it yields the known Abelian result when dν = 1.
Comparing Eqs. (13) and (14) to their Abelian counterpart
[6,8], one easily realizes that the displacement matrix can
be viewed as the flux of the non-Abelian field strength, F ν

kz,
that transforms along the path with the path-dependent factors
W †

ν and Wν as prescribed by the non-Abelian Stokes theorem
[44]. As shown in Ref. [44], the presence of these factors

ensures that the surface integral is independent on the choice
of the surface. Furthermore, it guarantees that the displace-
ment matrix, Dν

ab, transforms as a rank-2 tensor under gauge
transformation and consequently that the total displacement
given by Eq. (13) is gauge invariant.

Before proceeding further, we present a derivation of
Eqs. (13) and (14). To start with we express the position
operator x̂ in k space as follows:

x̂ =
∑
m,k

|mk〉〈mk|i∂k, (15)

where m = a, b, c, d . Inserting (15) in Eq. (3) and using
Eqs. (12) and (13) we can rewrite the displacement matrix as
follows:

Dν
ab = 1

2π

∫ λ0

0

∫ 2π

0
∂z

[
W †

ν (z, z0)〈�ν (k, z)|
× i∂k (|�ν (k, z)〉Wν (z, z0))]ab dk dz, (16)

where we introduced the vector notation, i.e., |�ν〉 =
(|ψν1〉, . . . , |ψνdν

〉). Expanding the derivatives in Eq. (16) we
obtain

Dν
ab = 1

2π

∫ λ0

0
dz

∫ 2π

0
dk

[
∂z

(
W †

ν 〈�ν | i∂k |�ν〉Wν

)

+ i∂z
(
W †

ν

)
∂k Wν + iW †

ν ∂k∂z Wν

]
ab. (17)

The z derivatives of the operators Wν and W †
ν are given by

∂zWν = i(	z
ν + κμI )Wν, (18)

∂zW
†
ν = −iW †

ν (	z
ν + κμI ), (19)

where 	z
ν is the non-Abelian connection defined in Eq. (11).

Substituting these relations in Eq. (17) we obtain

Dν
ab = 1

2π

∫ λ0

0
dz

∫ π

−π

dk
[−W †

ν ∂k (	z
ν + κμI )Wν

− ∂z
(
W †

ν 	kWν

)]
ab. (20)

Using again Eqs. (18) and (19) to express the z derivatives
and using the definition of Fzk and the k periodicity of κμ, we
easily recover Eq. (14).

IV. PUMPING CYCLES

To further understand the noncommutative nature of pump-
ing in the naL chain, it is useful to consider some specific
example. In Figs. 2(a) and 2(b) we show three pumping cycles,
C1, C2a, and C2b.

As one can see, the cycle C1 defines a spherical triangle
in parameter space, while the cycles C2a and C2b are con-
tained in the planes Jb2 = J and Jb1 = 0 and they involve
only the manipulation of Jc and Jd . The blue circle indicates
the point where we start covering the cycles at z = z0. The
corresponding holonomy transformations can be written as
(see Appendix C for more details)

WC1 = ei k
2 (σ0−σz ), WC2i = ei�C2i[sin(k)σx+cos(k)σy], (21)

where σx, σy, σz, and σ0 denote respectively the Pauli ma-
trices and the 2 × 2 identity matrix and the angles �C2i

depend on the precise shape of the cycles C2i. The above
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FIG. 2. (a),(b) Examples of pumping cycles. The blue circle indi-
cates their starting point, z = z0. Note that we take a small but finite
value of Jc = Jd at z = z0 to avoid ambiguities in the definition of
the eigenstates. Along C1 we have Jd = Jc, while along C2(a−b) we
have Jb2 = J, Jb1 = 0. (c)–(g) Numerically evaluated field’s intensity
along C1 and C2a with λ0J = 200; panels (c) and (g) show the field
intensity in the final states after three cycles C1 and after three
cycles C2a. To allow a clearer identification, in all panels we slightly
displaced the sites “C” and “D” along x.

