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Infinitely many multipulse solitons of different symmetry types in
the nonlinear Schrödinger equation with quartic dispersion
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We show that the generalized nonlinear Schrödinger equation (GNLSE) with quartic dispersion supports
infinitely many multipulse solitons for a wide parameter range of the dispersion terms. These solitons exist
through the balance between the quartic and quadratic dispersions with the Kerr nonlinearity, and they come in
infinite families with different signatures. A traveling wave ansatz, where the optical pulse does not undergo a
change in shape while propagating, allows us to transform the GNLSE into a fourth-order nonlinear Hamiltonian
ordinary differential equation with two reversibilities. Studying families of connecting orbits with different
symmetry properties of this reduced system, connecting equilibria to themselves or to periodic solutions,
provides the key to understanding the overall structure of solitons of the GNLSE. Integrating a perturbation
of them as solutions of the GNLSE suggests that some of these solitons may be observable experimentally in
photonic crystal waveguides over several dispersion lengths.
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I. INTRODUCTION

Recently, Blanco-Redondo et al. experimentally discov-
ered pure quartic solitons (PQS) in a silicon photonic crystal
waveguide [1]. Such PQS exist due to a balance between
negative quartic dispersion and the Kerr nonlinearity, unlike
conventional optical solitons which balance quadratic dis-
persion and nonlinearity. This balance through the quartic
dispersion allows for an unusual scaling of the pulse width
with the power, which makes them attractive for short-pulse
lasers [1]. Furthermore, these new solitons have decaying
oscillating tails. Pure quartic solitons have been the focus
of several recent studies, both experimental and theoreti-
cal [2–4].

It is well known that the generalized nonlinear Schrödinger
equation (GNLSE) can be used to model optical pulse propa-
gation in fibers in a variety of different regimes, including the
case of higher-order dispersion. An analytic solution in the
presence of both quartic and quadratic dispersion was found
by Karlson and Höök [5] in the form of a squared hyperbolic
secant pulse shape. It exists in the situation when both the
quadratic and the quartic dispersion coefficients β2 and β4

are negative. Furthermore, the Karlson and Höök solution
family does not possess oscillating decaying tails; thus, it
does not describe PQS. Subsequently, Piché et al. [6] numeri-
cally studied the effect of third-order dispersion together with
second- and fourth-order dispersions. With numerical simu-
lations, they found that, when a weak third-order dispersion
is introduced, the temporal profile and the peak power of
the soliton remain unchanged. Akhmediev et al. [7] found

*ravindra.bandara@auckland.ac.nz

that, when both β2 and β4 are negative, solitons have either
exponentially decaying tails or oscillating tails, depending on
the soliton propagation constant (nonlinear shift of the wave
number). Interaction of solitons with oscillating tails was nu-
merically studied by Akhmediev and Buryak [8]. They found
that the oscillating tails of a soliton establish a potential barrier
between neighboring solitons during their interactions, pre-
venting two adjacent solitons from combining. Furthermore,
they investigated the bound states of two or more solitons
when the single soliton has oscillating tails [9]. Roy and
Biancalana [10] demonstrated that, when both β2 and β4 are
negative, it is possible to observe solitons in silicon-based slot
waveguides. Although there have been many studies of soli-
tons in the presence of both quartic and quadratic dispersions,
all these works considered the situation when both β2 and β4

are negative. More recently Tam et al. [2,4] considered the
case when β4 is negative while β2 can have either sign. They
numerically found that single-hump solitons exist for some
positive β2 values as well. Furthermore, they explained that
the decay rate of the solitons decreases as β2 increases.

In this paper, we perform a detailed analysis of the GNLSE
to find solitons of different types (multihump solitons) with
different symmetry properties, beyond the one-hump soliton
obtained in [4] and for different signs of the quadratic dis-
persion term. More specifically, we show that the GNLSE
supports infinitely many and different types of multihump
solitons in the presence of both quartic and quadratic dis-
persion. Note that the multihump solitons we present here
are distinct from bound states of two or more primary soli-
tons that arise, for example, in dispersion-managed optical
fibers [11,12]. Taking a dynamical system approach allows
us to systematically find and characterize families of solitons
with different symmetry properties; this general approach has
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been successfully applied to other systems, including a widely
studied class of the NLSE describing solitary wave forma-
tion in inhomogeneous media [13–16] and bright localized
structures described by the Lugiato-Lefever equation [17]. To
identify infinite families of multihump solitons, we consider
the situation when β4 is negative and show that such solitons
exist not only when β2 is negative. More specifically, we
extend the work in [4] and [9] and present the parameter
range for which these multihump solitons also exist when β2

is positive. Moreover, we show that, apart from symmetric
and antisymmetric solitons, there also exist nonsymmetric,
symmetry-broken solitons, which are distinct from a union
of fundamental solitons. For fixed negative β4, we determine
the parameter intervals of β2 over which the different types
of solitons exist. This is achieved via a traveling wave ansatz
that transforms the GNLSE into a fourth-order Hamilto-
nian ordinary differential equation (ODE) with two reversible
symmetries. Solitons of the GNLSE are then identified as
homoclinic solutions to the origin of this ODE, which we
find and track with state-of-the art continuation techniques.
We discuss a connection of our findings with results ob-
tained, for example, for the Swift-Hohenberg equation [18]
and the Lugiato-Lefeverer equation [17], and demonstrate
that the overall bifurcation structure of the GNLSE can be
characterized as truncated homoclinic snaking. Moreover, we
show that connecting orbits from the origin to periodic orbits
(also referred to as EtoP connections) with different symmetry
properties organize different infinite families of multihump
solitons. The structure of periodic orbits is discussed briefly
to show that infinitely many of them create different connec-
tions to the origin and, hence, associated families of solitons.
Importantly, our results apply to any negative values of the
quartic dispersion term via a suitable transformation. Fi-
nally, we investigate the evolution of these solitons along a
waveguide via the integration of the GNLSE with a split-step
Fourier method; here we consider symmetric and nonsym-
metric solitons for β2 = 0 and also for different signs of β2.
Our numerical simulations indicate that some of the multi-
hump solitons are only weakly unstable and may propagate
effectively unchanged over many dispersion lengths; hence,
they might be observable in careful experiment with currently
available waveguides.

The paper is structured as follows. In Sec. II, we introduce
the GNLSE, and show how it can be transformed into an ODE;
we then discuss the special mathematical properties of this
ODE, present its local bifurcation analysis, and also discuss
the role of its homoclinic solutions as solitons of the GNLSE.
In Sec. III, we set up suitable boundary value problems to find
and then continue homoclinic solutions, periodic solutions,
and EtoP connections. In Sec. IV, we present, one-by-one,
families of homoclinic solutions of different symmetry types,
show over which β2 range they exist, and discuss their con-
nection with homoclinic snaking. Section V then shows that
the respective homoclinic solutions occur along parabolas in
different parameter planes. In Sec. VI we show that there are
infinitely many periodic orbits that create families of connect-
ing orbits and, hence, a menagerie of solitons with different
signatures. In Sec. VII, we present some simulations of the
GNLSE that demonstrate that, while only the single-pulse
primary soliton is stable, certain multihump solitons are only

weakly unstable and, thus, may be observable in an exper-
imental setting. Finally, a discussion of the results and an
outlook to future research are presented in Sec. VIII.

II. MATHEMATICAL ANALYSIS

Pulse propagation along an optical fiber under the influ-
ence of quadratic dispersion, quartic dispersion, and the Kerr
nonlinearity is governed by the GNLSE [19]

∂A

∂z
= iγ |A|2A − i

β2

2

∂2A

∂t2
+ i

β4

24

∂4A

∂t4
. (1)

Here, A(z, t ) is the slowly varying complex pulse envelope, z
is the propagation distance, t is the time in a comoving frame
of the pulse, γ is the coefficient of the nonlinearity, and β2

and β4 are the quadratic and quartic dispersion coefficients,
respectively. In order to focus on the essential interactions be-
tween dispersion and nonlinearity that drive soliton formation,
Eq. (1) does not include losses and higher-order terms such as
the Raman effect.

We note that the rescaling transformations

U =
√

|β4|γ
6β2

2

A, x = 6β2
2

|β4|z, τ =
√

12|β2|
|β4| t,

which are defined only for β2 �= 0 and β4 �= 0, reduce Eq. (1)
to the parameter-free form

∂U

∂x
= i|U |2U − sign(β2)i

∂2U

∂τ 2
+ sign(β4)i

∂4U

∂τ 4
. (2)

Clearly, each open quadrant of the (β2, β4) plane corresponds
to fixed signs of β2 and β4 and, hence, a unique reduced PDE;
for ease of reference, we refer to these four different cases as

(a) β2 > 0, β4 > 0; (b) β2 < 0, β4 > 0;

(c) β2 > 0, β4 < 0; (d) β2 < 0, β4 < 0.

In particular, Akhmediev et al. [7] considered the correspond-
ing reduced PDE in quadrant (d); thus, they considered the
situation when both β2 and β4 are negative. Indeed, the above
transformations are undefined when β2 = 0 or β4 = 0, and
there is no continuous transition between different signs of
β2 and β4. Therefore, none of the reduced PDEs are able to
describe the case of PQS. For the purpose of this paper, we
are interested in the transition between β2 < 0, β2 = 0 (PQS),
and β2 > 0. Thus, we consider the original GNLSE without
reducing the parameters first. We stress the generality of our
results because they can be mapped to any specific parameter
region by the transformations for given signs of β2 and β4.

