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Heat transfer mediated by the dynamical Casimir effect in an optomechanical system
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Heat transfer in an optomechanical system consisting of one optical cavity and two movable mirrors with or
without a laser field is studied by using the quantum master-equation method. The radiation-pressure interaction
between the cavity and the mirrors contains the single-photon optomechanical coupling (SPOC) and the dynam-
ical Casimir effect (DCE). When the laser is not applied to the cavity, the heat transfer is induced by a nonlocal
interaction between mirrors that builds up only due to the presence of the DCE. Once the monochromatic field
is turned on, both the SPOC and the DCE can be used to modify the energy transfer process. In both cases, the
heat transfer can be drastically enhanced at resonant conditions manifested by the DCE. Our results can motivate
further studies to actively control heat transfer mediated by the DCE in optomechanical devices.
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I. INTRODUCTION

In optomechanical systems, the electromagnetic cavity
mode and vibrations of mechanical resonators couple to each
other via radiation pressure force [1–4]. The resulting op-
tomechanical coupling, as an important type of light-matter
interaction, plays a key role in engineering quantum states
of the cavity and the mechanical modes. In weakly driven
optomechanical systems, a conventional photon blockade due
to the presence of single-photon strong coupling can be ob-
tained [5,6]. In the weak optomechanical-coupling regime,
an unconventional photon blockade induced by destructive
quantum interference between different excitation pathways
for a two-photon state can also be observed [7,8]. Moreover,
the resonant frequency of the mechanical resonators and their
damping can be mediated indirectly by the optomechanical
coupling; then the mechanical resonators can be cooled to
their ground state, where the quantum limited measurements
and observations become possible [9–16]. Furthermore, it is
possible to prepare the mechanical resonators in nonclassical
states using the optomechanical interaction [17,18].

On the other hand, when the optomechanical systems
contain two movable mirrors in an optical cavity, the
radiation-pressure interaction can give rise to a nonlocal cou-
pling between the mechanical modes, such that the energy and
the quantum states can be exchanged between them [19–26].
Based on this, heat transfer induced by quantum fluctuations
was observed in experiment recently [27]. The quantum fluc-
tuations indicate the quantum vacuum is not empty, in which
virtual particles can be transformed into real ones by the
Schwinger process [28], Hawking radiation [29], and Unruh
effect [30]. The dynamical Casimir effect (DCE) proposed by
Moore in 1970 is a very intuitive embodiment of the inter-
esting prediction from quantum field theory [31] which states

*jtlu@hust.edu.cn

that the creation of photons from the quantum vacuum can be
achieved by constructing a time-dependent boundary condi-
tion. In cavity-optomechanical systems, the DCE takes place
when one or both of the mirrors is subjected to nonuniform
acceleration [22,32–37]. For instance, once the two mirrors
are positioned near two thermal baths with different tempera-
tures, heat transfer induced by the DCE can be observed [27].
Thus, one can detect the virtual particles in quantum vacuum
and their conversion into phonons by measuring the thermo-
dynamic quantities, such as heat flux. Normally, the DCE will
be significantly weakened when the cavity frequency is far
from the mechanical frequencies supported by the mirrors,
while the single-photon optomechanical coupling (SPOC) can
yield a heat transfer when the cavity is driven by coherent
light [24,38–42]. These substantial developments open a way
to generate and regulate the quantum heat transfer mediated
by the DCE and the SPOC, although it is unknown which
plays the leading role, especially when the cavity frequency
and the mechanical frequencies are comparable. Meanwhile,
the near-field thermal radiation is a normal process in such
optomechanical devices, which may accompany or influence
the heat transfer. Therefore, to observe the DCE-induced heat
transfer, it is necessary to study how to highlight the role of
the DCE in such an energy transfer processes.