expressions hold in the basis of Bloch eigenmodes at z = z0.
Using Eqs. (5) and (6), the latter can be shown to satisfy the
following simple relations: |ψ01〉 ∝ |dk〉 − |ck〉 and |ψ02〉 ∝
|dk〉 + |ck〉. From Eq. (21) we thus see that, in the adiabatic
limit, the cycle C1 does not affect the antisymmetric mode,
|ψ01〉, while it simply multiplies the symmetric mode, |ψ02〉,
times the phase factor eik . The cycles C2a and C2b instead yield
a rotation in the degenerate subspace by an angle �C2i such
that �C2a = π/4 and �C2b = π/6, as shown in Appendix C.

These approximate analytical results are in good agreement
with the numerical results, shown in Figs. 2(c)–2(g), obtained
by solving Eq. (4) on a finite lattice. There we plot the field’s
intensity as a function of z and x during the application of
three consecutive cycles C1, Fig. 2(d), and in the final state
at z = 3λ0, Fig. 2(c). Analogous plots for the cycle C2a are
shown in Figs. 2(f) and 2(g). In both cases the system is
initialized in the Wannier state |w02(n, z0)〉, corresponding to
the symmetric mode, as shown Fig. 2(e) displaying the field’s
intensity at z = z0. Comparing Fig. 2(c) and Fig. 2(e) we see
that the application of three cycles C1 displaces the initial state
forward by three unit cells. On the contrary the application of
three cycles C2a yields a 3/4π rotation but zero displacement;
thus the initial state |cn〉 + |dn〉 is rotated into the state |cn〉 as
shown in Fig. 2(g).

The difference between the cycles C1, C2a, and C2b can be
also appreciated in Fig. 3. There we plot the displacement
evaluated numerically from Eq. (3) for the system initially
prepared in the state |w02(n, z0)〉 as a function of z for the
different cycles. In panel (a) we see that the displacement
generated along the cycle C1 is quantized. This is a natural
consequence of the structure of the holonomy matrix, given
in Eq. (21), that leads to the following simple expression for
the displacement matrix D0

C1
= (0 0

0 1), as discussed in detail
in Appendix C.

FIG. 3. Photon beam displacement for (a) the cycles C1 (middle
line), C2a (lower line), and C2b (upper line) and (b) the sequential
application of C1 and C2a: C2aC1 (upper line) and C1C2a (lower line).
(c) Trace of the displacement matrix for the sequences C2aC1 (upper
line) and C1C2a (lower line).

This quantization reflects the topological nature of Thou-
less pumping that in the non-Abelian case implies Tr[Dν

C] =
C1

ν , where C1
ν denotes the first Chern number of the degenerate

band ν [45].
As shown in Fig. 3(b), the situation is rather different if we

perform a sequence of the cycles C1 and C2a. In this case the
non-Abelian nature of the evolution manifests in a noninteger
displacement per cycle and in the dependence of the generated
displacement on the ordering of the sequence. Focusing on the
sequence C1C2a we see that starting from the state |w02(n, z0)〉
we get a unitary displacement; for the other ordering, first
C2a and then C1, the displacement equals 1/2. The perfect
quantization can be recovered by considering the trace of the
displacement matrix [46,47], i.e., the sum of the displacement
generated starting in the state |w02(n, z0)〉 and |w01(n, z0)〉.
This is exactly what can be seen in Fig. 3(c), where we plot the
evolution as a function of z of the traces of the displacement
matrices for the sequences C2aC1 and C1C2a, denoted as QC2aC1

and QC1C2a .
Noncommutative effects can be detected in various ways

in the evolution of the field. For example, one could design
a complex pumping cycle aimed at detecting the contribution
of the commutator term in the non-Abelian Berry curvature
and consequently the difference between the Abelian and non-
Abelian prediction for the pumped charge. Here, we follow
an alternative route, namely we consider the simple cycles
C2i and C1 and we show how the non-Abelian nature of the
dynamics may be detected by changing the order of the cycles.