When solving the GNLSE one looks for solutions, where
the pulse is stationary and does not change with propagation
distance. We study here such traveling wave solutions of the
form

A(z, t ) = u(t )eiμz, (3)

where u(t ) is the temporal profile of the pulse and μ is the
soliton propagation constant (nonlinear shift of the wave num-
ber) [7]. Note that the intensity of such solutions, |A(t )|2 =
u(t )2, is unchanged during propagation. After substituting
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Eq. (3) into (1) we obtain the fourth-order nonlinear ODE

β4

24

d4u

dt4
− β2

2

d2u

dt2
− μu + γ u3 = 0. (4)

By introducing the new variables u1, u2, u3, and u4 such that
u = (u1, u2, u3, u4) = (u, du

dt ,
d2u
dt2 , d3u

dt3 ), Eq. (4) can be written
as the system of four first-order ODEs

du

dt
= f (u, ζ ) =

⎛⎜⎜⎜⎜⎝
u2

u3

u4

24
β4

(
β2

2 u3 + μu1 − γ u3
1

)

⎞⎟⎟⎟⎟⎠, (5)

where ζ = (β2, β4, γ , μ) ∈ R4. Note that system (5) is re-
versible [20] under the transformations

R1 : (u1, u2, u3, u4) → (u1,−u2, u3,−u4) and

R2 : (u1, u2, u3, u4) → (−u1, u2,−u3, u4).

This means that if u(t ) is a solution, then both R1(u(−t ))
and R2(u(−t )) are also solutions of system (5). Throughout
the paper, we refer to R1(u(−t )) and R2(u(−t )) as the R1

and R2 counterpart of u(t ), respectively. Furthermore, S =
R1 ◦ R2 = R2 ◦ R1 is the state-space symmetry

S : (u1, u2, u3, u4) → (−u1,−u2,−u3,−u4)

of system (5), which is point reflection in the origin 0. The set
of points that are left invariant under R1 or R2 are known as
symmetric or reversibility sections of system (5); they are

�1 = {u ∈ R4 : u2 = u4 = 0} and

�2 = {u ∈ R4 : u1 = u3 = 0},
respectively. Note that the origin 0 is the only point that
belongs to both �1 and �2, that is, it is the only point that
is invariant under S. A solution trajectory u(t ) of system (4)
is called symmetric if it satisfies either R1(u(−t )) = u(t ) or
R2(u(−t )) = u(t ). One can show that if u(t ) is a symmetric
solution, then there exists a time t∗ ∈ R such that u(t∗) ∈ �1

or u(t∗) ∈ �2, that is, u(t ) intersects �1 or �2. To distinguish
the invariance between the two reversibility conditions R1 and
R2, we refer to a solution that is only invariant under R1 as
R1-symmetric solutions of system (5), and similarly define
R2-symmetric solutions. Furthermore, if a solution is invariant
under both R1 and R2, then we refer to it as R∗ symmetric.
Notice that if a solution is R∗ symmetric, then it is invariant
under S; however, invariance under S does not necessarily
imply R∗ symmetry. Lastly, a solution that is neither invariant
under R1 nor R2 is referred to as nonsymmetric.

System (5) can be transformed into the form of a Hamilto-
nian system by the change of coordinates

p = (p1, p2) = (u2, u4),

q = (q1, q2) =
(−12β2

β4
u1 + u3, u1

)
,

where p and q are the generalized position and momentum co-
ordinates. With this transformation, system (5) can be written

as ⎛⎜⎜⎜⎜⎜⎜⎜⎝

dq1

dt

dq2

dt

d p1

dt

d p2

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−12β2

β4
p1 + p2

p1

q1 + 12β2

β4
q2

24
β4

[
β2

2

(
q1 + 12β2

β4
q2

) + μq2 − γ q3
2

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

which satisfies the well-known Hamiltonian equations [20]

dq
dt

= ∂Ĥ

∂p
,

dp
dt

= −∂Ĥ

∂q
. (7)

Here the conserved quantity or energy is

Ĥ (p, q) = p1 p2 − 6β2

β4
p2

1 − 1

2

(
q1 + 12β2

β4
q2

)2

+
(

6γ q4
2 − 12μq2

2

β4

)
, (8)

as obtained from system (6) by integration with respect to p
and q. This expression can be written in original coordinates
as

H (u) = u2u4 − 1

2
u2

3 −
(

6β2u2
2 − 6γ u4

1 + 12μu2
1

β4

)
, (9)

and it is a conserved quantity along solution trajectories of
system (5). We remark that one can also derive Eq. (9) by
using the general expression for fourth-order reversible sys-
tems provided in [21]. Notice that, if a solution trajectory
converges backward or forward in time to an equilibrium u0
of system (5) with energy H (u0), then the solution trajectory
has energy H (u0) for all times.

We now focus our attention on the equilibria of system (5).
The origin 0 = (0, 0, 0, 0) is an equilibrium for any parameter
value. It undergoes a pitchfork bifurcation at μ = 0, which
creates two equilibria E± = (±√

μ/γ , 0, 0, 0) for μγ > 0.
These are the only equilibria of system (5). Note that 0 ∈
�1 ∩ �2, while E± lie only in �1. Hence, all equilibria are
symmetric: 0 is invariant under both R1 and R2, and E±
are invariant under R1 only. Note from Eq. (9) that, for any
choice of the parameters, 0 always lies in the zero-energy
level. This is not the case for the other two equilibria E± for
which H (E±) = − 6μ2

γ β4
. Hence, H (E±) �= 0 whenever μ �= 0

(and β4, γ �= 0), so that the equilibria 0 and E± do not lie
in the same energy level. Thus, there cannot be a connecting
trajectory between them.

We now focus our attention on homoclinic solutions, which
are trajectories of system (5) that converge to the same
equilibrium both forward and backward in time. Homoclinic
solutions are sought because they correspond to solitons of the
GNLSE. Since the solitons of the GNLSE converge to 0, both
forward and backward in time, we only consider homoclinic
solutions to 0 as it is the only equilibrium with u = u1 = 0.

Homoclinic solutions in fourth-order, reversible, and
Hamiltonian systems have been studied, for example,
in [20–26]. In particular, results on four-dimensional re-
versible systems have been developed and applied in the
analysis of a system that describes the dynamics of an elastic
strut [20,21,24,25]. It is the case that symmetric homoclinic
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solutions in fourth-order reversible systems persist when a
suitable parameter is changed [21–23]. This is true for both
reversible and nonreversible Hamiltonian systems. It has also
been proved that each symmetric homoclinic solution in a
reversible system is accompanied, for fixed parameter val-
ues, by a one-parameter family of periodic solutions with
minimal period T0. As the period growths to infinity, that
is T0 → ∞, periodic solutions accumulate on a symmetric
homoclinic solution. The periodic solutions of these fam-
ilies lie in different Hamiltonian energy levels, and some
of them lie in the energy level with H = 0. As opposed
to the symmetric case, nonsymmetric homoclinic solutions
in reversible systems do not persist as a suitable parameter
is changed; however, they persist in systems that are both
reversible and Hamiltonian [21,27] as is the case for sys-
tem (5). It is a special property of systems that are both
reversible and Hamiltonian that homoclinic solutions persist
as codimension-zero phenomena. It has been proven in [25]
that a transition of the equilibrium from a real saddle (spec-
trum with only real eigenvalues) to a saddle focus (spectrum
with only complex-conjugate eigenvalues), as a parameter is
changed, is an organizing center for the creation of infinitely
many symmetric homoclinic solutions, provided the following
conditions are satisfied:

(1) the ODE is fourth-order, reversible and Hamiltonian,
(2) there exists a symmetric homoclinic solution at the

moment of the transition of the equilibrium.
One refers to this transition as the Belyakov-Devaney (BD)

bifurcation [17,21,22,28]. To see whether the second condi-
tion is satisfied for system (5), we first focus our attention
on the eigenvalues of its equilibria in different parameter
regimes. The eigenvalues of the linearization around a sym-
metric equilibrium of a reversible system have generically one
of the following forms [20]:

(I) two eigenvalues are ±λ1 and the other two are ±λ2,
where λ1, λ2 ∈ R;

(II) two eigenvalues are ±λ and the other two are ±λ∗,
where λ ∈ C with Re(λ) �= 0 and Im(λ) �= 0;

(III) two eigenvalues are ±iλ1 and the other two are ±iλ2,
where λ1, λ2 ∈ R;

(IV) two eigenvalues are ±λ1 and the other two are ±iλ2,
where λ1, λ2 ∈ R.