In this paper, we study the heat transfer of an optome-
chanical system consisting of one optical cavity and two
movable mirrors, which is driven by a temperature bias, as
shown in Fig. 1. The radiation-pressure interaction between
the cavity and the mirrors contains the SPOC and the DCE.
We first examine the DCE contributions to the heat transfer
when the cavity is not excited by a laser. It is found that a
nonlocal energy transfer between mirrors is induced only by
the DCE, which is consistent with the experimental obser-
vations [27]. For a laser-driven cavity, we remark that it is
possible to generate the nonlocal energy transfer by both the
SPOC and the DCE, where the former has been observed [42].
Importantly, the resonance-enhanced energy transfer can be
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FIG. 1. Setup for the heat transfer in an optomechanical system
consisting of one cavity and two mechanically moving mirrors. The
cavity mode (ac) with frequency ωc is coupled to the mechanical
modes (b1 and b2) with frequencies ω1 and ω2 via the radiation pres-
sure. The radiation pressure drives the SPOC and the DCE, which
are marked by gs and gDCE. The cavity and mechanical oscillators
are coupled to external baths with coupling strengths γ1, γ2, and κc.
Assuming that the baths are in thermal equilibrium with temperatures
TL , TR, and TC . The cavity is driven by an external weak laser field
with frequency ωL and amplitude E .

obtained, which yields a way to highlight the DCE’s role in
the heat transfer.

II. MODEL AND METHOD

The optomechanical system in Fig. 1 is composed of a
cavity and two mechanical resonators; their interaction is via
the radiation pressure. The cavity and the two mechanical
oscillators are coupled to the thermal baths. The model Hamil-
tonian is

H = Hs + Hb + Hs−b, (1)

where Hs describes the optomechanical system (h̄ = 1)

Hs = ωca†
cac +

∑

j=1,2

ω jb
†
jb j + Ea†

ce−iωLt + E∗aceiωLt

+
∑

j=1,2

gs(b
†
j + b j )a

†
cac

+ 1

2

∑

j=1,2

gDCE(b†
j + b j )

(
a†2

c + a2
c

)
, (2)

where a†
c (ac) and b†

j (b j ) are the creation (annihilation) oper-
ators of the cavity mode and the mechanical oscillator with
frequencies ωc and ω j , respectively. The cavity is driven
weakly by a monochromatic field with frequency ωL and
strength E , which has been realized experimentally in a sim-
ilar setup [42]. The second and third lines in Eq. (2) are
produced by the radiation pressure, which depends quadrat-
ically on the cavity field [43,44], such that the standard SPOC
(second line) and the DCE (third line) appear. Physically, the
motion of the mirrors (b†

j + b j) changes the cavity occupancy
number (a†

cac) and produces photon pairs (a†2
c + a2

c). gs and
gDCE represent the corresponding optomechanical-coupling
strengths, which are determined by the zero-point-fluctuation
amplitude of the mirrors, the frequency of the cavity, and
the distance between two mirrors [22,43–45]. Note that gs =
gDCE in practical optomechanical systems [22,37,43,44], and
the two symbols in our case are just to distinguish the SPOC
and the DCE. The time dependence of Hs can be elimi-
nated by a rotating-frame transformation with respect to the

control field frequency ωL by introducing a unitary operator
O(t ) = e−iωLa†

c act , such that Hs can be transformed into a time-
independent form via the relationship Hs = O†(t )HsO(t ) −
iO†(t ) ∂O(t )

∂t = O†(t )(Hs − ωLa†
cac)O(t ). Consequently, the

effective Hamiltonian of the optomechanical system can be
obtained as

Hs = �ca†
cac +

∑

j=1,2

ω jb
†
jb j + Ea†

c + E∗ac

+
∑

j=1,2

gs(b
†
j + b j )a

†
cac

+ 1

2

∑

j=1,2

gDCE(b†
j + b j )

(
a†2

c + a2
c

)
, (3)

where �c = ωc − ωL is the detuning of the cavity mode from
the driving field.

The three baths are assumed to be independent of each
other and take the form

Hb =
∑

k∈L

ωLkb†
LkbLk +

∑

k∈R

ωRkb†
RkbRk +

∑

k∈C

ωCkb†
CkbCk,

(4)

where b†
αk (bαk ) is the creation (annihilation) operator of a

phonon or photon with state k in bath α = L, R,C with fre-
quency ωαk .