To this end, in Figs. 4(a)–4(i) and 4(l) we plot the field in-
tensities as a function of z for different cycles’ sequences and
different orderings. As expected, we see that, when the cycles
generate noncommuting holonomies, the final state depends
on the ordering of the cycles, as shown in Figs. 4(a)–4(e) for
the cycles C1 and C2a. Specifically, we see that performing the
sequence C2aC1, the initial state, proportional to |cn〉 + |dn〉, is
first displaced and subsequently rotated by π/4 yielding the
final state |cn+1〉, Figs. 4(d) and 4(e). In the opposite case,
C1C2a, the state is first π/4 rotated and subsequently displaced
through the cycle C1; the final state is thus a linear combina-
tion of |cn〉 − |dn〉 and |cn+1〉 + |dn+1〉. On the contrary, when
the holonomies of the two cycles commute, the final state does
not depend on the ordering of the cycles, as shown for the
cycles C2a and C2b in Figs. 4(f)–4(i) and 4(l).
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FIG. 4. (a)–(i),(l) Numerically evaluated field’s intensity along
different cycles’ sequences involving C1, C2a, and C2b. For noncom-
muting cycles the final state depends on the ordering of the sequence.
Parameters as in Fig. 2. (m) Distance between the final states ob-
tained with C1C2a and with C2aC1. The evolution along the sequence
C2aC1, i.e., from panel (c) to panel (e), is shown [48].

A figure of merit, , to characterize the efficiency in
generating non-Abelian effects may be thus defined from
the distance between the final states obtained performing
the sequence of two cycles in opposite orders, i.e., C1C2i =∑

n,m(|〈mn|ψC1C2i〉| − |〈mn|ψC2iC1〉|)2, where m and n enumer-
ate respectively the sites in a unit cell and the unit cells in the
lattice. The value of  will be affected in particular by the
shape of the cycle and by the initial conditions. In Fig. 4(m)
we show the dependence of C1C2a on the maximum value,
Jρ , acquired by Jc and Jd in the cycle C2a, that was previously
set to Jb2

√
3 with Jb2 = J . We see that  increases as we

increase Jρ tending towards its maximum value equal to 2.
The latter is reached asymptotically when C2a yields a rotation
of π/2. Further discussion of these effects can be found in
Appendix C.

So far we considered an idealized situation. Various effects
may disturb Thouless pumping, such as nonlinearity, nonadi-
abatic effects, and disorder. In Fig. 5 we consider the effects
of disorder: the latter may cause a nonperfect periodicity of
the lattice enabling transition between different Bloch states;
it may distort pumping cycles or break the lattice Hamiltonian
symmetries. To exemplify the effects of disorder in Fig. 5 we
show the evolution of the field intensity along the cycle C1 in
the presence of impurities of different strengths, yielding the
following correction to the Hamiltonian: δH = ∑

i δκi(c
†
i ci −

d†
i di ). We see that, as long as δκiλ0 
 1, Fig. 5(c), pumping

is not affected by the presence of impurities. In the opposite
limit δκiλ0 � 1, the modulation is adiabatic also compared to

FIG. 5. (a)–(c) Effects of disorder on Thouless pumping. Evolu-
tion of the field’s intensity along the cycle C1 for different disorder
strengths: (a) δκiλ0 ∼ 50, (b) δκiλ0 ∼ 1, and (c) δκiλ0 ∼ 0.1. Other
parameters as in Fig. 2.

the splitting introduced by the impurity potential; we thus see
in Fig. 5(a) that during the pumping cycle the field intensity
follows the impurity profile but the whole process does not
cause dispersion or nonadiabatic transitions. Eventually, in the
case δκiλ0 ∼ 1 disorder couples the symmetric and antisym-
metric modes, causing imperfections and leakage of Thouless
pumping. We note however that the non-Abelian Lieb chain
offers an advantage over its Abelian version. Indeed, since
the degenerate bands of the naL lattice are flat, any kind of
modulation dispersive effects, that may hinder the observation
of Thouless pumping, are vanishing.

