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We investigate the quantum squeezing of slow-light solitons generated in a �-shaped three-level atomic
system working under condition of electromagnetically induced transparency (EIT). Starting from the
Heisenberg-Langevin and Maxwell equations governing the quantum dynamics of atoms and probe laser field,
we derive a quantum nonlinear Schrödinger equation controlling the evolution of the probe-field envelope.
By using a direct perturbation approach to diagonalize the effective Hamiltonian (where the atomic variables
have been eliminated), we carry out a detailed calculation on the quantum fluctuations of a slow-light soliton,
expanded as a superposition of the complete and orthonormalized set of eigenfunctions obtained by solving the
Bogoliubov-de Gennes (BdG) equations describing the quantum fluctuations. We show that due to the giant
Kerr nonlinearity contributed from the EIT effect, significant quantum squeezing of the slow-light soliton can be
realized within a short propagation distance. The results reported here are helpful for understanding the quantum
property of slow-light solitons and for realizing light squeezing via EIT in cold atomic gases experimentally.
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I. INTRODUCTION

Solitons, fascinating nonlinear wave packets localized in
space and time, can form in nonlinear media and propagate
over long distances without distortion [1]. The underlying
physical mechanics for the formation and stability of soli-
tons in conservative nonlinear systems is the exact balance
between nonlinearity and dispersion (and/or diffraction).
Among various solitons studied so far, optical solitons have at-
tracted much attention and have been investigated extensively
because of their important applications in optical information
processing and transmission [2].

Up to now, most of the methods for generating optical
solitons are based on the excitations in far-off-resonance me-
dia (such as optical fibers). Since such media have generally
very small Kerr nonlinearities, to excite the solitons intense
electromagnetic radiations are needed. As a consequence, the
optical solitons generated in this way travel with speeds closed
to c (the light speed in free space) and the media with large
propagation lengths are required [2–4], which is not desirable
for the optical information processing with devices of small
sizes.

In recent years, many efforts have been paid to the research
of electromagnetically induced transparency (EIT), a typi-
cal quantum interference effect occurring in resonant atomic
gases, by which the light absorption due to the resonance
between optical fields and atoms can be largely suppressed
and giant Kerr nonlinearities can be acquired simultaneously
[5,6]. Based on these important properties, it has been shown
that ultraslow optical solitons (i.e., their propagating velocity

*These two authors have equal contribution to this work.

are much less than c; see Sec. III C) [7–15] and their storage
and retrieval [16,17] can also be realized. However, up to now
all the studies on slow-light solitons in EIT-based media have
been limited in semicalssical regime, i.e., the solitons obtained
are described by classical optical fields. Comparing with the
case in optical fibers [2–4] where various quantum effects of
optical solitons were intensively studied both theoretically and
experimentally in past decades [18–25,25–48], the quantum
effect of slow-light solitons has never been considered up to
now. Because slow-light solitons are produced at very low
light levels (with power around ten microwatts; see Sec. III C),
their quantum effects (especially quantum squeezing) should
be more significant than that of conventional solitons (e.g.,
solitons in optical fibers). Thus, it is necessary to consider
quantum effects of the slow-light solitons and reveal their
specific quantum characters.

In this work, we present a quantum theory of slow-light
solitons, which are generated in a resonant �-shaped three-
level atomic gas working under condition of EIT. Based on the
Heisenberg-Langevin and Maxwell (HLM) equations govern-
ing the quantum dynamics of the atomic gas and a probe laser
field, we derive a quantum nonlinear Schrödinger (QNLS)
equation that controls the time evolution of the probe-field
envelope. We construct an effective Hamiltonian and hence
the effective field theory in which only the degrees of the
optical field are involved.

By using a direct perturbation approach to diagonalize the
effective Hamiltonian, we carry out detailed calculations on
the quantum fluctuations of a slow-light soliton. Different
from the approaches on quantum solitons in optical fibers
[18–25,25–48], here we expand the quantum fluctuations of
the soliton as a linear superposition of the complete and
orthonormalized eigenfunction set, which are obtained by
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FIG. 1. (a) Energy-level diagram and excitation scheme of the
EIT-based �-type atomic gas. The pulsed probe field of cen-
ter angular frequency ωp couples the transition |1〉 ↔ |3〉; the
continuous-wave control field of center angular frequency ωc cou-
ples the transition |2〉 ↔ |3〉. �2 (�3) is two-photon (one-photon)
detuning; �α3 is the decay rate of the spontaneous emission from the
state |3〉 to |α〉 (α = 1, 2). Solid black dots mean that the atoms are
initially prepared at the ground state |1〉. (b) Possible experimental
geometry. To reduce Doppler effect, both probe and control fields
are assumed to propagate along z direction.

solving the BdG equations describing the quantum fluctu-
ations. We show that, due to the giant Kerr nonlinearity
contributed from the EIT effect in the atomic gas, comparing
with optical-fiber solitons a significant quadrature squeezing
of the slow-light soliton can be realized within a short propa-
gation distance both classically (i.e., squeezed soliton width)
and quantum mechanically (i.e., squeezed quantum fluctua-
tions); additionally, in company with the slow-light soliton
squeezing, an atomic spin squeezing can also be realized in
the system. The research results reported here are useful for
understanding the quantum property of slow-light solitons,
for developing the quantum theory of nonlinear optics [46],
and for possible applications in optical quantum information
processing and precision measurements.

The remainder of the article is arranged as follows. In
Sec. II, a description of the model under study is presented.
In Sec. III, the QNLS equation and the effective Hamilton de-
scribing the dynamics of the probe field envelope are derived;
the slow-light solitons under coherent-state approximation
and their classical squeezing of temporal width are discussed.
In Sec. IV, a direct perturbation approach is applied to solve
the QNLS equation and the quantum squeezing of slow-light
solitons is studied in detail. Last, Sec. V summarizes the main
results obtained in this work.

II. MODEL

We start to consider a cigar-shaped cold atomic gas with a
�-shaped three-level configuration, composed of two nearly
degenerate ground states |1〉 and |2〉 and an excited state
|3〉, as schematically shown in Fig. 1. A pulsed probe laser
field (with center angular frequency ωp and wave number kp)
couples the transition |1〉 ↔ |3〉; a continuous-wave control
laser field (with center angular frequency ωc and central wave
number kc) couples the transition |2〉 ↔ |3〉. �2 = ωp − ωc −
(ω2 − ω1) and �3 = ωp − (ω3 − ω1) are, respectively, two-
and one-photon detunings, with h̄ωα the eigenenergy of the
state |α〉; �α3(α = 1, 2) is the decay rate of the spontaneous
emission from |3〉 to |α〉.

To suppress Doppler effect, both probe and control fields
are arranged to propagate along the same (i.e., z) direction.
The cigar-shaped atomic gas can be taken to be filled in a
waveguide. Thereby, a reduced (1 + 1)-dimensional (i.e., time
plus space in the z-axis) model is sufficient to describe the
dynamics of the system, with the total electric field given by

Ê(z, t ) = Êp(z, t ) + Ec(z, t ), (1a)

Êp(z, t ) = epEpÊp(z, t )ei(kpz−ωpt ) + H.c., (1b)

Ec(z, t ) = ecEc(z, t )ei(kcz−ωct ) + c.c. (1c)

Here H.c. (c.c.) denotes Hermitian (complex) conjugate;
Êp is the quantized probe field, with ep the unit polarization
vector, Ep ≡ √

h̄ωp/(2ε0V ) the field amplitude of single-
photon, and V the quantization volume; Ec is the control
field with unit polarization vector ec and field amplitude Ec,
which is assumed to be strong enough and thus can be taken
as a classical and undepleted one. The annihilation opera-
tor of probe photons, Êp(z, t ), is a slowly-varying function
of z and t and obeys the equal-time commutation relation
[Êp(z, t ), Ê†

p (z′, t )] = Lδ(z′ − z), where L is the quantization
system length along the z axis.