For system (5), one can obtain an analytical expression
for the eigenvalues of the linearization around 0 and E±. The
eigenvalues of 0 are given by [4,21]

λ2
0 = 6β2

β4

(
1 ±

√
1 + 2β4

3β2
2

μ

)
, (10)

while the eigenvalues of E± are given by

λ2
E± = 6β2

β4

(
1 ±

√
1 − 4β4

3β2
2

μ

)
. (11)

Since we are interested in homoclinic solutions to 0, we
focus our attention on Eq. (10). Notice that the expression
inside the square root defines a parabola in the (β2, μ) plane
that separates the different cases of the spectrum of the equi-
librium 0. This parabola is shown in Fig. 1(a) as a purple curve
that separates the (β2, μ) plane into three regions, where the
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μ

β2 t

u1

u1

(b) (c)

FIG. 1. (a) Shows the bifurcation diagram in the (β2, μ) plane for
β4 = −1 and γ = 1. The purple parabola denotes the boundary be-
tween the equilibrium 0 having real and complex eigenvalues, given
by BD and HH bifurcation; in the gray shaded region close to the
purple parabola, infinitely many symmetric homoclinic solutions are
expected to exist. (b), (c) Show the temporal traces of the primary ho-
moclinic solution of system (5) for (β2, β4, γ , μ) = (−1, −1, 1, 1)
and (β2, β4, γ , μ) = (0.4,−1, 1, 1), at the yellow and orange dots in
(a), respectively.

eigenvalues of 0 are of the form (I), (II), and (III), respectively.
Note that 0 is a real saddle in region (I) and a saddle-focus
in region (II). Due to the real eigenvalues of 0, homoclinic
solutions in region (I) must have nonoscillatory exponentially
decaying tails. In contrast, homoclinic solutions in region (II)
must have oscillatory decaying tails because the eigenvalues
of 0 are complex conjugates. In the following sections up to
Sec. V, we present our results on the existence of homoclinic
solutions for the horizontal line μ = 1 in the (β2, μ) plane.
This choice of μ value does not restrict the generality of our
results as we will show in Sec. V; indeed, our results extend
throughout the upper half of the (β2, μ) plane, that is, when
μ > 0. Figures 1(b) and 1(c) show two homoclinic solutions
along this horizontal line for two distinct β2 values in region
(I) and (II), respectively. The homoclinic solution in Fig. 1(b)
has nonoscillating exponentially decaying tails as it belongs to
region (I). Furthermore, this homoclinic solution persists until
β2 reaches the right-hand side of the parabola in Fig. 1(a),
that is, at the boundary between regions (II) and (III), which
correspond to a Hamiltonian-Hopf (HH) bifurcation [28,29].
In Fig. 1(c), we show what this homoclinic solution looks
like at β2 = 0.4 where it has oscillating tails. In particular,
this homoclinic solution is R1 symmetric and we refer to it
as the primary homoclinic solution; its corresponding soliton
is the one Tam et al. considered in [2]. Note that the ho-
moclinic solution in Fig. 1(c) has oscillatory decaying tails
but the oscillations damp out very quickly. The oscillations
in the tails of the these homoclinic solutions increase when
moving horizontally towards the bifurcation HH. Because the
primary homoclinic solution exists at the transition between
regions (I) and (II), the conditions for a BD bifurcation are
satisfied and infinitely many homoclinic solutions must exist
in the indicated gray shaded region near the branch BD in
Fig. 1(a) [25].

III. NUMERICAL IDENTIFICATION AND CONTINUATION
OF HOMOCLINIC SOLUTIONS

The task is now to find and identify a representative num-
ber of symmetric and nonsymmetric homoclinic solutions of
system (5). To this end, we make use of continuation al-
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gorithms for two-point boundary value problems (2PBVP),
implemented in the software package AUTO-07P [30] and its
extension HOMCONT [31]. In the 2PBVP formulation, time
is rescaled to the interval [0,1]. Thus, the integration time is
treated as a free parameter that multiplies the right-hand side
of system (4), that is,

dv
dt

= T f (v, ζ ). (12)

Note that we always assume that T > 0. Suitable boundary
conditions are imposed at the starting point v(0) and the end
point v(1) of the solution segment [32]. For the continua-
tion of a homoclinic solution, we use projection boundary
conditions that place v(0) in the unstable eigenspace Eu(0)
of the equilibrium 0, and v(1) in one of the reversibility
sections �1 or �2. In this way, we take advantage of the
reversibility of system (5) to compute only half of a sym-
metric homoclinic solution v(t ). Convergence forward in time
to the stable eigenspace Es(0) is guaranteed by the corre-
sponding reversibility conditions, and the remaining part of
the homoclinic solution is obtained by applying R1(v(−t ))
or R2(v(−t )). Notice that this formulation is only able to
continue symmetric homoclinic solutions since an intersection
with a reversibility section is required.

For the case of nonsymmetric homoclinic solutions we
formulate a 2PBVP of the entire homoclinic solution. AUTO-
07P is a general-purpose continuation package designed for
generic vector fields, and particular considerations have to be
taken when continuing homoclinic and periodic solutions in
reversible and Hamiltonian systems [33]. To deal with the fact
that homoclinic solutions generically persist when a single
parameter is varied, we follow [33] and introduce the gradient
of the conserved quantity H as a perturbation of the vector
field equations

dv
dt

= T f (v, ζ ) + δ∇H, (13)

where δ is an additional continuation parameter. We then
impose the boundary conditions that v(0) lies in Eu(0) and
v(1) lies in Es(0). We continue the solution of the overall
2PBVP in one of the parameters while allowing δ and T to
vary. In this setup, the new parameter δ is free but remains
extremely close to zero during continuation [33–35]. Note
that the 2PBVP formulation of the entire homoclinic solution
can be used to continue symmetric homoclinic solutions as
well.

To find the first homoclinic solution, we make use of a
numerical implementation of Lin’s method [36], where we
consider two orbit segments va(t ), vb(t ) and a suitable three-
dimensional hyperplane �. Here, va(0) and vb(1) lie in Eu(0)
and Es(0), respectively, and va(1) and vb(0) both lie in �.
Then, the signed difference (called the Lin gap) between va(1)
and vb(0), along a fixed one-dimensional direction, provides
a well-defined test function whose zeros correspond to ho-
moclinic solutions of system (5) (see [36]). Once a zero is
found, the associated homoclinic solution can be followed
in system parameters with the previously constructed 2PBVP
formulations. Lin’s method allows us to compute multihump
homoclinic solutions of different types. We remark that the
AUTO DEMO REV [30], for the GNLSE as considered in [37],

contains a setup to continue the basic homoclinic solutions.
However, we are interested in many different types of homo-
clinic solutions that cannot be computed from the demo, and
they are all identified here with Lin’s method.

Connections between the equilibrium 0 and periodic solu-
tions, which we refer to as EtoP connections, are organizing
centers for the existence of homoclinic solutions under mild
conditions [38,39]; hence, they are an important object to
consider when studying homoclinic solutions. To compute
EtoP connections, we have to find first periodic solutions
of system (5) that support a connection to 0. In reversible
and Hamiltonian systems, periodic solutions are not isolated
in phase space for fixed parameter values [33]. To be able
to compute and continue them, we consider the perturbed
system (13) and use the 2PBVP formulation for periodic so-
lutions [32]. For the initial data of the formulation, we use
homoclinic solutions previously constructed with the 2PBVP
above, as they are good initial approximations of periodic
solutions of high period. Performing a continuation step in
δ and T allows us to find the family of periodic solutions
for fixed parameter values, while δ again remains practically
0. These solution families form two-dimensional surfaces in
phase space where each periodic solution lies in a particular
energy level. Among these solution families, we focus on
saddle periodic solutions in the zero-energy level because
they are the only periodic solutions that can have connections
with 0.

To find connections from 0 to a saddle periodic solution
we can follow the approach that we used to find homoclinic
solutions to 0. This requires one to compute first the Floquet
multipliers and Floquet bundles of the periodic solution, as
they contain the linear information of the flow near the pe-
riodic solution. Saddle periodic solutions of system (5) have
one stable (inside the unit circle) and one unstable (outside
of the unit circle) Floquet multipliers with associated stable
and unstable Floquet bundles, respectively. The stable (unsta-
ble) bundle consists of the directions in phase space, along
which solutions converge forward (backward) in time to the
periodic solution. Finally, the other two Floquet multipliers
of a saddle periodic solution in system (5) are always equal
to one. Associated to them, there are two Floquet bundles:
one that is pointing in the direction of the flow along the
periodic solution, called the trivial bundle, and another one
tangent to the surface of the periodic solutions in phase
space.

We compute the Floquet multipliers and their correspond-
ing bundles with a homotopy step for a suitable 2PBVP
formulation; see [40] for more details. Note that any con-
nection that converges backward in time to 0 and forward in
time to an R1-symmetric (R2-symmetric) periodic solution has
an R1 counterpart (R2 counterpart) that converges backward
in time to the same periodic solution and forward in time
to 0. As we are interested in periodic solutions that are R1

symmetric or R2 symmetric, we make use of this fact to set
up Lin’s method by using the unstable eigenspace Eu(0) of
0 and the stable bundle of the periodic solution. That is, we
consider two orbit segments va(t ), vb(t ) and a suitable three-
dimensional hyperplane �, such that va(0) and vb(1) lie in
Eu(0) and the stable Floquet bundle of the saddle periodic
solution, respectively, and va(1) and vb(0) lie in �. The zeros
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of the corresponding Lin gap correspond to EtoP connections
that converge backwards in time to 0 and forward in time to
the periodic solution.