V. NONADIABATIC EFFECTS AND PHOTONIC
WAVEGUIDE IMPLEMENTATION

In this section we discuss in more detail the implementa-
tion of non-Abelian photon pumping in photonic waveguide
arrays. We briefly explain how the tight-binding Hamiltonians
emerge from Maxwell equations and we provide the relation
between the tunnel couplings J and the geometrical and op-
tical system parameters. We then identify the requirements to
realize the adiabatic pumping regime and we discuss possible
deviations from the idealized adiabatic limit.

Electromagnetic wave propagation in a coupled-waveguide
system should be investigated by solving the exact Maxwell
equations in a medium with a spatially dependent refractive
index. However, the analysis of such a system can as well,
with high accuracy, be described by the coupled mode theory
(CMT) [38,49–53], a scheme that provides an easy under-
standing of the coupling mechanism and allows one to reduce
the problem to the solution of a set of coupled equations. In
this framework, the overlap of the fields coming from adjacent
waveguides introduces a polarization term P which modifies
the modes of the single nth unperturbed waveguide, so that,
for harmonic fields at frequency ω, we have the following
equations describing electromagnetic wave propagation in the
nth waveguide{ ∇ × En(r) = −iωμ Hn(r),

∇ × Hn(r) = iω[ε En(r) + Pn],
(22)

where μ and ε are the permeability and permittivity of
the material, respectively. A simple way [52] to obtain the
coupled-mode equations is by defining the transversal forward
propagating perturbed (p) and unperturbed (u) fields as{ Enp(r) = αn(z)eiωt en(x, y),

Enu(r) = eiβnzeiωt en(x, y),
(23)

and making use of the Lorentz reciprocity theorem. In Eq. (23)
en(x, y) is one of the orthonormal transverse modes of the nth
waveguide and αn(z) the propagating field amplitude which is
assumed to vary along the propagation direction (z direction).

Making use of the reciprocity relations we have∫
S

∇ · [ Enp(r) × H∗
nu(r) + E∗

nu(r) × Hnp(r)]dS

= −iω
∫

S

Pn · E∗
nu(r)dS, (24)

where the integral is over the waveguide cross section. Us-
ing the definition of the perturbed and unperturbed fields
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given in (23) and the orthonormality condition
∫

S[en × h∗
m +

e∗
m × hn]dS = 2P0δnm with P0 denoting the normalized power,

Eq. (24) can be recast as follows:

(i∂z + βn)αn(z) = ω

2Po

∫
S

Pn · e∗
ndS. (25)

In the polarization term two contributions can be identi-
fied coming from the local and coupling perturbations: Pn =
�εnαn(z)en + ∑N

j=1, j �=n �εnα j (z)e j , where �εn is the devia-
tion from the unperturbed permittivity ε in the waveguide n
due to the presence of the others. This allows one to rewrite
Eq. (25) in the form

(i∂z + βn − γn)αn(z) =
N∑

j=1, j �=n

α j (z)
ω

2Po

∫
S
�εne j · e∗

ndS,

(26)
where γn = ω

2P0

∫
S �εnen · e∗

ndS.
If only nearest-neighbor interactions are considered, it al-

lows one to define the tunnel couplings as

Ji j = ω

2P0

∫
S
�εie∗

i · e jdS. (27)

For each of the four waveguides i in a cell they arise because
of the presence of a mode in the adjacent guides j and it
depends only on the parameters in two coupled waveguides.
Their strong dependence on the separation between the two
waveguides, the dielectric constants of the waveguide core and
on the shape and dimension of the waveguide cross section,
gives the possibility to tune the couplings in a wide range.