Under electric-dipole, rotating-wave, and paraxial approx-
imations, the Hamiltonian of the system reads

Ĥ =
∫

dz

[
− h̄c

L
Ê†

p

(
i
∂

∂z

)
Êp − h̄N

L

( ∑
α=2,3

�α Ŝαα

+ gpŜ†
31Êp + 
cŜ†

32 + H.c.

)]
. (2)

Here N is the total atomic number of the system;

Ŝαβ (z, t ) = σ̂βα ei[(kβ−kα )z−(ωβ−ωα+�β−�α )t] (3)

are atomic transition operators from the states |α〉 to
|β〉 (α, β = 1, 2, 3), obeying the equal-time commutation re-
lation [Ŝαβ (z, t ), Ŝμν (z′, t )] = (L/N )δ(z − z′)[δαν Ŝμβ (z, t ) −
δμβ Ŝαν (z, t )]; here k1 = 0, k2 = kp − kc, and k3 = kp; 
c =
(ec · p32)Ec/h̄ is the half Rabi frequency of the control field;
gp = (ep · p31)Ep/h̄ is the coefficient denoting the strength
of the coupling between the probe photon and the transition
|1〉 ↔ |3〉 (i.e., single-photon half Rabi frequency); pαβ is the
electric dipole matrix element associated with the transition
from |β〉 to |α〉.

The dynamics of the system is governed by the Heisenberg-
Langevin and the Maxwell (HLM) equations, given by

∂

∂t
Ŝαβ = −i

[
Ŝαβ,

Ĥ

h̄

]
− L̂(Ŝαβ ) + F̂αβ, (4a)

i

(
∂

∂z
+ 1

c

∂

∂t

)
Êp + g∗

pN

c
Ŝ31 = 0, (4b)

where L̂(Ŝαβ ) is the 3 × 3 relaxation matrix including the
atomic decay rates of the spontaneous emission and dephas-
ing, F̂αβ are δ-correlated Langevin noise operators introduced
to preserve the Heisenberg commutation relations for the op-
erators of the atoms and the probe field. Explicit expressions
of Eq. (4) are presented in Appendix A.
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The model described above can be realized by many atomic
systems. One of the candidates is the laser-cooled alkali 87Rb
gas, with the levels chosen to be |1〉 = |5 2S1/2, F = 1, mF =
1〉, |2〉 = |5 2S1/2, F = 2, mF = 1〉 and |3〉 = |5 2P3/2, F =
2, mF = 1〉. System parameters (used in the following calcu-
lations) are given by �13 = �23 = 2π × 3 MHz [49].

III. QUANTUM NONLINEAR SCHRÖDINGER EQUATION
AND EFFECTIVE HAMILTONIAN

A. Quantum NLS equation

We are interested in the nonlinear quantum dynamics of the
system, which needs to solve the quantum field Eqs. (4a) and
(4b) that are quantized and nonlinearly coupled each other.
It is desirable, under some approximations, to reduce such
equations to an effective one by which the atomic degrees of
freedom are eliminated. Such effective field theory approach
[50,51] has been recently used to the study of Rydberg polari-
tons in atomic gases [52]. Based on such a spirit, here we give
a (heuristic) derivation on the QNLS equation describing the
nonlinear evolution of the probe-field envelope Êp.

The derivation is divided into two steps. The first step is
to neglect the nonlinearity in the HLM Eqs. (4a) and (4b)
and consider only the linear propagation of the quantized
probe field. Due to the coupling with the atoms, the probe
field displays dispersion during propagation. We assume that
the bandwidth of the probe pulse is not too narrow (e.g., the
order of the 10 MHz considered here), thus it is enough to
include the dispersion to the second order (i.e., group-velocity
dispersion). Then from linearized Eqs. (4a) and (4b) we can
obtain a linear Schrödinger equation after eliminating the
atomic variables, i.e., Eq. (B6) given in Appendix B.

The second step is to neglect the dispersion in the HLM
Eqs. (4a) and (4b) and consider only the photon-photon in-
teraction in the probe field intermediated by the atoms. We
assume that the light intensity of the probe pulse is weak
but the photon-photon interaction cannot be neglected, thus
it is necessary to include the lowest-order Kerr effect. Then
by neglecting the dispersion in Eqs. (4a) and (4b) we can
obtain a nonlinear equation on Êp after eliminating the atomic
variables, i.e., Eq. (B12) given in the Appendix B.

To obtain the envelope equation of the probe field valid to
the approximations of the second-order dispersion and cubic
nonlinearity, we combine Eqs. (B6) and (B12), which gives
the following QNLS equation

i

[(
∂

∂z
+ 1

Vg

∂

∂t

)
+ Im(K0)

]
Êp − K2

2

∂2

∂t2
Êp

+W |gp|2Ê†
p ÊpÊp − iF̂pe−iRe(K0 )z = 0. (5)

Here K0 ≡ K|ω=0, V −1
g ≡ K1 ≡ (∂K/∂ω)|ω=0 is the group-

velocity of the probe field, K2 ≡ (∂2K/∂ω2)|ω=0 is the
coefficient of the group-velocity dispersion, with K (ω) the lin-
ear dispersion relation of the system. W = h̄2ωpχ

(3)
p /(2c|ep ·

p31|2) is the coefficient of third-order Kerr nonlinearity, which
is proportional to the third-order nonlinear optical susceptibil-
ity χ (3)

p . F̂p(z, t ) is the δ-correlated induced Langevin noise
operator and “Re” means taking real part. For the detailed

derivations of the QNLS Eq. (5) and explicit expressions of
K (ω), χ (3)

p , and F̂p(z, t ), are given in the Appendix B.
Generally, the coefficients of QNLS Eq. (5) take complex

values due to the near-resonant interaction character
of system. However, under the condition of EIT, i.e.,
|
c|2 � γ21γ31, the imaginary part of these coefficients
can be made much smaller than their corresponding real
parts [5]. One can check this by considering a set of
experimentally achievable parameters, given by Na (atomic
density)= 7.33 × 1010 cm−3, |gp|2N/c = 2 × 109 cm−1s−1,

c = 2π × 18 MHz, �2 = 2π × 1.2 MHz, �3 = 2π ×
60 MHz, and t0 (the pulse duration of the probe pulse) =
1.4 × 10−7 s. We obtain K1 = (2.59 + 0.074i) × 10−7 cm−1s,
K2 = (2.03 + 0.19i) × 10−14 cm−1s2, W = −(4.48 +
0.086i) × 10−16 cm−1s2. Based on these results, we have

χ (3)
p = −(6.57 + 0.13) × 10−10 m2V−2, (6)

and hence sgn[−Re(W )/Re(K2)] = 1 (here sgn is sign func-
tion), which means that the system is self-focused, useful
for generating bright solitons. We see that the imaginary
parts of these coefficients are indeed much smaller than their
corresponding real parts. The physical reason for the small
imaginary parts of the QNLS Eq. (5) is due to the fact that
the quantum destruction interference effect induced by the
control field (i.e., EIT effect) brings a significant suppres-
sion of the spontaneous emission of the atoms, which results
also in a giant Kerr nonlinearity in the system (with |χ (3)

p | ≈
10−10 m2V−2) that is several orders larger than that of optical
fibers (with |χ (3)

p | ≈ 10−19 m2/V2 [4]).
The optical depth is a useful parameter characterizing the

coupling between the light field and the atoms, defined by
OD ≡ ωp|p31|2NaL/(2ε0ch̄γ31), which contains the product
of Na and L (the length of the atomic cell). The OD in cold
atmic gases up to 300 was achieved by Vernaz-Gris et al.
(where L = 2.5 cm) and by Wang et al. (where L = 3 cm)
[53,54]. Here we take L = 2 cm, then the optical depth in our
system is OD ≈ 212, which is less than 300 and hence can be
realized in current-day experiments.