IV. HOMOCLINIC FAMILIES OF DIFFERENT TYPES

Computing EtoP connections between 0 and saddle pe-
riodic solutions in the zero-energy level is a good starting
point for understanding how different homoclinic solutions
are organized. Since system (5) is reversible, existence of a
connection from 0 to a symmetric saddle periodic solution
guarantees a return connection from the periodic solutions
to 0 as well. This return connection corresponds to the R1

or R2 counterpart of the EtoP connection, depending on the
symmetry of the periodic solution. The existence of a con-
nection from 0 to a periodic solution and a connection back
from the periodic solution to 0 is known as a heteroclinic
cycle. Existence of these heteroclinic cycles, and their per-
sistence under parameter variation (transversality), generate a
mechanism for the existence of homoclinic solutions that go
around the periodic solution multiple times, as a consequence
of the λ lemma [38,41]. Thus, it is possible to find homoclinic
solutions that

(a) follow closely an EtoP connection from 0 to the peri-
odic solution,

(b) then loop n times close to the periodic solution, and
(c) follow closely an EtoP connection from the periodic

solution back to 0.
The different combinations of EtoP connections generate

cycles with different symmetry properties that organize spe-
cific homoclinic solution families in parameter space. Some
of these families are organized by EtoP connections to an
R∗-symmetric periodic solution, and others by EtoP connec-
tions to an R1-symmetric periodic solution. The corresponding
solitons associated with these homoclinic families are distinct
from bound states of two or more primary solitons since
the spacing of the maxima is fixed and different from the
location of the zeros of the oscillating tails. In what follows,
we study different families of such homoclinic solutions. We
show bifurcation diagrams in β2 of these families to illustrate
how they persist and coalesce due to the existence of different
underlying EtoP connections.

A. Homoclinic solutions associated with R∗-symmetric
periodic solution

Heteroclinic cycles from 0 to a R∗-symmetric periodic so-
lution organize two main families of homoclinic solutions: the
R1- and R2-symmetric families. Furthermore, these families
also organize nonsymmetric homoclinic solutions that arise
when the corresponding reversibility condition is broken.

1. R1-symmetric homoclinic solutions

Figure 2 illustrates a family of solutions associated with an
R∗-symmetric periodic solution 
∗ along with their bifurca-
tion diagram. Figures 2(a1) and 2(a2) show two distinct EtoP
connections from 0 to 
∗ for (β2, β4, γ , μ) = (0.4,−1, 1, 1).
Both these EtoP connections converge backward in time to
0 and forward in time to 
∗; however, these connections
are not related by symmetry as their temporal profiles are

different and cannot be mapped to each other by any of the
reversibilities or the spatial-temporal symmetry. In particu-
lar, the EtoP connection shown in Fig. 2(a1) makes a small
negative excursion in u1 and then has a transient for positive
u1 before converging to 
∗ after t ≈ 0; in Fig. 2(a2), on the
other hand, it makes two oscillations for positive u1 before it
traces 
∗ from t ≈ 4. Since 
∗ is R∗ symmetric, there exist
the R1 and R2 counterparts of the EtoP connections, which are
reflections in t and rotations by 180

◦
of Fig. 2(a), respectively.

The different combinations of these EtoP connections create
different heteroclinic cycles that organize different types of
homoclinic solutions.

We first consider the heteroclinic cycle that is formed by
the EtoP connection shown in Fig. 2(a1) and its corresponding
R1 counterpart. The temporal profiles of the u1 component of
two homoclinic solutions organized by this cycle are shown in
Figs. 2(b1) and 2(c1). The homoclinic solution in Fig. 2(b1)
can be thought of as a concatenation of first part of the EtoP
connection in Fig. 2(a1) up to its second maximum with its
R1-symmetric counterpart. Similarly, the homoclinic solution
in Fig. 2(b2) is associated with the EtoP cycle formed by the
connection in Fig. 2(a2) and its R1-symmetric counterpart.
Two further homoclinic solutions are shown in Figs. 2(c1)
and 2(c2); they are derived from the EtoP connections in
Figs. 2(a1) and 2(a2) in the same way but for one further
half-turn around 
∗.

This type of homoclinic solution exists for any number
of humps, including those with three and four shown in
Figs. 2(b1)–2(c2). They all exhibit oscillating tails with oscil-
lations that damp out quickly, and these homoclinic solutions
follow the respective EtoP connection in Fig. 2(a) to in-
tersect �1 transversally at t = 0 where they start following
the R1-symmetric counterpart. Hence, they are R1-symmetric
homoclinic solutions. Note that the R2 counterparts of the
R1-symmetric homoclinic solution also exist. However, we do
not show them here because, on the level of this figure, they
correspond to reflections of u1 in the t axis so that maxima
become minima and vice versa.

Figure 2(d) shows the bifurcation diagram of the EtoP
connections and R1-symmetric homoclinic solutions in the
(β2, ||u1||2) plane. Here, the dotted vertical lines bound the in-
terval (−0.8164, 0.8164), where the equilibrium 0 is a saddle
focus; hence, this interval represents the β2 values, between
BD and HH, where homoclinic solutions with oscillating tails
exist; the shaded gray region represents the region close to
the parabola in Fig. 1(a). The EtoP connections in Fig. 1(a)
lie on a single curve with two branches that meet at a fold at
β2 ≈ 0.5753; the EtoP connections in Figs. 2(a1) and 2(a2)
are from the upper and the lower branches of this curve, re-
spectively. As the EtoP connections have an infinite L2 norm,
we represent them in Fig. 2(d) with a finite norm by trun-
cating the connection after 10 oscillations near the periodic
solution. The parameter value where they fold is the moment
where two R1-symmetric EtoP cycles coalesce; they no longer
exist beyond that value. Hence, pairs of R1-symmetric EtoP
cycles exist for β2 ∈ (−0.8164, 0.5753) and they come to-
gether at β2 ≈ 0.5753. This has far-reaching consequences
for the organization of the two families of R1-symmetric
homoclinic solutions associated with 
∗, as is illustrated in
Fig. 2(d). All R1-symmetric homoclinic solutions also lie on
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FIG. 2. Family of R1-symmetric homoclinic solutions associated with R∗-symmetric periodic solution. (a1), (a2) Show two EtoP connec-
tions (blue curves, starting at 0) between 0 and a periodic solution 
∗ (green oscillating curve) that is invariant under both R1 and R2. (b1),
(c1) and (b2), (c2) Show temporal traces of R1-symmetric homoclinic solutions, associated with the connections shown in (a1) and (a2),
respectively. (d) Shows the bifurcation diagram in β2 of the EtoP connections (cyan, top right curve) and R1-symmetric homoclinic solutions,
where solutions are represented by the square of the L2 norm of their u1 component, and each R1-symmetric homoclinic curve represents a
family of homoclinic solutions that have the same number of humps. Notice that the colors of homoclinic solutions in (b) and (c) and their
corresponding bifurcation curves in (d) are the same. The black dot on the bottom curve (red) corresponds to the primary homoclinic solution
shown in Fig. 1(c); the black dot and black cross on other bifurcation curves correspond to the solutions shown in (b1),(c1) and (b2),(c2),
respectively. The black dashed lines delimit the parameter interval where 0 has complex eigenvalues with nonzero real parts: the one on the left
indicates the BD bifurcation, and the one on the right the HH bifurcation. The shaded gray region represents the region close to the parabola
in Fig. 1(a). Also shown are the bifurcation curves (light blue, not labeled) of the R1-symmetric homoclinic solutions that have two, five, six,
and seven humps. The bifurcation curves in (d) are for (β4, γ , μ) = (−1, 1, 1); moreover, β2 = 0.4 in (a1)–(c2).

curves with two branches that meet at fold points, where two
R1-symmetric homoclinic solutions coalesce. For each curve,
the upper branch corresponds to the homoclinic solutions
associated with the EtoP cycle generated by the connection
in Fig. 2(a1) and its R1 counterpart, while the lower branch
corresponds to the homoclinic solutions associated with the
EtoP cycle generated by the connection in Fig. 2(a2) and its
R1 counterpart. In Fig. 2(d), we show the bifurcation curves
of the homoclinic solutions with two to eight humps; the two
curves that are highlighted in darker color correspond to the
homoclinic solutions with three and four humps shown in
Figs. 2(b1)–2(c2). Notice that all the bifurcation curves asso-
ciated with the R1-symmetric homoclinic solutions of 
∗ fold
close to β2 ≈ 0.5753. Furthermore, as the number of humps
of the homoclinic solutions increases, the β2 values where
they fold approach β2 ≈ 0.5753 from below; that is, they
accumulate on the β2 values where the EtoP connection folds.
Also shown in Fig. 2(d) is the curve of the primary homoclinic
solution from Fig. 1(c), which exists in the entire β2 range
up to β2 ≈ 0.8164 where the eigenvalues of 0 become purely
imaginary at HH.

2. R1-symmetry-broken homoclinic solutions

Since there exist two distinct EtoP connections to 
∗, one
can also consider the heteroclinic cycle that is formed by the
EtoP connection in Fig. 2(a1) and the R1 counterpart of the
EtoP connection in Fig. 2(a2), or vice versa. The homoclinic
solutions associated with these cycles are nonsymmetric and
are illustrated in Fig. 3 along with their bifurcation diagram.
The homoclinic solution in Fig. 3(a1) can be thought of as
a concatenation of the first part of the EtoP connection in
Fig. 2(a1) up to its second maximum with the R1 counter-
part of the EtoP connection in Fig. 2(a2) up to its second
maximum. If the concatenation is performed the other way
around, the homoclinic solution in Fig. 3(a2) is obtained; it is
the R1 counterpart of the homoclinic solution in Fig. 3(a1). By
considering one further half-turn around 
∗, the homoclinic
solutions in Figs. 3(b1) and 3(b2) are derived. In this way,
nonsymmetric homoclinic solutions for any number of humps
can be obtained.