In realistic experiments, based on femtosecond laser writ-
ten glass structures, the waveguides sizes are typically of
the order of 5–10 μm, while their separation is of the or-
der of 10–20 μm. Typical effective indexes and operating
wavelengths in vacuum are ne = 1.5 and λ = 0.8 μm, giving
rise to an effective optical potential for the single waveguide
Vo � 1 meV and a field decay length of a few micrometers.
Typical coupling values [16] in this case are of the order of
J � ×10−3 μm−1. Moreover, for the adiabatic condition to be
fulfilled, we need to have a modulation wavelength λ0J � 1.
A value λ0 = 5 cm yields λ0J ∼ 50 and it gives the possibility
to perform four modulation cycles in waveguides 20 cm long;
this is a realistic length where loss effects can be neglected. A
detailed discussion of nonabelian holonomic effects starting
from coupled mode theories in photonic waveguide lattices
can be found in Ref. [53].

Nonadiabatic effects may limit the possibility to isolate
non-Abelian holonomies. Differently from geometric contri-
butions, nonadiabatic transitions will be however sensitive
to the cycle duration and they could in principle be isolated
performing a study of the figure of merit as a function of
λ0 as illustrated in Fig. 6. There we show how the figure of
merit, C1C2a , depends on the wavelength λ0 and the dashed
line represents the asymptotic value in the adiabatic limit.
The wavelength is normalized to the minimum longitudinal
momentum interval �κmin that is the minimum difference
between the momenta of the Bloch eigenmodes. Analogous
methods can be used to isolate possible dispersive effects due
to imperfections in the preparation of the initial state.

FIG. 6. Dependence of the figure of merit C1C2a on the cycle
wavelength, λ0. The dashed lines C1C2a = 1 indicate the expected
result in the perfectly adiabatic limit.

VI. CONCLUSIONS

Non-Abelian gauge fields lie at the very heart of many
modern physical theories. We need new experimental routes
and observables to disclose the importance of the Wilczek
and Zee holonomy. Recently, it was shown that it leads
to non-abelian Bloch oscillations and it induces a topolog-
ically protected inter-band beating [54]. We have shown
that properly designed photonic lattices enable the control
of the beam evolution by noncommutative fields, allowing
one to test experimentally a relation between non-Abelian
holonomies and the displacement of the photon beam. While
standard Thouless pumping simply yields a displacement of
the injected signal across the lattice, non-Abelian Thouless
pumping yields a displacement across the lattice and it gen-
erates a holonomic transformation among the different bands.
Illustrating the peculiar geometrical meaning of Wannier cen-
ter displacement in lattices with degenerate bands, the present
work extends the known results of Resta and Vanderbilt [6]
and hints at the possibility to detect the signatures of the
Wilczek-Zee connection in solids; furthermore, it points at the
possibility to investigate the role of non-Abelian holonomies
also in quantum Hall experiments.

Non-Abelian Thouless pumping can be generalized in sev-
eral directions, including nonlinear effects; see, for example,
Ref. [55], or consider the propagation of nonclassical light
in non-Abelian lattices. Both these possibilities are unex-
plored so far and open several questions concerning—for
example—the effect of the non-Abelian holonomy on entan-
glement or the impact of nonlinearity in breaking the hidden
symmetries. Non-Abelian topological photonics may stimu-
late further developments and applications for classical and
quantum information [56] and tests of fundamental physics.
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APPENDIX A: SPECTRUM OF THE
NON-ABELIAN LIEB CHAIN

As discussed in Sec. III, a suitable basis to describe the
propagation of electromagnetic waves through the modulated
naL chain is the local Bloch eigenmodes basis defined by the
following equations:

Hk (z)|ψνα (k, z)〉 = κν (z)|ψνα (k, z)〉, (A1)

〈ψνa(k, z)|ψμb(k, z)〉 = δμνδab, (A2)

where Hk is the Hamiltonian of the non-Abelian Lieb chain at
a given k,

Hk =

⎛
⎜⎝

0 Jb(k) Jc Jd

J∗
b (k) 0 0 0
Jc 0 0 0
Jd 0 0 0

⎞
⎟⎠. (A3)

The set {|ψνa(k, z)〉} yields the spectrum of the naL Hamil-
tonian, and it features two dispersionless degenerate modes,
|ψ01〉 and |ψ02〉, with longitudinal momentum, κ0 = 0, given
by Eq. (6) and two dispersive modes, |ψ±〉, defined as

ψ± = 1√
2

(
|ak〉 ± Jb(k)|bk〉 + Jc|ck〉 + Jd |dk〉

�(k)

)
, (A4)

with longitudinal momenta κ± = ±�(k), where �(k) =√
J2

b (k) + J2
c + J2

d and Jb(k) = Jb1 + Jb2eik . In the above
equations |mk〉 are the standard Bloch vectors, |mk〉 =∑

i |mi〉eikRi with m = a, b, c, d , and |mi〉 indicating a state
localized on the site m of the cell i located at x = Ri.