After neglecting the imaginary parts of K1, K2, and W ,
Eq. (5) can be written as the dimensionless form

i
∂

∂s
Û + ∂2

∂τ 2
Û + 2gÛ †ÛÛ = −2iνÛ + i f̂p, (7)

with Û = Êp/
√

n0 (n0 � 1 is typical mean photon num-
ber in the probe field), s = z/(2Ldisp), τ = (t − z/Vg)/t0,
f̂ p = 2LdispF̂pe−iRe(K0 )z, ν = Ldisp/Labs, g = Ldisp/Lnln. Here
Ldisp ≡ t2

0 /|Re(K2)|, Lnln ≡ [n0|gp|2|Re(W )|]−1, and Labs ≡
1/Im(K0) are typical dispersion length, nonlinearity length,
and absorption length of the probe field, respectively [55]. The
commutation relation for f̂ p has the form [34]

[ f̂ p(s, τ ), f̂ †
p (s′, τ ′)] = 4νδ(s − s′)δ(τ − τ ′). (8)

Making the transformation Û = ˆ̄Ue−iμs, Eq. (7) is con-
verted into the form

i
∂

∂s
ˆ̄U = − ∂2

∂τ 2
ˆ̄U − 2g ˆ̄U † ˆ̄U ˆ̄U − μ ˆ̄U − 2iν ˆ̄U + i ˆ̄fp, (9)
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where ˆ̄fp = f̂ peiμs = 2LdispF̂p(s, τ ) exp{i[μ − 2Re(K0)Ldisp]
s}, with the parameter μ the “chemical potential” to be speci-
fied lately. In Eqs. (7) and (9), the nondimensional parameter
g characterizes the magnitude of the Kerr nonlinearity in the
system.

B. Effective Hamiltonian and equal-space commutation relation

The QNLS Eq. (9) governs the quantum evolution of the
probe-field envelope under the condition of EIT; it is obtained
by the elimination of the atomic variables. For convenience for
the study of the photon dynamics in the system, one can adopt
another viewpoint based on effective field theory mentioned
above. The QNLS Eq. (9), after neglecting the damping and
noise terms (see the reason given below), can be taken to de-
scribe a reductive physical system, controlled by the effective
Hamiltonian

Ĥeff =
∫ +∞

−∞
dτ ˆ̄U

†
(

− ∂2

∂τ 2
− μ − g ˆ̄U

† ˆ̄U

)
ˆ̄U . (10)

If the equal-s commutation relation

[ ˆ̄U (s, τ ), ˆ̄U †(s, τ ′)] = δ(τ − τ ′) (11)

is assigned, then the Heisenberg equation of motion

i
∂

∂s
ˆ̄U = [ ˆ̄U , Ĥeff ] (12)

yields the QNLS Eq. (9). In this way, the problem of photon
dynamics can be studied based on Eqs. (10)–(12), in which the
role of time and distance are exchanged in comparison with
conventional quantum approaches. Such effective theory has
been widely adopted in recent years for the study on photon
propagation in optical fibers, bulk Kerr medium, Rydberg
atoms, and other physical systems [21–23,50–52].

When writing the effective Hamiltonian, the last two
terms on the right-hand side of Eq. (9) have been neglected,
which is approximately valid based on the following rea-
sons. (i) Based on the physical parameters given in Sec
III A, we obtain Ldisp = 0.97 cm, Labs = 46.19 cm. Thus, the
dimensionless absorption coefficient ν = Ldisp/Labs = 2.09 ×
10−2 � 1, which means that the damping term −2iν ˆ̄U is
very small and can be disregarded. (ii) When considering the
thermal reservoir coupled with the atomic gas, the two-time
correlation functions for the induced Langevin noise oper-

ator ˆ̄f p are given by 〈 ˆ̄f p(s, τ ) ˆ̄f
†

p(s′, τ ′)〉 = 4ν(n̄th + 1)δ(s −
s′)δ(τ − τ ′) and 〈 ˆ̄f

†

p(s, τ ) ˆ̄f p(s′, τ ′)〉 = 4νn̄thδ(s − s′)δ(τ −
τ ′). Here 〈· · · 〉 is the expectation value by taking the trace
over the reservoir variables; n̄th = {exp[h̄ωp/(kBT )] − 1}−1 is
the mean photon number in the thermal reservoir, with kB the
Boltzmann constant and T the temperature of the reservoir.
Since at optical frequencies and in the ultracold environment,
one has h̄ωp � kBT which yields n̄th ≈ 0. Indeed, due to the
EIT effect one has 〈Ŝ33〉 ≈ 0, which means Langevin noise
operators make no contribution to the normally-ordered cor-
relation functions of system operators [56,57].

C. Slow-light solitons

We now investigate the quantum nonlinear dynamics based
on the description given by Eqs. (10)–(12). We first consider
the classical limit of such a reduced system, which is valid
when the probe field is in a coherent state, i.e., the operator ˆ̄U
can be replaced by a c-number function U0. Then the Heisen-
berg Eq. (12) becomes a classical NLS equation of the form
i∂U0/∂s + ∂2U0/∂τ 2 + 2g|U0|2U0 + μU0 = 0, which admits
the fundamental bright-soliton solution

U0(s, τ ) = A0
√

g

2
sech

[A0g

2
(τ − τ0 − 2p0s)

]
× exp

[
ip0(τ − τ0) − ip2

0s + iθ0
]
, (13)

with μ = −A2
0g2/4. Here A0, θ0, p0, and τ0 are real pa-

rameters, related to the soliton amplitude (defined by A0 ≡∫ +∞
−∞ dτ |U0|2 = n−1

0

∫ +∞
−∞ dτ |Ep|2), initial phase, “momen-

tum,” and initial “position,” respectively [24].
By using the physical parameters given in Sec. III A, we

obtain Vg ≈ 1.28 × 10−4c. The propagating velocity Vs of the
soliton has a small modification from Vg. For example, for
p0 = 1,

Vs = Vg

1 + p0
Vgt0
Ldisp

≈ 8.23 × 10−5c, (14)

i.e., Vs ≈ Vg and both of them are much smaller than c. The
significant slowdown of the optical pulses in the system is
contributed by the EIT effect induced by the control field.

The threshold power of the probe field can be esti-
mated by calculating the Poynting’s vector, given by Pmax =
2ε0cnpSh̄2|Re(K2)|/(|ep · p31|2t2

0 |Re(W )|) [17,58]. Here np =
1 + c|Re(K0)|/ωp is the refractive index, S = πR2

0 is the
cross-section area (R0 is the transverse radius) of the probe
field. Using the above parameters and taking R0 = 100 μm,
we obtain

Pmax ≈ 6.66 μW. (15)

Thus, to generate the slow-light soliton a very low input power
is needed, which is also contributed by the EIT effect that
brings a giant enhancement of the Kerr nonlinearity in the
system [7,9]. This is very different from the solitons generated
in optical fibers where, due to small Kerr nonlinearity, much
larger light power and hence long propagation distance are
required [2–4].

For completeness, Fig. 2 shows the waveshape of the
slow-light soliton during propagation, obtained by taking |U0|
as a function of τ = t/τ0 and s = z/(2Ldisp), with the input
pulse given by U0(0, τ ) = sech(τ ); panel (a) [panel (b) ] is for
the case of g = 0.5 (g = 1.5). We see that the soliton width
in (b) (in which Kerr nonlinearity is stronger) is narrower
than in (a) (in which Kerr nonlinearity is weaker). Hence,
in the classical description the Kerr nonlinearity of the sys-
tem can be employed to make the soliton width squeezed
(compressed).
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FIG. 2. Classical squeezing (compression) of the width of slow-
light soliton by different Kerr nonlinearities (characterized by the
parameter g). (a) |U0| as a function of τ = t/τ0 and s = z/(2Ldisp ),
with g = 0.5 and the input pulse U0(0, τ ) = sech(τ ). (b) The same
as panel (a) but with g = 1.5.