Note that all these nonsymmetric homoclinic solutions also
come in pairs, but they are each others R1 counterparts. Hence,
in the bifurcation diagram in Fig. 3(c) the two branches lie on
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FIG. 3. Family of R1-symmetry-broken homoclinic solutions associated with 
∗. (a), (b) Show temporal traces of nonsymmetric homo-
clinic solutions associated with the connections shown in Fig. 2(a). (c) Shows the bifurcation diagram in β2 of the EtoP connections (cyan,
top right curve) and R1-symmetry-broken homoclinic solutions where solutions are represented by the square of the L2 norm of their u1

component. The black diamonds on the bifurcation curves correspond to the solutions shown in (a1)–(b2). (c) Follows the same color and
symbol convention as Fig. 2(d) but with respect the R1-symmetry-broken homoclinic solutions; all the homoclinic bifurcation curves from
Fig. 2(d) are superimposed in light gray in (c). The bifurcation curves in (c) are for (β4, γ , μ) = (−1, 1, 1); moreover, β2 = 0.4 in (a1)–(b2).

top of each other and are indistinguishable. The two branches
meet at a fold point at β2 ≈ 0.5753, and they become R1

symmetric at this point. As before, we show the bifurcation
curves of the EtoP connection and nonsymmetric homoclinic
solutions from three to seven humps in Fig. 3(c). In partic-
ular, we highlight the bifurcation curves of the three- and
four-hump nonsymmetric homoclinic solutions in a darker
color; moreover, all curves of the R1-symmetric homoclinic
bifurcations from Fig. 2(d) are shown in light gray. Note that
nonsymmetric and R1-symmetric homoclinic solutions with
the same number of humps fold at the same β2 value. That is,
in order to transition between corresponding R1 counterparts
of each nonsymmetric homoclinic solution, they must reach
a fold point where they become symmetric. Thus, each fold
point is a symmetry breaking of the R1 symmetry. Therefore,
we refer to this family of nonsymmetric homoclinic solutions
as R1-symmetry-broken homoclinic solutions of 
∗.

3. R2-symmetric and R2-symmetry-broken homoclinic solutions

There also exit cycles formed by the EtoP connections
shown in Fig. 2(a) and their R2 counterparts. In general, we
find a similar phenomenon where the corresponding cycle
organizes R2-symmetric homoclinic solutions which come in
pairs. In particular, these homoclinic solutions intersect the
reversibility section �2 transversally at t = 0. They symmetry
break at fold points and there are also associated pairs of
nonsymmetric homoclinic solutions, which are R2-symmetry-
broken solutions.

Figure 4 shows some representative examples of R2-
symmetric and R2-symmetry-broken homoclinic solutions
together with their bifurcation diagram. As for the R1-
symmetric homoclinic solutions, there exists a basic R2-
symmetric homoclinic solution with one hump, which is
shown in Fig. 4(a1). To illustrate the effect of the R1 re-
versibility on these R2-symmetric homoclinic solutions, the

R1 counterpart of this solution is shown in Fig. 4(a2). The ho-
moclinic solutions in Figs. 4(b1), 4(b2) and 4(c1), 4(c2) have
one and two further half-turns around 
∗, respectively. Two
nonsymmetric homoclinic solutions are shown in Figs. 4(b3)
and 4(c3); they are associated with the EtoP cycle formed by
the EtoP connections in Fig. 2(a1) and the R2 counterpart of
the EtoP connection in Fig. 2(a2).

Figure 4(d) shows the bifurcation diagram of the R2-
symmetric and nonsymmetric homoclinic solutions up to
seven humps, and we highlight the ones with two and three
humps in darker color. Here, all the previously shown ho-
moclinic bifurcation curves are shown in light gray. The
basic R2-symmetric homoclinic solution and its R1 counter-
part shown in Fig. 4(a) exist throughout the β2 interval where
0 has complex-conjugate eigenvalues. On the other hand, all
the other R2-symmetric homoclinic solutions lie again on
curves with two branches that meet at fold points. The new
nonsymmetric homoclinic solutions also come in pairs. Since
they have the same L2 norm, the respective two branches of the
bifurcation curves lie on top of each other. All nonsymmetric
homoclinic solutions become R2 symmetric at the coinciding
fold points; here the R2 symmetry is broken, which is why we
refer to them as R2-symmetry-broken homoclinic solutions.
As the number of humps per homoclinic solution increases,
the parameter values where they fold accumulate on β2 ≈
0.5753; notice, however, that this accumulation is now from
larger values of β2.

4. Connection with homoclinic snaking

It is clear from Fig. 4(d) that only the bifurcation curves of
the primary R1- and R2-symmetric homoclinic solutions reach
the HH bifurcation; the bifurcation curves of multihump R1-
and R2-symmetric homoclinic solutions, on the other hand,
have folds before reaching HH. When viewed for decreas-
ing β2, the two branches of primary homoclinic solutions
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FIG. 4. Family of R2-symmetric and R2-symmetry-broken homoclinic solutions associated with 
∗. (a) Show the temporal traces of the
basic R2-symmetric homoclinic solution and its corresponding R1-symmetric counterparts. (b1), (c1) and (c2), (c3) Show the temporal traces
of the R2-symmetric homoclinic solutions associated with the EtoP connections shown in Figs. 2(a1) and 2(a2), respectively. (b2), (c2) Show
nonsymmetric homoclinic solutions with one and two humps, respectively. (d) Shows the bifurcation diagram in β2 of the EtoP connections
(cyan, top right curve) and corresponding homoclinic solutions, where solutions are represented by the square of the L2 norm of their u1

component. (d) Follows the color and symbol convention as Fig. 2(d) but with respect to the R2-symmetric and R2-symmetry-broken homoclinic
solutions; all the homoclinic bifurcation curves from Figs. 2(d) and 3(c) are superimposed in light gray in (d). The bifurcation curves in (d) are
for (β4, γ , μ) = (−1, 1, 1); moreover, β2 = 0.4 in (a1)–(c3).

emerge from the HH bifurcation. It has been observed in other
four-dimensional reversible systems [42], including the Swift-
Hohenberg equation [18] and the Lugiato-Lefever equation
(LLE) [17], that these primary homoclinic curves born at the
HH bifurcation can undergo a phenomenon known as homo-
clinic snaking: these two branches of homoclinic solutions
fold back and forth repeatedly when continued in a chosen pa-
rameter. Moreover, there exist branches of symmetry-broken
homoclinic solutions that connect the two branches of sym-
metric homoclinic solutions at respective fold points; these
symmetry-broken branches are also referred to as “rungs”
because they form a ladderlike structure with the two primary
branches.

The bifurcation structure we find here for system (5) in
Figs. 2–4 is quite similar in spirit, but the bifurcation curves
of all homoclinic solutions end for decreasing β2 at the BD
bifurcation rather than featuring fold bifurcation on the left as
well. This type of bifurcation structure due to the existence
of the BD bifurcation, which we refer to as BD-truncated
homoclinic snaking, was observed, for example, in [17] in
a certain parameter regime of the LLE. In contrast to the
LLE, changing any of the parameters of system (5) does not
qualitatively change the bifurcation diagram in Fig. 4(d), as
can be seen from the nondimensionalization. Thus, one cannot
find full homoclinic snaking in system (5).

The absence of full homoclinic snaking means, in particu-
lar, that the branches of symmetric homoclinic solutions with
increasing numbers of humps of system (5) do not form two
single connected branches. Hence, they cannot be obtained
simply by continuation of the two primary homoclinic solu-
tions through successive fold points but must be found one
by one. As was explained in Sec. III, this can be achieved
efficiently with Lin’s method. This approach has the addi-
tional advantage that it allows us to also find and continue the
underlying EtoP connections, which organize the respective
branches of homoclinic solutions with different symmetry
properties. Finding branches of EtoP connections is a new
aspect of our work, which shows that the β2 values of the
fold points of homoclinic solution curves accumulate, as the
number of humps increases, on the β2 value of the fold of
the underlying EtoP connection. As we will show next, there
are more such EtoP connections, including those to periodic
solutions with less symmetry.

B. Homoclinic solutions associated with R1-symmetric
periodic solution

It is possible to have a (pair of) periodic solutions with only
R1 symmetry in the zero-energy level. We find that there are
EtoP connections between 0 and these periodic solutions for
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FIG. 5. Family of R1-symmetric homoclinic solutions associated with R1-symmetric periodic solution. (a1), (a2) Show two connections
(blue curves, starting at 0) between 0 and a periodic solution 
+

1 (green oscillating curve) that is only invariant under R1. (b1),(c1) and (b2),(c2)
Show temporal traces of R1-symmetric homoclinic solutions, associated with the connections shown in (a1) and (a2), respectively. (d) Shows
the bifurcation diagram in β2 of the EtoP connections (dark cyan, top right curve) and R1-symmetric homoclinic solutions, where solutions
are represented by the square of the L2-norm of their u1 component. All the bifurcation curves from Fig 2(d), Fig. 3(c) and Fig. 4(d) are
superimposed in light grey. (d) Follows the color and symbol convention as Fig. 2(d) but with respect to the R1-symmetric homoclinic solutions
associated with R1-symmetric periodic solution. The bifurcation curves in (d) are for (β4, γ , μ) = (−1, 1, 1); moreover, β2 = 0.4 in panels
(a1)-(b2).

certain parameter values. As before, there are associated R1-
symmetric homoclinic solutions that come in pairs and meet at
fold points, where they also symmetry break. However, we do
not find R2-symmetric and R2-symmetry-broken homoclinic
solutions associated with these EtoP connections. Families of
R1-symmetric and R1-symmetry-broken homoclinic solutions
associated with an R1-symmetric periodic solution are shown,
respectively, in Figs. 5 and 6.