APPENDIX B: NONCOMMUTATIVE NATURE OF THE
DISPLACEMENT GENERATED IN COMPOSITE CYCLES

As shown in Sec. IV, starting from specific examples, the
non-Abelian nature of the evolution implies that, when we
perform a sequence of two cycles, the displacement depends
on the ordering of the sequence. To understand this fact, let
us take two generic cycles, Cx and Cy, and the two possible
sequences of the two, namely, CxCy and CyCx. In the latter case,
i.e., if we cover first the cycle Cx and then the cycle Cy, the
displacement matrix reads

[
DCxCy

]
ab

= [
DCy

]
ab

+ 1

2π

∫
dk

[
W †

Cy
D̂CxWCy

]
ab

, (B1)

while in the opposite case it reads

[
DCyCx

]
ab

= [DCx ]ab + 1

2π

∫
dk

[
W †

Cx
D̂CyWCx

]
ab

, (B2)

where WC and DC indicate respectively the holonomy and
the displacement matrix of the cycle C, while D̂C denotes
the k-dependent displacement matrix of the cycle C, i.e.,
D̂C = ∮

C W †FW dz. From the above equations we see that
two cycles performed in different orders generate in general
different displacements, due to the noncommutativity of WC
and D̂C .

This fact is true in particular for the cycles C1 and C2a or
C2b presented in Sec. IV. We notice that, independently on
the initial state the displacement accumulated along the cycles

C2a or C2b is zero, since along these cycles the coupling Jb1

vanishes, i.e., we have

DC2a = DC2b = 0. (B3)

Substituting the previous relations in Eqs. (B1) and (B2) we
obtain the following result for the photon displacement for the
composite cycles C2iC1 and C1C2i:

DC2iC1 = DC1 (B4)

and

DC1C2i = 1

2π

∫
dk

[
W †

C2i
D̂C1WC2i

]
, (B5)

with i = a or b.

APPENDIX C: HOLONOMIES, FIELD STRENGTH, AND
DISPLACEMENT OF THE CYCLES OF C1, C2a, AND C2b

In this Appendix we relate the holonomies and dis-
placements generated in the cycles C1, C2a, and C2b to the
geometrical structure of these cycles. Most numerical results
presented in Sec. IV will be explained analytically.

We start by estimating the holonomies WC1 , WC2i with i =
a, b. The general expression of the connection matrix, 	z

0,
assuming a generic dependence of all tunnel coupling Ji on
z, is

	z
0 = (Jb2∂zJb1 − Jb1∂zJb2) sin k

�2(k)

(
0 0
0 1

)

+ (Jc∂zJd − Jd∂zJc)|Jb|
δ2�(k)

(
0 i eiφk

−i e−iφk 0

)
, (C1)

where we set φk = arg(Jb1 + Jb2eik ). The connection along k
is instead given by

	k
0 = −Jb2(Jb2 + Jb1 cos k)

�2(k)

(
0 0
0 1

)
. (C2)

From the above equations we can easily evaluate the
holonomies of the cycles C1 and C2i with i = a, b; we obtain

WC1 = exp

[
i�C1

1

2
(σ0 − σz )

]
, (C3)

WC2i = exp {i�C2i [sin(k)σx + cos(k)σy]}, (C4)

with σ0 denoting the 2 × 2 identity matrix and σx, σy, and
σz the three standard Pauli matrices. To derive Eqs. (C3) and
(C4), we used the fact that, along the paths C2i, Jb2 is constant
and Jb1 = 0 and we indicated with �C1 and �C2i the following
integrals:

�C1 =
∮
C1

(Jb1∂zJb2 − Jb2∂zJb1) sin k

J2
d + J2

c + |Jb|2 , (C5)

�C2i =
∮
C2i

(Jc∂zJd − Jd∂zJc)Jb2(
J2

c + J2
d

)(
J2

c + J2
d + J2

b2

)1/2 . (C6)

Both integrals can be easily calculated and they have a simple
geometrical meaning. Specifically, for �C1 we have

�C1 =
∫

�1

∂z arg φk = k, (C7)
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FIG. 7. (a) Structure of the cycle C1. (b) Evolution of the occu-
pation of the two Bloch eigenmodes along the cycle C2a; the solid
and dotted lines correspond respectively to the states |ψ02〉 and |ψ01〉.
(c) Density plots of the field intensity across the lattice at different z
along the cycle C2a.

where �1 denotes the portion of the curve C1 laying on the
Jb1, Jb2 plane; see Fig. 7(a).

Along the cycle C1 the occupation of the two eigenstates
does not change; however, the structure of the state ψ02 is
deformed in such a way that its Wannier center is displaced
by one unit cell per cycle as one can clearly see in Figs. 2(a)
and 3(a).

At variance with �C1 , the integral �C2i depends on the
precise shape of the cycle. For the two examples shown in
Fig. 2(b) of the main text the calculation is straightforward;
specifically, we get �C2i = π/2 − αi with αa = π/4 and αb =
π/3, where the π/2 contribution comes in both cases from
the fact that we assume an infinitesimal value of Jc = Jd at
the starting point to avoid ambiguities in the definition of the
states. We notice that �C2i has a simple geometric interpreta-

tion; indeed, denoting with C̄2i the projection of the path C2i

on the unitary sphere in the space Jc, Jd , Jb2, one can show
that �C2i yields the solid angle subtended by the path C̄2i at
the origin.

To see this we introduce the Cartesian coordinates
{x, y, z} = {Jc, Jd , Jb2} and we rewrite �C2i as

�C2i =
∫
C2i

z(y dx − x dy)

(x2 + y2)
√

x2 + y2 + z2
. (C8)

Noting that

∇ ×
[

z(−y, x, 0)

(x2 + y2)
√

x2 + y2 + z2

]
= (x, y, z)

(x2 + y2 + z2)
3
2

and applying Stokes theorem, we can then rewrite the contour
integral in Eq. (C8) as a surface integral as follows:

�C2i =
∫

�i

r
r3

· d σ , (C9)

where we denoted with r the vector (x, y, z) and with �i a
surface such that ∂�i = C2i. Eventually, indicating as �̄i the
portion of the unitary sphere, S2, enclosed by C̄2i, with an
appropriate choice of �i we can easily obtain the desired
result, i.e.,

�C2i =
∫

�̄i

r
r3

· d σ =
∫

�̄i

dω, (C10)

where we have used the fact that, on S2, d σ = dω r̂, with
dω the differential of solid angle. In Fig. 7(b) we show the
evolution of the population of the two eigenstates along the
cycle C2a; as one can see this cycle yields a rotation by 3π/4.

We now focus on the displacement matrices. To this end,
we employ Eq. (14), which relates the displacement matrix
to the field strength. We thus start from the following general
expression of the field strength matrix, F :

Fzk = (Jc∂zJd − Jd∂zJc)Jb2

�3(k)

(
0 eik

e−ik 0

)
+ Jb2{[Jb2 + Jb1 cos(k)]∂zδ

2 − δ2∂z[Jb2 + Jb1 cos(k)]}
�4(k)

(
0 0
0 1

)
, (C11)

where we assumed that all tunnel couplings are generic func-
tions of z. Analogous to Eqs. (C1) and (C2), Eq. (C11)
substantially simplifies if we consider the geometrical struc-
ture of the cycles.