IV. DIAGONALIZATION OF THE EFFECTIVE
HAMILTONIAN AND QUANTUM SQUEEZING

OF SLOW-LIGHT SOLITONS

A. Diagonalization of the effective Hamiltonian

Now we turn to investigate the quantum correction of
the slow-light soliton U0 in the system. We assume that
the mean photon number n0 in the probe field is large, the
quantum fluctuations of the soliton are weaker, so that the
dimensionless probe field can take the form (Bogoliubov
decomposition) [59]

ˆ̄U (s, τ ) = U0(τ ) + Û1(s, τ ). (16)

Here U0(τ ) = U0(s = 0, τ ); Û1 is the annihilation operator of
photons in the probe field characterizing the quantum fluctua-
tions on the soliton background U0(τ ). From Eq. (11) one can
obtain the commutation relation

[Û1(s, τ ), Û †
1 (s, τ ′)] = δ(τ − τ ′). (17)

By using the ansatz Eq. (16) and neglecting the high-order
terms of Û1, the effective Hamiltonian Eq. (10) is converted
into a quadratic form of Û1:

Ĥeff = H0 + Ĥ2, (18a)

H0 =
∫ ∞

−∞
dτU0

( − ∂2/∂τ 2 − μ − gU 2
0

)
U0, (18b)

Ĥ2 =
∫ ∞

−∞
dτ

[
Û †

1

(−∂2/∂τ 2 − μ

− 4gU 2
0

)
Û1 − gU 2

0

(
Û1Û1 + Û †

1 Û †
1

)]
. (18c)

Here U0 obeys the equation (−∂2/∂τ 2 − μ − 2gU 2
0 )U0 =

0. It gives the single soliton solution of U0(τ ) =
(A0

√
g/2)sech[A0g(τ − τ0)/2], which can be obtained

from Eq. (13) by setting s = 0 and μ = −A2
0g2/4. Hence,

by carrying out the integration in Eq. (18b), we obtain
H0 = A3

0g2/6.
Different from previous studies on quantum solitons in

optical fibers [18–25,25–48], our approach here is based on
searching a rigorous diagonalization of the effective Hamil-
tonian Ĥeff , which can provide a complete solution for all
possible quantum fluctuations. To simplify our discussion, we
use the new variables σ = A0g(τ − τ0)/2, Û1 = √

A0g/2ŵ.
Then the Hamiltonian for the quantum fluctuations, Ĥ2, can

be written into the form

Ĥ2 = A2
0g2

4

∫ +∞

−∞
dσ [ŵ†L̂ŵ − sech2 σ (ŵŵ + ŵ†ŵ†)],

(19)

where L̂ = −∂2/∂σ 2 − 4sech2(σ ) + 1, ŵ satisfies the com-
mutation relation [ŵ(s, σ ), ŵ†(s, σ ′)] = δ(σ − σ ′).

To obtain general solutions for the quantum fluctuation ŵ,
a clear and standard way is to find a set of complete and
orthogonal eigenfunctions that can be used to expand ŵ as a
linear superposition of these eigenfunctions. This is, however,
equivalent to diagonalize the Hamiltonian Eq. (19) by using
the following Bogoliubov canonical transformation

ŵ(s, σ ) =
∑

j

[u j (σ )â j (s) + v j (σ )â†
j (s)]

+
∫ +∞

−∞
dk[u(σ, k)â(s, k) + v(σ, k)â†(s, k)].

(20)

Here the first term (summation) and the second term (inte-
gration) on the right-hand side are contributed, respectively,
from the discrete and continuum spectra of the excitations
created from the soliton background; uj (σ ), v j (σ ), u(σ, k),
v(σ, k) are the corresponding eigen (or mode) functions;
â j (s), â†

j (s), â(s, k), and â†(s, k) are the corresponding annihi-
lation operators of photons obeying the commutation relations
[â j (s), â†

j′ (s)] = δ j j′ and [â(s, k), â†(s, k′)] = δ(k − k′) (with
other commutators zero).

The key to diagonalize Ĥ2 is to find a complete set of the
eigenfunctions {u j (σ ), u(σ, k), v j (σ ), v(σ, k)}, with which
the explicit form of ŵ can be determined. Following the idea
in Ref. [60], we assume uq and vq satisfy the BdG eigen
equations [61]

L̂uq(σ ) − 2sech2σνq(σ ) = −λquq(σ ), (21a)

L̂vq(σ ) − 2sech2σuq(σ ) = λqvq(σ ), (21b)

where q = j (q = k) is for the discrete (continuous) spectrum,
uk (σ ) ≡ u(σ, k), vk (σ ) ≡ v(σ, k). The above BdG equations
have the following analytical solutions [60]

u(σ, k) = −k2 + 2ik tanh(σ ) − tanh2(σ )√
2π (k2 + 1)

eikσ , (22a)

v(σ, k) = − sech2(σ )√
2π (k2 + 1)

eikσ , (22b)

for the continuum spectrum with eigen value λk = −k2 − 1
(−∞ < k < ∞), and

u1(σ ) = 2 − σ tanh(σ )

2
sech(σ ), (23a)

u2(σ ) = tanh(σ ) + σ

2
sech(σ ), (23b)

v1(σ ) = −σ tanh(σ )

2
sech(σ ), (23c)

v2(σ ) = tanh(σ ) − σ

2
sech(σ ), (23d)
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for the discrete spectrum with degenerate eigenvalue λ1 =
λ2 = 0. It can be shown that all the eigenfunctions of both
the continuous and the discrete spectra given above constitute
a complete set of eigenfunctions (i.e., Hilbert space), which
means that they can be used to expand quantum fluctuations
given by the form, Eq. (20). A detailed discussion on the
above solutions is presented in Appendix C.

Based on the above analytical results and substituting
Eq. (20) into Eq. (19), we can diagonalize Ĥ2 after carrying
out the integrations over τ on the eigenfunctions. Then we
obtain

Ĥeff =A3
0g2

6
+ A2

0g2

4

[
P̂2

2 − Q̂2
1

−
∫ +∞

−∞
dkλkâ†(s, k)â(s, k)

]
. (24)

Here Q̂ j and P̂j ( j = 1, 2) are, respectively, the coordinate
operators and momentum operators related to the discrete-
spectrum eigenfunctions, defined, respectively, by

Q̂ j = 1√
2

(â j + â†
j ), (25a)

P̂j = 1√
2i

(â j − â†
j ), (25b)

which obey the commutation relation [Q̂ j, P̂j′ ] = iδ j j′ . In this
way, the Hamiltonian of the system in the presence of the
quantum fluctuations on the soliton background is diagonal-
ized, which is useful for the study of quantum squeezing of
the slow-light soliton.

B. Quantum dynamics of slow-light solitons

Based on the diagonalized effective Hamiltonian Eq. (24),
we can easily examine the quantum dynamics of the slow-
light soliton. The Heisenberg equation of motion for the
operator Â reads i∂Â/∂s = [Â, Ĥeff ]. Taking Â to be Q̂ j (s),
P̂j (s), and â(s, k), we obtain the equations

∂

∂s
Q̂1 = 0, (26a)

∂

∂s
P̂1 − A2

0g2

2
Q̂1 = 0, (26b)

∂

∂s
P̂2 = 0, (26c)

∂

∂s
Q̂2 − A2

0g2

2
P̂2 = 0, (26d)

i
∂

∂s
â(s, k) + A2

0g2

4
λkâ(s, k) = 0. (26e)

It is easy to get the exact solutions of these equations, given
by

Q̂1(s) = Q̂1(0), (27a)

P̂1(s) = (
A2

0g2s/2
)
Q̂1(0) + P̂1(0), (27b)

P̂2(s) = P̂2(0), (27c)

Q̂2(s) = (
A2

0g2s/2
)
P̂2(0) + Q̂2(0), (27d)

â(s, k) = â(0, k) exp
(
iA2

0g2λks/4
)
, (27e)

where Q̂ j (0), P̂j (0), â(0, k) are the values of Q̂ j (s), P̂j (s),
â(s, k) at s = 0, respectively.