Figure 5 shows the R1-symmetric homoclinic solutions in
the same layout as Fig. 2. Figures 5(a1) and 5(a2) show two
EtoP connections, but now to an R1-symmetric periodic solu-
tion 
+

1 . Note that throughout this paper, the R2 counterpart
of 
+ is denoted by 
−, and that any results pertaining to
homoclinic solutions and EtoP connections of 
+ also apply
to 
−. The EtoP connections in Fig. 5(a) are not related
by symmetry: the one in Fig. 5(a1) has a larger negative
excursion in u1 before converging to 
+

1 compared to that
in Fig. 5(a2). Associated with the EtoP cycles generated by
the EtoP connections in Fig. 5(a) and their corresponding R1

counterparts, one can find R1-symmetric homoclinic solutions
that make any number of turns around 
+

1 . Figures 5(b1)
and 5(c1) show homoclinic solutions with one full turn around

+

1 , and Figs. 5(b2) and 5(c2) those with one further half-turn
around 
+

1 . Figure 5(d) shows the corresponding bifurca-
tion diagram, where the two EtoP connections occur on a
branch that folds at β2 ≈ 0.6756; they are again represented

by a finite norm (by truncating them after eight oscillations
around the periodic solution). Also shown are curves of the
R1-symmetric homoclinic solutions from two to five humps,
where the ones in Figs. 5(b) and 5(c) are highlighted in darker
color. The curves of R1-symmetric homoclinic solutions all
have folds and, as the number of humps increases, the β2

values where they fold accumulate onto that of the fold of
EtoP connections of 
+

1 .
Figure 6 illustrates the R1-symmetry-broken homoclinic

solutions, which are are associated with the EtoP cycle gen-
erated by the EtoP connection in Fig. 5(a1) and the R1

counterpart of the EtoP connection in Fig. 5(a2), or vice
versa. In Fig. 6(a) these homoclinic solutions have one turn
around 
+

1 , while in Fig. 6(b) they make one further half-turn.
Moreover, the homoclinic solutions in Figs. 6(a2) and 6(b2)
are the R1 counterparts of those in Figs. 6(a1) and 6(b1). As
the bifurcation diagram in Fig. 6(c) shows, the R1-symmetry-
broken homoclinic connections can be found along curves that
have folds at the fold points on the curves of R1-symmetric
homoclinic connections (light gray). Here, we highlight the
curves of the R1-symmetry-broken homoclinic solutions with
two and three humps in darker color; the respective two
branches are again indistinguishable in Fig. 6(c) because they
have the same L2 norm.

All these curves in Figs. 5(d) and 6(c) of homoclinic con-
nections associated with 
+

1 extend on the left to the BD
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FIG. 6. Family of R1-symmetry-broken homoclinic solutions associated with 
+
1 . (a), (b) Show temporal traces of nonsymmetric homo-

clinic solutions associated with the connections shown in Fig. 5(a). (c) Shows the bifurcation diagram in β2 of the EtoP connections (dark
cyan, top right curve) and R1-symmetry-broken homoclinic solutions where solutions are represented by the square of the L2 norm of their
u1 component. (c) Follows the color and symbol convention as Fig. 2(d) but with respect to the R1-symmetry-broken homoclinic solutions
associated with R1-symmetric periodic solution; furthermore, all the previously shown homoclinic bifurcation curves are superimposed in light
gray in (c). The bifurcation curves in (d) are for (β4, γ , μ) = (−1, 1, 1); moreover, β2 = 0.4 in (a1)–(b2).

bifurcation and, therefore, constitute a further instance of BD-
truncated homoclinic snaking. In contrast to the bifurcation
curves of the homoclinic solutions associated with 
∗, there
do not exist two primary homoclinic bifurcation curves that
arise from the HH point. Notice also that the homoclinic
solutions associated with 
+

1 exist over a larger β2 interval;
this is due to the fact that the fold of the bifurcation curve
of EtoP connection to 
+

1 has a considerably larger β2 value
than the fold of the bifurcation curve of EtoP connection to
the periodic solution 
∗.

V. EXISTENCE OF SOLITONS IN
TWO-PARAMETER PLANES

As we have seen in the previous sections for fixed
(β4, μ, γ ) = (−1, 1, 1), infinitely many homoclinic solutions
and associated EtoP connections are created at the BD bi-
furcation, while only the two primary homoclinic solutions
reach the HH bifurcation. All other homoclinic solutions and
the EtoP connections disappear at fold bifurcations. We know
from Sec. II that the BD and HH bifurcations occur along
the left and right halves of a parabola in the (β2, μ) plane
of Fig. 1(a) and also in the (β2, β4) plane. The folds of
homoclinic solutions and EtoP connections are well-defined
codimension-one bifurcations that we can continue numeri-
cally as curves in these parameter planes. However, this is
not necessary because, as we show now, all fold bifurcations
also occur along half-parabolas in either of these planes; in
particular, they do not depend on the parameter γ and they
always occur in the same order as a function of β2.

To see this, we consider the ansatz U (x, τ ) = û(τ )eiqz with
the nondimensionalization of the GNLSE (1) for β2 > 0 and
β4 < 0 to obtain the ODE

d4û

dτ 4
+ d2û

dτ 2
+ qû − û3 = 0. (14)

The transformation

u =
√

− β4γ

6β2
2

u, τ0 =
√

− 12β2

β4
t

allows us to rewrite Eq. (4) as

d4u

dτ 4
0

+ d2u

dτ 2
0

− β4μ

6β2
2

u − u3 = 0. (15)

Direct comparison between the coefficients of Eq. (14) and
those of Eq. (15) gives

6qβ2
2 + β4μ = 0. (16)

This relationship extends the results of our bifurcation analy-
sis from the previous sections for fixed β4 and μ to the whole
(β2, β4, μ) space. Notice that the value of γ does not influ-
ence the location of the fold bifurcations, as this parameter
only affects the amplitude of the homoclinic solution. Indeed,
Eq. (16) shows specifically that all curves of codimension-one
bifurcations with β2 > 0 and β4 < 0 are half-parabolas in
both the (β2, β4) plane for fixed μ and in the (β2, μ) plane
for fixed β4; the respective parabola is determined from the
computed β2 values for fixed β4 and μ by determining the
respective value of q in Eq. (16).

Figure 7 illustrates this result by showing the half-
parabolas of all folds of EtoP connections and multihump
homoclinic solutions we detected. Figure 7(a1) shows the
(β2, β4) plane for μ = 1 and Fig. 7(b) shows the (β2, μ) plane
for β4 = −1, respectively; here γ = 1. Also shown are the
bifurcation curves BD and HH, as well as the half-parabola
along which one finds the Karlson and Höök solution [5]
(which lies to the left of BD as it concerns solitons with
nonoscillating decaying tails). Notice from Fig. 7(a1) that,
for fixed quadratic dispersion β2 > 0, different families of
homoclinic solutions arise as the quartic dispersion β4 is
decreased, namely, at definite negative threshold β4 values
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FIG. 7. Bifurcation diagrams in the (β2, β4) plane for (μ, γ ) =
(1, 1) in (a) and in the (β2, μ) plane for (β4, γ ) = (1, 1) in (b).
Shown are curves of the bifurcations BD and HH (outer parabola)
together with curves of folds of the identified EtoP connections
and homoclinic solutions (colors as in previous figures); the black
dashed curve represents the family of Karlsson-Höök solutions. (a2)
Enlargement of the rectangular region in (a1) illustrating the ordering
and accumulation of different fold curves, namely, those of R1- and
R2-symmetric homoclinic solutions onto the EtoP connection EtoP∗

to 
∗, and those of the R1-symmetric homoclinic solutions onto the
EtoP connection EtoP1 to 
+

1 (enlarged further in the inset).

given by the half-parabolas of fold bifurcations. Figure 7(a2)
is an enlargement of the rectangular region near β4 = −1 in
Fig. 7(a1) that illustrates how the curves of the homoclinic
solutions associate with 
∗ and 
+

1 accumulate on the two
basic EtoP connections from Sec. IV A, labeled here EtoP∗,
and from Sec. IV B, labeled here EtoP1.

As Fig. 7 shows, the ordering of these bifurcation curves
is exactly the same in the (β2, μ) plane in Fig. 7(b); compare
with Fig. 1(a). Importantly, μ is not a system parameter of the
GNLSE (1) but arises from the ansatz (3). Therefore, moving

along any vertical line in Fig. 7(b) does not change any of the
dispersion terms of the GNLSE. Moreover, for given quartic
dispersion β4, there is a critical μ value for solitons to exist.
Therefore, by increasing the wave number μ, for given fixed
values of β2, β4, and γ , one can generate many more homo-
clinic solutions and, therefore, different solitons of (1).

VI. INFINITELY MANY PERIODIC SOLUTIONS WITH
ZERO ENERGY

As the previous sections show, periodic solutions of sys-
tem (5) in the zero-energy surface with R∗ or R1 symmetry
give rise, via the existence of EtoP connections, to BD-
truncated homoclinic snaking. We now show that there are in
fact infinitely many R∗-symmetric and R1-symmetric periodic
solutions with zero energy and, hence, many more families
of homoclinic solutions of the equilibrium 0 with different
symmetry properties. All of these homoclinic solutions indeed
correspond to solitons of the GNLSE.