Along the cycle C1 we have Jc = Jd ; the first term in
Eq. (C11) is thus vanishing and the field strength F can be
cast as

Fzk −−−−→
along C1

2Jb2Jc(Jb2∂zJc − Jc∂zJb2)

J2
b2 + J2

c

(
0 0
0 1

)
. (C12)

This term is nonvanishing only along the portion �2 of the
cycle C1; it does not depend on k and it commutes with the
holonomy WC1 . Furthermore, as one can easily check, inte-
gration over z and k yields 2π . It thus leads to the following
expression for the displacement matrix of the cycle C1:

DC1 =
(

0 0
0 1

)
. (C13)

As explained above, the displacement generated along the
cycles C2i is zero nevertheless; by looking at Eq. (C11) we
notice that along these cycles we have a finite field strength.
As one can explicitly verify, the zero displacement results
are indeed recovered after integrating over k and z. In these
regards we note that for Jb2 = 0 the field strength is identically
zero, opposite to what happens for Jb1 = 0. Since, due to the
lattice periodicity, we can always exchange the roles of Jb1 and
Jb2 and we expect that the symmetry between the two cases is
restored upon averaging over k, this is indeed the case.

A possible route to demonstrate the noncommutative na-
ture of non-Abelian Thouless pumping is to design a pumping
cycle aimed at detecting the contribution to the displace-
ment of the commutator term F com

zk = i[	z, 	k], peculiar of
non-Abelian gauge theories. We remark that, in spite of the
apparent complexity, in Eq. (C1) we have a cancellation be-
tween terms coming from the Abelian contribution to the field
strength, ∂k	

z
ν − ∂z	

k
ν , and from the non-Abelian commutator,
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F com
zk . It is interesting to look at the explicit expression of the

latter:

F com
zk = (Jc∂zJd − Jd∂zJc)|Jb|Jb2[Jb2 + Jb1 cos(k)]

δ2�3(k)

×
(

0 i eiφk

−i e−iφk 0

)
. (C14)

By looking at the above equation we see that if Jb1 or Jb2 are
identically zero along the cycle the contribution of these terms
vanishes upon averaging over k. To see the contribution of this
term in pumping we thus need to design a cycle having all the
coupling different from zero at some point.

APPENDIX D: NONCOMMUTING CYCLES SEQUENCES

Using the above results, the holonomies for the composite
cycles C1C2 and C2C1 can be explicitly calculated. They are
given by

WC1C2 =
(

cos(�C2 ) eik sin(�C2 )
− sin(�C2 ) eik cos(�C2 )

)
(D1)

and

WC2C1 =
(

cos(�C2 ) e2ik sin(�C2 )
−e−ik sin(�C2 ) eik cos(�C2 )

)
. (D2)

The corresponding displacement matrices can be instead ex-
pressed as follows:

DC2C1 = DC1 =
(

0 0
0 1

)
, (D3)

DC1C2 =
(

sin2 �C2 0
0 cos2 �C2

)
. (D4)

Equations (D1) and (D2) show that the holonomy transforma-
tions for the cycles C1 and C2 do not commute; i.e., starting
from a given initial state, the final state and the displacement
obtained depend on whether we perform first the cycle C1 and
then the cycle C2 or vice versa. In the table below we explicitly
calculate the final state and displacement generated starting
from different localized initial states. Specifically, we consider
the case where the initial states are simply |cn〉 and |dn〉 and
get

Cycles Initial state Final state Displacement

|cn〉 η+(|cn〉 + |dn+1〉) + η−(|cn+1〉 − |dn〉) 1
2C2C1 |dn〉 η+(|dn+1〉 − |cn〉) + η−(|dn〉 + |cn+1〉) 1
2

|cn〉 η−(|cn〉 − |dn〉) + η+(|cn+1〉 + |dn+1〉)
1+sin(2�C2 )

2C1C2 |dn〉 η+(|dn〉 − |cn〉) + η−(|dn+1〉 + |cn+1〉)
1−sin(2�C2 )

2

(D5)

with 2η± = cos(�C2 ) ± sin(�C2 ).
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