From Eqs. (26) and their solutions Eq. (27), we have
the following conclusions: (i) The quantum fluctuations con-
tributed by the discrete spectrum display specific characters.
The position operator Q̂1 (momentum operator P̂2) remains
unchanged, but it becomes correlated with the momentum
operator P̂1 (position operator Q̂2) during propagation. Such
correlations between Q̂ j and P̂j ( j = 1, 2) lead to phase diffu-
sion and position spreading of the soliton, contributed by the
Kerr nonlinearity (characterized by the nonlinear parameter
g). (ii) The quantum fluctuation for the continuum-mode k
has only a simple effect, i.e., a phase shift to the same mode
caused by the Kerr nonlinearity; no correlation between dif-
ferent modes occurs during propagation.

By using the results (13), (20), and (25), we can obtain the
approximate expression of the quantized probe field

ˆ̄U (s, τ ) = Â(s, τ ) sech

[
A0g

2
τ − Q̂2(s)√

A0

]

× exp

[
i
P̂1(s)√

A0
+ i

g
√

A0

2
P̂2(s)τ

]
, (28)

Â(s, τ ) =
√

g

2

{
A0 + 1√

A0

[
1 − A0g

2
τ tanh

(A0g

2
τ
)]

Q̂1(s)

}
.

(29)

When obtaining this result, a renormalization technique [62]
has been used, also the contribution of the quantum fluc-
tuations from the continuous spectrum has been neglected
because such fluctuations make much smaller contribution
comparing those from the discrete spectrum and they spread
and depart rapidly during the propagation.

From Eq. (28), one can see that the soliton displays various
quantum fluctuations, which are contributed by the discrete
spectrum and propagate together with the soliton. The quan-
tum fluctuations can be divided into two categories. One is
characterized by the conjugated operator pair Q̂1 and P̂1,
describing, respectively, the amplitude (photon number) and
phase fluctuations; the other one is characterized by the con-
jugated operator pair Q̂2 and P̂2, describing, respectively, the
position and momentum fluctuations.

The above results can be used to obtain the numerical
results of the quantum fluctuations of the soliton. Let |�〉 =
|n0, n1, n2, nc〉 denote the quantum state with n0 photons in
the soliton; n1 and n2 are photon numbers of the photons
occupying the first and the second discrete modes, and nc

is the number of photons in all continuous modes. We as-
sume that at the entrance of the system (s = 0) the quantum
state of the probe field is prepared to be the “vacuum” state
|�0〉 = |n0, 0, 0, 0〉, i.e., the probe field has no quantum fluc-
tuation. Based on the above analytical results, we obtain
〈Q̂ j (s)〉 = 〈P̂j (s)〉 = 0, 〈Q̂2

j (0)〉 = 〈P̂2
j (0)〉 = 1/2 ( j = 1, 2),

and the variances (mean-squared derivations) as functions of
s are given by

〈
Q̂2

1(s)
〉 = 〈

P̂2
2 (s)

〉 = 1
2 , (30a)〈

Q̂2
2(s)

〉 = 〈
P̂2

1 (s)
〉 = 1

2

(
1 + 1

4 g4A4
0s2

)
, (30b)
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here 〈· · · 〉 ≡ 〈�0| · · · |�0〉. Note that, even there is no fluc-
tuation before the soliton enters into the atomic medium, the
quantum fluctuations will be generated in the probe field. This
is very different from the classical soliton system considered
by Yan et al. [69].

C. Quantum squeezing of slow-light solitons and its detection

1. Quantum squeezing of slow-light solitons

The quantum squeezing of light have received a great deal
of attention in recent years and found important applications
in many fields, especially in quantum precision measurements
(including the detection of weak forces such as gravitational
waves) [47,63]. Based on the results obtained above, we now
explore the physical property of the quantum squeezing of the
slow-light soliton in the present system. Since the quantum
fluctuations from continuous spectrum are much smaller com-
pared to those from the discrete spectrum [24,25], they will be
disregarded in the following discussions.

For describing the quantum squeezing, we introduce the
following quadrature operators related to â j at the angle θ [64]

X̂ j,θ (s) = 1√
2

[â j (s) e−iθ + â†
j (s) eiθ ]

= Q̂ j (s) cos θ + P̂j (s) sin θ, (31)

which satisfies the commutation relation [X̂ j,θ , X̂ j′,θ ] = iδ j j′

( j, j′ = 1, 2). When obtaining Eq. (31) the definition Eq. (25)
has been used. X̂1,θ (s) [X̂2,θ (s)] describes the quantum fluctu-
ations of the amplitude and phase (position and momentum)
of the soliton.

With this notations, the probe field can be expressed as
a superposition of the soliton and the quantum fluctuations,
i.e., Êp = Esol + Êfluc. Using Eqs. (1b), (20), (25), (31), and
returning to the original variables, we obtain the expression of
soliton part,

Esol = epD0sech

[
A0g

2t0

(
t − z

Vg

)]
cos �(z, t ), (32)

where D0 = h̄A0g
|ep·p31|t0

√
|Re(K2 )

Re(W ) |, and �(z, t ) = (kp + K0)z −
ωpt + A2

0g2z/(8Ldisp) . The part of the quantum fluctuations
is given by

Êfluc = ep
D0√
A0

2∑
j=1

{
[u j (t ) cos(θ + �) + v j (t ) cos(θ − �)]X̂ j,θ

− [u j (t ) sin(θ + �) + v j (t ) sin(θ − �)]X̂ j,θ+ π
2

}
. (33)

We see that the quantum fluctuations are characterized not
only by the quadrature operators X̂ j,θ and X̂ j,θ+ π

2
, but also by

the eigenmode functions u j and v j contributed by the discrete
spectrum, which is quite different from cases in absence of
soliton where the quantum squeezing is contributed only by
continuous-spectrum quantum fluctuations, which have been
neglected here because they are much smaller than those by
the discrete spectrum. In addition, once the probe light is
squeezed, the atomic spin squeezing can be realized.

FIG. 3. Quantum squeezing of the slow-light soliton. Quadrature
variances 〈X̂ 2

j,θ 〉 ( j = 1, 2) as functions of s = z/(2Ldisp ) and θ/(2π )
for A0 = 1 and g = 1. Panels (a) and (b) are for 〈X̂ 2

1,θ 〉 and 〈X̂ 2
2,θ 〉,

respectively. Different colors shown in the color bar between the two
panels denote different magnitudes of the quadrature variances. In
the deep blue domains of θ and s, the quadrature variances are much
smaller than their vacuum value, indicating that the slow-light soliton
displays large quadrature squeezing.

Based on the results obtained in the last subsection, it is
easy to get the expressions of the variances of X̂ j,θ , given by

〈
X̂ 2

1,θ (s)
〉 = 1

2 + 1
8 g4A4

0s2 sin2 θ + 1
2 g2A2

0s sin θ cos θ,

(34a)〈
X̂ 2

2,θ (s)
〉 = 1

2 + 1
8 g4A4

0s2 cos2 θ + 1
2 g2A2

0s sin θ cos θ.

(34b)

We see that the quadrature variances of the 〈X̂ 2
1,θ (s)〉 and

〈X̂ 2
2,θ (s)〉 depart from their vacuum value 1/2, which means

that the probe field displays quantum squeezing due to the
existence of the Kerr nonlinearity (characterized by the non-
linear parameter g) in the system.