In what follows and specifically in Fig. 8, we show repre-
sentative solutions of system (5) in phase space in different
representations. Hence, periodic and homoclinic solutions
now correspond to periodic and homoclinic orbits in phase
space; see already Figs. 8(a) and 8(b). These panels show
in the (u1, u2) plane the basic R1-symmetric homoclinic or-
bit and the periodic orbits we considered in Sec. IV, for
(β2, β4, μ, γ ) = (0.4,−1, 1, 1). Notice that the basic R1-
symmetric homoclinic orbits come as a pair, and each of them
spirals near the point 0 due to its complex-conjugate eigen-
values. On the other hand, the periodic orbits in Fig. 8(b) are
closed loops; the R∗-symmetric periodic orbit 
∗ is a single
loop, while the R1-symmetry periodic orbits 


+/−
1 come in

pairs, which are each others R2 counterparts.
Given that system (5) is reversible, for fixed values of

the system parameters, periodic orbits come in one-parameter
families; moreover, each homoclinic orbit gives rise to a one-
parameter family of periodic orbits [22,23]. Each periodic
orbit can only be in a specific energy level H , which is why
we consider them here as surfaces in (u1, u2, H ) space. This
representation has the added advantage that it allows us to
easily identify periodic orbits that are in the zero-energy level.
Specifically, we consider three surfaces of periodic orbits,
which we find by continuation in the energy H from the
primary homoclinic orbit and its R2 counterpart in Fig. 8(a):
individually, these two homoclinic orbits each give rise to
R1-symmetric periodic orbits, which are each others R2 coun-
terparts, while their union gives rise to R∗-symmetric periodic
orbits.

Figures 8(c) and 8(d) show these periodic orbits for
(β2, β4, μ, γ ) = (0.4,−1, 1, 1). Namely, Fig. 8(c) shows
three surfaces of periodic orbits in (u1, u2, H ) space in a
cutaway view that only shows their parts for positive u2; note
that the missing parts can be obtained by application of R1,
which is reflection in the (u1, H ) plane. Here, in Fig. 8(c),
the surfaces that contain the periodic orbits 
∗ and 


+/−
1

are denoted S∗ and S+/−
1 , respectively. Also shown are six

selected periodic orbits in the zero-energy level. Figure 8(d)
shows the respective intersection curves in the (u1, H ) plane,
where the selected periodic orbits are identified as points with
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FIG. 8. Existence of periodic solutions of system (5) for (β2, β4, γ , μ) = (0.4, −1, 1, 1). (a), (b) Show, in the (u1, u2) plane, the basic
R1-symmetric homoclinic orbit with its R2 counterpart and the three periodic orbits 
∗ and 


+/−
1 with H (u) = 0. In both panels the light-gray

line represents u2 = 0, with crosses and circles indicating the intersections of the homoclinic and periodic orbits, respectively. (c) Shows, in
(u1, u2, H ) space, half of the two-dimensional surfaces formed by three families of periodic solutions, referred to as S+

1 (red surface), S−
1 (blue

surface), and S∗ (green surface), with R1 and R∗ symmetry, respectively. The black dots represent the three equilibria of system (5); also shown
are six periodic orbits in the zero-energy level. Their temporal profiles are also presented; namely, (e1) and (e2) show 
∗ and a secondary
R∗-symmetric periodic orbit, respectively; (f1) shows 
+

1 (top) and 
−
1 (bottom), and (f2) a secondary R1-symmetric periodic orbit (top) and

its R2 counterpart (bottom). (d) Shows the intersection curves of the each surface with u2 = 0; the light gray line represents H (u) = 0. The
intersection points of each periodic solution in (e1)–(f2) are indicated by circles, and the intersection points of the basic homoclinic solution
and its R1 counterpart by crosses.

H = 0. Figure 8(e1) shows 
∗ from Sec. IV A and Fig. 8(f1)
shows 


+/−
1 from Sec. IV B. Similarly, Figs. 8(e2) and 8(f2)

show additional R∗-symmetric and R1-symmetric periodic so-
lutions, respectively.

Notice in Fig. 8(c), and even more clearly in Fig. 8(d), that
the surface S+

1 has a global maximum in H at E+, which lies
in the H (E+)-energy level. Moreover, it has a global minimum
in H when it reaches a periodic orbit with H (u) ≈ −7.4.
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Thus, the Hamiltonian of this family of periodic orbits is
bounded between these two values. The same statement is of
course true for the surface S−

1 , but its global maximum is the
equilibrium E−, which is the R2 counterpart of E+. The pair



+/−
1 in Fig. 8(f1) corresponds to the first intersection with

H (u) = 0 of this pair of surfaces when continued from E+
and E−.

The surface S∗ has a global maximum when it reaches a
periodic orbit with H (u) ≈ 3.3, but it does not have a global
minimum in H ; indeed, our numerical continuation results
strongly suggest that this surface extends to any negative value
of H . Note from Figs. 8(c) and 8(d) that, while its intersec-
tion with the (u1, H ) plane consists of three components, the
surface S∗ is nevertheless connected. The periodic solution

∗ in Fig. 8(e1) is at the first intersection of this surface
with H (u) = 0, when continued for increasing H from large
negative values.

The surfaces S+ and S− accumulate on the basic
R1-symmetric homoclinic orbit and its R2 counterpart, re-
spectively. On the other hand, the surface S∗ accumulates on
the union of the basic R1-symmetric homoclinic orbit and
its R2 counterpart. This is not so easy to see in the three-
dimensional projection in Fig. 8(c), but it can be observed
more clearly in the (u1, H ) plane in Fig. 8(d). Notice that
the respective intersection curves spiral into the intersection
points of the two homoclinic orbits (marked by crosses),
which means that these curves cross H (u) = 0 infinitely often
in the process. Hence, there are infinitely many additional
periodic solutions with R∗ and R1 symmetry in the zero-
energy level. Figures 8(e2) and 8(f2) show the next such
periodic solutions when continued on from the primary ones
shown in Figs. 8(e1) and 8(f1), respectively. Each of these
periodic orbits with H (u) = 0 has a connection with 0 in
certain parameter ranges. These infinitely many EtoP con-
nections each give rise to BD-truncated homoclinic snaking
scenarios with infinitely many homoclinic connections, with
R∗ and R1 symmetry of the kind we presented in Secs. IV A
and IV B.

The picture that emerges from the discussion of only the
surfaces S∗ and S+/−

1 discussed here is indeed rather intrigu-
ing: each new homoclinic orbit gives rise to families of R∗-
and R1-symmetric periodic orbits, which, due to their spiraling
create yet more periodic orbits in the zero-energy surface.
Hence, there are infinite cascades of EtoP connections with in-
finitely many homoclinic orbits creating infinitely many new
surfaces generating infinitely many periodic orbits each and so
on. Moreover, there also exist more complicated connections
associated with different periodic orbits, such as connections
from a periodic orbit to itself (homoclinic orbits to a periodic
orbit) and heteroclinic connections from one periodic orbit
to another (PtoP connections) [43]. All these connections
between periodic orbits also form more complex heteroclinic
cycles. Therefore, there exist infinitely many additional ho-
moclinic and periodic orbits that involve PtoP connections.
How the different surfaces of periodic orbits are organized
in phase space, and how this geometric structure changes
as parameters are varied, is an interesting and challenging
question. However, this is beyond the scope of this paper and
will be discussed elsewhere.

VII. STABILITY PROPERTIES OF THE DIFFERENT
TYPES OF SOLITONS

The R1-symmetric primary soliton from Fig. 1(c) was con-
sidered by Tam et al. [2–4] and found to be linearly stable
in any parameter range. As we have just shown, there exist
infinitely many other solitons with different symmetry prop-
erties over a broad parameter range of β2, including for the
case of a quartic fiber with β2 = 0. It seems natural to suspect
that all these other (multihump) solitons are linearly unsta-
ble. Determining the stability of soliton solution of a PDE
is a challenging task [44], and we restrict ourselves here to
providing some first insights into the stability of the different
types of solitons by means of simulations of the GNLSE with
a split-step Fourier method (SSFM) [19]. More specifically,
we construct the respective soliton u(t ) from the particular
homoclinic solution in Sec. IV. We then perturb u(t ) in the
same specific way as considered in [3], namely, by increasing
its size, here by 1%; that is, by considering the scaled profile
1.01 u(t ) as the input. We then evolve this perturbed profile
with the SSFM with suitable accuracy settings to see how
long it remains close to the initial constructed soliton, that is,
propagates seemingly stably along the fiber before breaking
up. In this way, we obtain an indication of whether and which
multihump solitons might be observable in a physical experi-
ment.

The simulations we performed are in no way exhaustive or
representative of the different kinds of perturbations one may
encounter in an experiment. Nevertheless, they do provide
some insights into differences in stability of the various types
of solitons. Perturbations of the R1-symmetric primary soli-
ton from Fig. 1(c) die down during the simulation, meaning
that this soliton can be propagated with the SSFM for an
arbitrarily long distance along the fiber; this fact was used
to determine suitable accuracy setting (determining time and
space discretizations) for the SSFM.