Shown in Figs. 3(a) and 3(b) are, respectively, variances
〈X̂ 2

1,θ 〉 and 〈X̂ 2
2,θ 〉 as functions of s and θ by taking A0 = 1

and g = 1. One notes that when s = 0 or θ = 0 both the vari-
ances take the vacuum values, i.e., 〈X̂ 2

1,0(0)〉 = 〈X̂ 2
2,0(0)〉 =

1/2; additionally, for any value of s one has also 〈X̂ 2
1,0(s)〉 =

〈X̂ 2
2, π

2
(s)〉 = 1/2. However, when θ and s locate in the deep

blue domains of the both panels, the quadrature variances
are much smaller than their vacuum value, which means that
the soliton can indeed be quantum-mechanically squeezed
in the atomic gas. The soliton can also be anti-squeezed,
which occurs in the two deep red domains of the both pan-
els. Furthermore, the result Eq. (34) shows that the degree
of squeezing (also antisqueezing) in the system gets larger
during propagation (i.e., s increases), which can also be seen
clearly in Fig. 3. Since 〈X̂ 2

2,θ (s)〉 displays similar behaviors
as 〈X̂ 2

1,θ (s)〉, in the following we discuss only 〈X̂ 2
1,θ (s)〉 which

characterize the quantum fluctuations of the amplitude and
phase of the soliton.

By minimizing Eq. (34a) with respect to θ , we get the
optimum angle as a function of the propagation distance s,
i.e., θopt = θopt (s), shown in Fig. 4(a) for A0 = 1 and g = 1.
With θopt (s) we can get the minimum value of the quadrature
as a function of s; meanwhile, the quadrature for the angle
θopt + π/2 will be maximized. We can get an uncertainty
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FIG. 4. (a) Optimum angle θopt for the quadrature variance 〈X̂ 2
1,θ 〉

as a function of propagation distance s. (b) Minimum squeezing ratio
Rmin (dashed blue line) and maximum squeezing ratio Rmax (solid red
line) versus s (in unit dB). (c) Squeezing ratio R versus angle θ with
s = 0.3, 0.6, 0.9, plotted by dotted blue, solid red, and dashed yellow
lines, respectively. Panels (a–c) are plotted with the parameters A0 =
1 and g = 1. (d) Minimum squeezing ratio Rmin as a function of s for
A0 = 1 and different nonlinear parameter g. Solid red line: g = 0.7;
dashed green line: g = 1; dotted pink line: g = 1.3.

ellipse in which 〈X̂ 2
1,θopt

(s)〉1/2 and 〈X̂ 2
1,θopt+ π

2
(s)〉1/2 are along

its minor and major axes, respectively.
Once θopt (s) is known, experimentally one can choose the

optimum detection angle to acquire the largest suppression of
the quantum uncertainties in the amplitude and phase of the
soliton. One can define the squeezing ratio, i.e., the ratio of
the quadrature variances between the value at position s and
that at the entrance s = 0 [24,25]

R =
〈
X̂ 2

1,θ (s)
〉

〈
X̂ 2

1,θ (0)
〉 (35)

to characterize the degree of the squeezing quantitatively.
Figure 4(b) shows the minimum squeezing ratio Rmin and

maximum squeezing ratio Rmax as functions of s (in unit dB),
illustrated, respectively, by the dashed blue and the solid red
lines. We see that the quantum squeezing of the soliton found
here is very efficient. This is due to the fact that the EIT-based
atomic gas possesses giant Kerr nonlinearity and the soliton
in such a system has an ultraslow propagating velocity, which
makes the soliton have a significant squeezing only in a very
short propagation distance (several centimeters). On the con-
trary, for acquiring the same degree of soliton squeezing in
other systems (such as optical fibers), a much larger propaga-
tion distance is needed because of the weak Kerr nonlinearity
and fast soliton propagation velocity in those systems.

Plotted in Fig. 4(c) is the squeezing ratio R of the soliton
as a function of angle θ for different propagation distance
s = 0.3 (dotted blue line), 0.6 (solid red line), and 0.9 (dashed
yellow line), respectively. One sees that the squeezing ratio is
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FIG. 5. (a) Atomic spin squeezing degree ξ 2 as a function of
propagation distance s. (b) Minimum squeezing ratio Rmin as a func-
tion of propagation distance s for A0 = 1 and g = 1. The solid blue
and dashed red lines are results for the LO pulse of the form ς j,θ (σ )
and the sech-shaped LO pulse ς (σ ), respectively.

sensitive to the selections of θ and s. Figure 4(d) shows the
minimum squeezing ratio Rmin as a function of s for A0 = 1
and different nonlinear parameter g. Solid red, dashed green,
and dotted pink lines are for g = 0.7, 1, and 1.3, respectively.
We see that the minimum squeezing ratio is strongly depen-
dent on the nonlinearity parameter g, and it decreases rapidly
as the propagation distance s is increased.

2. Atomic spin squeezing

The Kerr nonlinearity can not only result in the quantum
squeezing of the probe laser field (as discussed above), but
also cause atomic spin squeezing in the system. To show this,
we consider the atomic spin operators [65,66]

ŝx = 1

2
(σ̂12 + σ̂21), (36a)

ŝy = 1

2i
(σ̂12 − σ̂21), (36b)

ŝz = 1

2
(σ̂11 − σ̂22), (36c)

which satisfy the commutation relation [ŝl , ŝm] = iεlmnŝn (εlmn

is the Levi-Civita antisymmetric unit tensor). To calculate the
spin squeezing, we introduce the quadrature spin operator

ŝθ = 1
2 [σ̂12e−iθ + σ̂21eiθ ],

= cos θ ŝx + sin θ ŝy, (37)

and define the spin squeezing degree

ξ 2 = minθ

(〈
ŝ2
θ

〉 − 〈ŝθ 〉2

〈ŝz〉/2

)
. (38)

From the result given by Eq. (B7) and the relation between
Ŝαβ and σ̂αβ [see the definition (3)], we obtain

ŝθ ≈ −gp
√

n0

2
c
(S� + Ŝ�), (39)

where S� = A0
√

gsech[ A0g
2t0

(t − z
Vg

)] cos �, Ŝ� =
√

A0g
∑2

j=1(u jX̂ j,� + v j X̂ j,−�), with � = � +℘− θ and
℘= (kp − kc)z − (ωp − ωc)t . We see that the atomic spin
includes also a soliton part (denoted by S�).

Shown in Fig. 5(a) is the spin squeezing degree ξ 2

as a function of propagation distance s. One see that the

063512-8



QUANTUM SQUEEZING OF SLOW-LIGHT SOLITONS PHYSICAL REVIEW A 103, 063512 (2021)

system supports indeed atomic spin squeezing, which is
also due to the existence of the Kerr nonlinearity in the
system.

3. Homodyne detection of the quantum squeezing

Following the idea in Refs. [24,25], we give a simple dis-
cussion on possible detection of the quadrature squeezing of
the soliton. By using the Bogoliubov transformation Eq. (20)
and the orthonormal eigenfunctions given in the Appendix
(C), we can obtain

Q̂ j (s) = 1√
2

∫ +∞

−∞
dσφ j (σ )[ŵ(s, σ ) + ŵ†(s, σ )], (40a)

P̂j (s) = 1√
2i

∫ +∞

−∞
dσψ j (σ )[ŵ(s, σ ) − ŵ†(s, σ )], (40b)

where ψ j (σ ) = u j (σ ) + v j (σ ), φ j (σ ) = u j (σ ) − v j (σ ).
Then, by using the definition Eq. (31) we have

X̂ j,θ (s) =
∫ +∞

−∞
dσ [ς j,θ (σ )ŵ†(s, σ ) + ς∗

j,θ (σ )ŵ(s, σ )],

(41)

with

ς j,θ (σ ) = [cos θφ j (σ ) + i sin θψ j (σ )]/
√

2. (42)

This result hints that one can employ a balanced homodyne
detection technique to measure the quadrature variances by
taking ς j,θ (σ ) as a coherent pulse injected into the atomic
gas from a local oscillator (LO). The measurement can be
carried out as follows. First, the input probe pulse [i.e., the
quantity ŵ(s, σ ) in Eq. (41)] is mixed with the LO pulse
ς j,θ (σ ) through a 50:50 beam splitter and the mixed signals
from the two output paths are detected by two photodetectors,
respectively. Then, the difference of the output photocurrents
from the two photodetectors is summed and integrated to
complete the measurement. In fact, Eq. (41) can be under-
stood as a projection of the input probe pulse ŵ into the
LO pulse through the measurement based on the homodyne
detection.

Since reshaping a pulse to be a combination of some
special functions [like ς j,θ (σ ) in Eq. (41)] is difficult, in
practice it is more convenient to use a hyperbolic secant pulse,
e.g., ς (σ ) = sech(σ ) exp(iθ )/

√
2, as LO pulse. In this way,

the quadrature operator to be detected turns to be X̂ ′
1,θ (s) =

cos θ Q̂1 + 2 sin θ P̂1. Figure 5(b) shows the theoretical results
on the minimum squeezing ratio Rmin as a function of prop-
agation distance s. In Fig. 5(b), the solid blue and dashed
red lines are ones for the LO pulse of the form ς j,θ (σ ) and
the sech-shaped LO pulse ς (σ ), respectively. We see that the
minimum squeezing ratio obtained by using the hyperbolic-
secant LO pulse is getting close to that obtained by the ideal
LO pulse as propagation distance increases.

V. SUMMARY

In this work, we have developed a quantum theory of slow-
light solitons produced in an EIT-based atomic gas. Starting
from the HLM equations which govern the quantum dynamics
of the atoms and the quantized probe field, we have derived

a quantum NLS equation controlling the evolution of the
probe-field envelope. We have constructed an effective Hamil-
tonian and quantum Heisenberg equation of motion where
the atomic variables have been eliminated. By exploiting a
direct perturbation approach, we have diagonalized the effec-
tive Hamiltonian and carried out a detailed calculation on the
quantum fluctuations of a slow-light soliton. These quantum
fluctuations are expanded as a linear superposition of the
complete and orthonormalized set of eigenfunctions obtained
by solving the BdG equations. We have shown that, different
from optical-fiber solitons, due to the giant Kerr nonlinearity
contributed from the EIT effect, significant squeezing of the
slow-light soliton can be obtained within a very short propaga-
tion distance both classically (i.e., squeezed soliton width) and
quantum mechanically (i.e., squeezed quantum fluctuations).
In addition, together with the the squeezing of the slow-light
soliton, atomic spin squeezing can also be realized in the
system. The results reported here are useful for understanding
the quantum property of slow-light solitons and for realizing
their quantum squeezing via EIT in cold atomic gases experi-
mentally.
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APPENDIX A: EXPLICIT EXPRESSIONS OF THE
HEISENBERG-LANGEVIN EQUATIONS

Explicit expressions of the Heisenberg-Langevin Eqs. (4)
are given by

i
∂

∂t
Ŝ22 − i�23Ŝ33 − 
cŜ23 + 
∗

c Ŝ32 − iF̂22 = 0, (A1a)

i

(
∂

∂t
+ �3

)
Ŝ33 + gpŜ13Êp − g∗

pÊ†
p Ŝ31 + 
cŜ23

− 
∗
c Ŝ32 − iF̂33 = 0, (A1b)(

i
∂

∂t
+ d21

)
Ŝ21 + 
∗

c Ŝ31 − gpŜ23Êp − iF̂21 = 0, (A1c)

(
i
∂

∂t
+ d31

)
Ŝ31 + 
cŜ21 + gp(Î − Ŝ22 − 2Ŝ33)Êp

− iF̂31 = 0, (A1d)(
i
∂

∂t
+ d32

)
Ŝ32 + 
c

(
Ŝ22 − Ŝ33

) + gpŜ12Êp

− iF̂32 = 0, (A1e)

and Ŝ11 = Î − Ŝ22 − Ŝ33, with Î the identity operator. In these
equations, dαβ = �α − �β + iγαβ (α 
= β ), γαβ ≡ (�α +
�β )/2 + γ

dep
αβ , and �β ≡ ∑

α<β �αβ . Here �αβ is the decay
rate of spontaneous emission from the state β to the state
α, γ

dep
αβ is the dephasing rate between |α〉 and |β〉. F̂αβ are

δ-correlated Langevin noise operators associated with the dis-
sipation in the system, with the two-time correlation function
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given by

〈F̂αβ (z, t ) F̂α′β ′ (z′, t ′)〉 = L

N
δ(z − z′)δ(t − t ′)Dαβ,α′β ′ (z, t ),

(A2)

where Dαβ,α′β ′ is atomic diffusion coefficient [67], which can
be obtained from the Eqs. (A1) using the generalized fluc-
tuation dissipation theorem. Some of them are listed in the
following:

D21,12 = �23〈Ŝ33〉, (A3a)

D31,13 = 0, (A3b)

Dα1,1β = 0 (α, β = 2, 3; α 
= β ). (A3c)

APPENDIX B: DERIVATION OF THE QNLS Eq. (5)

In the study on solitons in various classical physical sys-
tems, well developed reductive perturbation methods have
been developed for simplifying complex, nonlinearly cou-
pled partial differential equations into some well-known
“amplitude equations” (e.g., classical NLS equation [9],
Korteweg-de Vries equation, etc.) that can be solved much
easily [58,68]. However, due to the difficulties for solving
quantum nonlinear problems, up to now there is no quan-
tum reductive perturbation method developed by which one
can derive a QNLS equation directly from coupled nonlinear
quantum partial differential equations involving many degrees
of freedom of both atoms and quantized light fields. In the fol-
lowing, we give a heuristic derivation on the QNLS equation
describing the nonlinear evolution of the probe-field envelope
Êp in the present system. The derivation of the QNSL equation
can be divided into two steps.

Step 1: Quantum linear Schrödinger equation with group-
velocity dispersion. We assume that the probe field is very
weak so that the Kerr nonlinearity in the system can be ne-
glected. Thus, the HLM Eqs. (4) can be treated by using a
linear approximation. By taking Ŝαβ → Ŝ(0)

αβ + Ŝαβ , where Ŝ(0)
αβ

is the steady-state solution of Ŝαβ for Êp = 0 (i.e., Ŝ(0)
11 = Î ,

and other Ŝ(0)
αβ = 0), we obtain the linearized equations of

Eqs. (4), which can be solved by using a Fourier transform.
After eliminating the atomic variables, we obtain[

i
∂

∂z
+ K (ω)

]
˜̂E p(z, ω) = i ˜̂F p(z, ω). (B1)

Here ω is the sideband frequency of the probe pulse and K is
the linear dispersion relation defined by

K (ω) = ω

c
+ |gp|2N

c

ω + d21

D(ω)
; (B2)

˜̂E p(z, ω) and ˜̂Fp(z, ω) are, respectively, the Fourier trans-
forms of Êp(z, t ) and F̂p(z, t ), i.e.,

˜̂E p(z, ω) = 1√
2π

∫ ∞

−∞
dtÊp(z, t ) e−iωt , (B3)

˜̂Fp(z, ω) = 1√
2π

∫ ∞

−∞
dtF̂p(z, t ) e−iωt . (B4)

The new noise operator F̂p(z, t ) is defined by

F̂p(z, t ) = g∗
pN

c

(ω + d21)F̂31(z, t ) − 
cF̂21(z, t )

D(ω)
, (B5)

where D(ω) = |
c|2 − (ω + d21)(ω + d31).
Assuming that the bandwidth of the probe pulse is not

too narrow, one can expand K (ω) in a Taylor series around
ω = 0 up to the second-order in ω, i.e., K (ω) ≈ K0 + ω/Vg +
K2ω