Figures 9 and 10 show for fixed (β4, μ, γ ) = (−1, 1, 1)
and for β2 = −0.2, β2 = 0, and β2 = 0.2 the intensity pro-
files of different types of 1%-perturbed solitons with their
evolutions along the fiber as computed with the SSFM. More
specifically, we consider the two-hump R1-symmetric soli-
ton in Figs. 9(a)–9(c) and the primary R2-symmetric soliton
in Figs. 9(d)–9(f). Likewise, Fig. 10 shows the three-hump
R1-symmetric soliton in panels 10(a)–10(c) and the corre-
sponding R1-symmetry-broken soliton in panels 10(d)–10(f).
In each case, the bottom panel shows the initial intensity
profile (at z = 0), with the temporal trace of the corresponding
homoclinic solution in the top-right corner; the top panel
shows the evolution of the respective initial 1%-perturbed
intensity profile.

As Figs. 9 and 10 show, all of these 1%-perturbed soli-
tons break up after some finite distance, which supports the
conjecture that they are indeed unstable. However, we find
considerable differences between different initial solutions in
how far along the fiber they can be propagated before breaking
up. The differences manifest themselves for pure quartic soli-
tons with β2 = 0, the case that motivated our study, but also
depend on the value β2 of the quadratic dispersion. To quan-
tify the effective distance over which a 1%-perturbed soliton
may be observed in practice, we scale the fiber coordinate z
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FIG. 9. Evolution of the 1%-perturbed R1-symmetric two-hump
soliton in (a)–(c) and the R2-symmetric primary soliton in (d)–(f), for
fixed (β4, μ, γ ) = (−1, 1, 1) and β2 = −0.2, β2 = 0, and β2 = 0.2,
respectively. For each case, the bottom panel shows the initial inten-
sity profile, with the temporal trace of the corresponding homoclinic
solutions in the top right, while the top panel shows the evolution as
computed with the SSFM.

by the fourth-order dispersion length of a pulse given by

LFOD = T 4
0

|β4| .

Here T0 = FWHM/ 2
√

log 2 is determined from the full width
at half-maximum (FWHM) of the pulse; this is exact for
a Gaussian (intensity) pulse, and a good approximation for
pulses that are close to Gaussian [19]. For initial 1%-perturbed
multihump solitons in Figs. 9 and 10, which all feature quite
distinctive pulses, we consider the largest pulse and find that
a Gaussian is still a good fit; hence, we determine LFOD from
the FWHM of the largest pulse. We found that the values of
the computed fourth-order dispersion length LFOD of all initial
solitons we considered agree up to two decimal places with
that of the R1-symmetric primary soliton, which we deter-
mined as LFOD = 0.29 for β2 = −0.2, LFOD = 0.22 for β2 =
0, and LFOD = 0.16 for β2 = 0.2. Furthermore, we computed
from the FWHM the group velocity dispersion length LGVD =
T 2

0 /|β2| (second-order dispersion) for β2 = −0.2 and 0.2. For
all the initial 1%-perturbed solitons we consider, LGVD is one
order of magnitude larger than LFOD. We conclude that the
fourth-order dispersion is clearly dominant and, therefore, we
use the above values of LFOD to scale z in Figs. 9 and 10.
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FIG. 10. Evolution of the 1%-perturbed R1-symmetric three-
hump soliton in (a)–(c) and the corresponding symmetry-broken
soliton in (d)–(f), for fixed (β4, μ, γ ) = (−1, 1, 1) and β2 =
−0.2, β2 = 0, and β2 = 0.2, respectively. For each case, the bottom
panel shows the initial intensity profile, with the temporal trace of
the corresponding homoclinic solutions in the top right, while the
top panel shows the evolution as computed with the SSFM.

The two-hump R1-symmetric soliton in Figs. 9(a)–9(c)
is only weakly unstable and can be observed over up to
1500 LFOD in a quartic-dispersion fiber with β2 = 0 before
breaking up; with small second-order dispersion of β2 = −0.2
and 0.2 this value drops to 1250 and 1000 LFOD, respectively.
By contrast, the primary R2-symmetric soliton in Figs. 9(d)–
9(f) is considerably more unstable and is observable only up
to 120 LFOD for the three considered values of β2; beyond
this value of LFOD we observe noticeable interactions between
the two intensity pulses and pulse breakup shorty thereafter.
As Figs. 10(a)–10(c) show, the perturbed three-hump R1-
symmetric soliton is observable considerably farther along the
fiber, up to about 600 LFOD for all β2, after which pulse inter-
actions become visible and the soliton breaks up. Note that
negative β2 increases the observation length, while positive
β2 decreases it. The related R1-symmetry-broken soliton in
Figs. 10(d)–10(f) is clearly much more unstable and can be
observed only up to about 60 LFOD.

Our preliminary simulation results suggest that R1-
symmetric solitons with two and with three humps are only
weakly unstable. This means that, when launched quite pre-
cisely into an actual quartic dispersion fiber, they might
be sustained over a sufficiently large number of dispersion
lengths to be observable. Confirming this in an experiment
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is clearly a considerable challenge. R1-symmetric solitons
with higher numbers of humps as well as solitons without
R1 symmetry, on the other hand, appear to be much more
unstable and break up quite early; hence, they are unlikely to
be observable experimentally. Note that Figs. 9 and 10 suggest
that the different initial profiles may break up differently, by
their pulses interacting in different ways. The further study
of such instabilities via the repulsion and/or attraction of
neighboring pulse is a challenging subject for future research.

VIII. CONCLUSIONS

We investigated the existence of solitons of the GNLSE in
the presence of both quartic and quadratic dispersion terms.
Taking a dynamical system approach, we made a traveling
wave ansatz to translate solitons of the GNLSE into homo-
clinic solutions to the equilibrium 0 of system (5), which is
Hamiltonian and features two reversible symmetries R1 and
R2. We found that for both signs of the quadratic dispersion
β2 there exist infinitely many homoclinic solutions of sys-
tem (5) with different symmetry properties, which correspond
to infinitely many solitons of the GNLSE. Each family of
homoclinic solutions is associated with a heteroclinic cycle
formed by different EtoP connections between 0 and a specific
periodic solution in the zero-energy level. The symmetries of
the periodic solution determine what families of homoclinic
solutions they generate.

We presented here four different families of homoclinic
solutions, namely, those with R1 and R2 symmetry, as well
as related R1-symmetry-broken and R2-symmetry-broken ho-
moclinic solutions. Both the R1-symmetric and R2-symmetric
primary homoclinic solutions emerge from a Hamiltonian-
Hopf bifurcation and exist over the entire β2 interval where
0 has complex-conjugate eigenvalues with nonzero real part.
All the other R1- and R2-symmetric and associated symmetry-
broken multihump homoclinic solutions, on the other hand,
come as pairs on branches that meet at fold points for par-
ticular values of β2; the respective fold points accumulate
on the β2 values of folds of the corresponding heteroclinic
EtoP connections between 0 and periodic solutions in the
zero-energy level.

These results were obtained by combining the theory of
four-dimensional reversible Hamiltonian system with state-
of-the-art continuation techniques that enabled us to compute
branches of homoclinic solutions, as well as those of the cor-
responding EtoP connections that organize them. In this way,
we provided numerical evidence for the overall organization
of homoclinic solutions, which all emerge or disappear in a
Belyakov-Devaney (BD) bifurcation, leading to a structure,
also reported in the LL equation [17], that we refer to as
BD-truncated homoclinic snaking. We also showed that there
exist infinitely many periodic solutions that generate EtoP
connections and, hence, associated families of multihump

homoclinic solutions; moreover, we presented the regions of
existence of all these different solitons in the (β2, β4) and the
(β2, μ) planes. Overall, our results provide guidance in the
form of a “road map” of the plethora of solitons exhibited by
the GNLSE, and how they are organized in families by EtoP
cycles.

Finally, in a first consideration of the stability properties
of the various multihump solitons, we checked how far along
the fiber a specific perturbation of such a soliton propagates
before breaking up. Our simulation results indicate that all
solitons, except the R1-symmetric single-pulse soliton, are
unstable; moreover, the R1-symmetric double-hump soliton
and the R1-symmetric triple-hump soliton appear to be only
weakly unstable: (after perturbation) they can be propagated
by numerical simulation of the GNLSE over a consider-
able number of dispersion lengths. Hence, when launched
carefully into the right kind of wave guide, they might be
observable experimentally. Sustaining such weakly unstable
solitons over sufficiently large distances in an experiment is
indeed a considerable challenge.

A number of interesting theoretical questions arise from
our study. First of all, we have observed that, as β2 is varied,
different surfaces of periodic orbits may interact and bifurcate,
which leads to changes of the types of periodic orbits that can
be found in the zero-energy level. In turn, this influences the
structure of available EtoP connections that organize families
of homoclinic orbits. Moreover, we have evidence that con-
nections between the same and/or between different periodic
orbits, referred to as PtoP cycles, exist in the zero-energy
surface. Hence, more complicated heteroclinic cycles from 0
back to itself can be constructed, which presumably gener-
ate associated families of homoclinic solutions. The study of
these additional connections and associated types of solitons
of the GNLSE is the subject of ongoing work. The stability
analysis of the different multihump solitons as solutions of the
GNLSE, that is, of the PDE, remains a considerable challenge
for future work. This will require state-of-the art techniques,
such as the computation of Evans functions [45], because the
solitons we found are not bound states of two or more primary
solitons. A subsequent study of possible interactions between
quartic solitons of different types, and whether they may sup-
port bound states or molecules of solitons, also remains an
interesting question for future research. Finally, recent experi-
ments [46] have shown the feasibilities of creating waveguides
with higher even-order dispersion, such as sextic (β6), octic
(β8), or decic (β10) dispersion. Our analysis constitutes the
first step towards understanding the existence of solitons for
different configuration of such higher-order dispersion terms.
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