2/2. Here K0 ≡ K|ω=0, V −1
g ≡ K1 ≡ (∂K/∂ω)|ω=0 is the

group-velocity dispersion of the probe field, and K2 ≡
(∂2K/∂ω2)|ω=0 is the coefficient denoting the group-velocity
dispersion. Substituting this expansion into the envelope
Eq. (B1) and convert it back to time domain by using an
inverse Fourier transformation, we arrive at the quantum linear
Schrödinger equation

i

(
∂

∂z
+ 1

Vg

∂

∂t

)
Êp + K0Êp − K2

2

∂2

∂t2
Êp − iF̂p = 0, (B6)

where F̂p(z, t ) is the inverse Fourier transform of ˜̂F p(z, ω).
Step 2: Quantum nonlinear equation with cubic Kerr non-

linearity. We next derive the equation for a weakly-nonlinear
probe field for which the group-velocity dispersion can be
neglected but the Kerr-nonlinearity is considered. This is valid
when the probe pulse has a long-time duration, so that the
time derivatives in the HLM Eqs. (4) play negligible roles.
To get the equation for Êp we employ an iteration method
by taking gpÊp as a small quantity. Based on the steady-state
solution Ŝ11 = Î and Ŝ22 = Ŝ33 = 0, we obtain the solution at
the first-order approximation, given by

Ŝα1 = a(1)
α1 gpÊp (α = 2, 3) (B7)

and other Ŝαβ = 0, where

a(1)
α1 = −
∗

cδα2 + d21δα3

|
c|2 − d21d31
. (B8)

Proceeding to the next order of iteration by substituting
Eq. (B8) into Eq. (4a) [i.e., Eq. (A1)], one obtains Ŝαβ =
a(2)

αβ |gp|2Ê†
p Êp (α, β = 1, 2, 3). Here

a(2)
11 = �23 + 2Dc

�13Dc
2Im

[
a(1)∗

31

] − 1

Dc
2Im

[

∗

c

d32
a(1)∗

21

]
, (B9a)

a(2)
22 = 1

Dc
2Im

[

∗

c

d32
a(1)∗

21

]
− �23 + Dc

�13Dc
2Im

[
a(1)∗

31

]
, (B9b)

a(2)
33 = − 1

�13
2Im

[
a(1)∗

31

]
, (B9c)

a(2)
32 = − 1

d32

[
a(1)∗

21 + 
c
(
a(2)

22 − a(2)
33

)]
, (B9d)

and other Ŝαβ = 0, with Dc = 2γ32|
c|2/|d32|2.
Based on the above results, we can proceed to the third-

order of iteration. We get Ŝ31 = a(3)
31 |gp|2gpÊ†

p ÊpÊp, with

a(3)
31 = 
ca(2)∗

32 − d21
[
a(2)

22 + 2a(2)
33

]
|
c|2 − d21d31

. (B10)

The solutions of other Ŝαβ are also obtained but are omitted
here.
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Exact to the third-order approximation with respect to
gpÊp, we obtain the perturbation expansion of Ŝ31, given by

Ŝ31 = a(1)
31 gpÊp + a(3)

31 |gp|2gpÊ†
p ÊpÊp. (B11)

Here the first (second) term on the right-hand side of the above
expression describes the linear (nonlinear) response of the
atoms to the probe field.

Substituting Eq. (B11) into Eq. (4b), we arrive at the non-
linear equation(

i
∂

∂z
+ K0

)
Êp + W |gp|2Ê†

p ÊpÊp = 0, (B12)

where W = h̄2ωpχ
(3)
p /(2c|ep · p31|2) is the nonlinear coeffi-

cient contributed by the third-order Kerr-type nonlinearity,
with

χ (3)
p = Na|ep · p31|4/(ε0 h̄3)a(3)

31 (B13)

the third-order nonlinear optical susceptibility (Na is atomic
density).

By combining Eqs. (B6) and (B12), we obtain the QNLS
equation for Êp:[

i

(
∂

∂z
+ 1

Vg

∂

∂t

)
+ K0

]
Êp − K2

2

∂2

∂t2
Êp

+W |gp|2Ê†
p ÊpÊp − iF̂p = 0, (B14)

which is valid for probe fields in which the group-velocity
dispersion and cubic Kerr nonlinearity play equal roles. By
making the transformation Êp → Êp exp[iRe(K0)z], the above
equation becomes the QNLS Eq. (5) given in the main text.

APPENDIX C: ORTHONORMAL AND COMPLETE
EIGENFUNCTIONS OF THE LINEAR EIGENVALUE

PROBLEM ON QUANTUM FLUCTUATIONS

To solve the BdG Eqs. (21), we make the following trans-
formation:

uq(σ ) = 1
2 [ψq(σ ) + φq(σ )], (C1)

vq(σ ) = 1
2 [ψq(σ ) − φq(σ )], (C2)

q = j, k. Then we have the following equations:

L̂1ψ j (σ ) = λ jφ j (σ ), L̂2φ j (σ ) = λ jψ j (σ ), (C3a)

L̂1ψ (σ, k) = λkφ(σ, k), L̂2φ(σ, k) = λkψ (σ, k), (C3b)

with L̂ j = d2/dσ 2 + (2δ j1 + 6δ j2)sech2(σ ) − 1 ( j = 1, 2).
Such equations have been considered by Yan et al. for the de-
velopment of a direct perturbation theory on classical solitons
[69], and later used for the study of the quantum solitons in
Bose-Einstein condensates [60].

Equations (C3) can be written as

L̂2L̂1ψq(σ ) = λ2
qψq(σ ), (C4a)

L̂1L̂2φq(σ ) = λ2
qφq(σ ), (C4b)

where q = j, k; ψk (σ ) ≡ ψ (σ, k); φk (σ ) ≡ φ(σ, k). Al-
though both L̂1 and L̂2 are self-adjoint (Hermitian) operators,
but L̂1L̂2 and L̂2L̂1 are not. However, since (L̂2L̂1)† = L̂1L̂2,
Eqs. (C4a) and (C4b) are adjoint each other. Solutions of the
eigenvalue Eq. (C4) are given by

φ(σ, k) = eikσ

√
2π (k2 + 1)

[1 − k2 − 2ik tanh(σ )], (C5a)

ψ (σ, k) = eikσ

√
2π (k2+1)

[1−k2 − 2ik tanh(σ ) − 2sech2(σ )],

(C5b)

for the continuous spectrum with eigenvalues λk = −(k2 +
1) (−∞ < k < ∞), and

φ1(σ ) = sech(σ ), (C6a)

φ2(σ ) = σ sech(σ ), (C6b)

ψ1(σ ) = [1 − σ tanh(σ )]sech(σ ), (C6c)

ψ2(σ ) = tanh(σ )sech(σ ), (C6d)

for the discrete spectrum with eigenvalues λ j = 0 ( j = 1, 2).
The eigenfunctions of the discrete and continuous spectra

given above satisfy the following orthonormal and complete
relations∫ +∞

−∞
dσψ∗

j (σ )φ(σ, k′) =
∫ +∞

−∞
dσφ∗

j (σ )ψ (σ, k′) = 0,

(C7a)∫ +∞

−∞
dσψ∗(σ, k)φ(σ, k′) =

∫ +∞

−∞
dσφ∗(σ, k)ψ (σ, k′)

= δ(k − k′), (C7b)∫ +∞

−∞
dσψ∗

j (σ )φ j′ (σ ) = δ j j′ , (C7c)

∫ +∞

−∞
dkψ∗(σ, k)φ(σ ′, k)+

2∑
j=1

ψ∗
j (σ )φ j (σ

′) = δ(σ − σ ′),

(C7d)

i.e., {ψ1(σ ), ψ2(σ ), ψ ((σ, k)}, {φ1(σ ), φ2(σ ), φ((σ, k)}
are orthonormal and complete eigenfunctions forming a
biorthonormal basis [70].
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