The system-bath coupling Hamiltonian is

Hs−b =
∑

k∈L

(tLk,1b†
Lkb1 + t∗

Lk,1b†
1bLk )

+
∑

k∈R

(tRk,2b†
Rkb2 + t∗

Rk,2b†
2bRk )

+
∑

k∈C

(tCk,cb†
Ckac + t∗

Ck,ca†
cbCk ), (5)

where tLk,1 and tRk,2 are the coupling constants for phonon and
energy transfer between the mechanical modes and the baths.
tCk,c is the cavity-bath coupling rate.

To study the thermal transport properties of the consid-
ered model, we employ the master-equation approach in the
quantum regime. Under the framework of the Born-Markov
approximation, the dynamics of the optomechanical system
can be described by the following master equation [46–49]:

ρ̇(t ) = −i[Hs, ρ(t )] +
∑

j=1,2

∑

α=L,R

γ j

2
{nα

BLb†
j
[ρ(t )]

+ (nα
B + 1)Lb j [ρ(t )]}

+ κc

2

{
nC

BLa†
c
[ρ(t )] + (

nC
B + 1

)
Lac [ρ(t )]

}
, (6)

where ρ(t ) is the density matrix of the system.
LA[ρ(t )] describes the system-bath interaction for
LA[ρ(t )] = 2Aρ(t )A† − A†Aρ(t ) − ρ(t )A†A, with the
operator A = b†

j, b j (a†
c, ac) and the coupling rate γ j (κc)

for the mechanical mode (cavity). In the wide-band limit,
the coupling rates γ1(ω) = 2π

∑
k∈L |tLk,1|2δ(ω − ωLk ),

γ2(ω) = 2π
∑

k∈R |tRk,2|2δ(ω − ωRk ), and κc(ω) =
2π

∑
k∈C |tCk,c|2δ(ω − ωCk ) are assumed to be frequency

independent. Then, we take γ j (ω) = γ j and κc(ω) = κc.
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FIG. 2. (a) Equal-time second-order correlation functions g(2)
1 (0), g(2)

2 (0), and g(2)
c (0) as a function of the Casimir interaction gDCE.

(b) Effective temperature of the mechanical modes T eff
1 and T eff

2 versus the Casimir interaction gDCE. (c) Heat fluxes JL , JR, and JC versus
the Casimir interaction gDCE calculated by Eqs. (8) and (9). (d) Cavity mean photon number 〈a†

cac〉 and correlation function Re[〈a†
ca†

c〉] versus
the Casimir interaction gDCE. The temperatures of the three baths are taken as TL = T0 + δT , TR = T0, and TC = T0. The other parameters
are ω1/2π = ω2/2π = ωm/2π = 5 GHz, ωc = 2 ωm, gs = 0.04 ωm, κc = 10−6 ωm, γ1 = 10−4 ωm, γ2 = 10−4 ωm, T0 = 50 mK, δT = 25 mK,
ωL = 0, and E = 0.

nα
B = 1/(eh̄ω j/kBTα − 1) and nC

B = 1/(eh̄ωc/kBTC − 1) are
Bose-Einstein distributions, where j = 1(2) corresponds to
α = L(R). Here, we use the quantum master equation of the
Lindblad form, where the system-bath interaction is assumed
to be weak [50,51], that is, γ j, κc � ω j, ωc. We also assume
that the baths couple locally with the cavity and the mirrors,
which is usually called the local master equation [52–55].
Our choice is reliable when the cavity-mirror coupling
is sufficiently weak, that is, gs, gDCE � ω j, ωc. Beyond
this regime, one should use the global master equation,
where the baths couple to global degrees of freedom of the
optomechanical system [53,54,56]. If not, the violation of
the second law of thermodynamics from the local master
equation may take place [57,58].

The internal energy of the present system can be writ-
ten as U = Tr{ρ(t )Hs}; then we have U̇ = Tr{ρ̇(t )Hs} +
Tr{ρ(t )Ḣs}, where the first term corresponds to the total heat
flux Jtot (t ) = Tr{ρ̇(t )Hs} from the baths to the system and
the second term describes the power Ẇ = Tr{ρ(t )Ḣs}. In our
case, Ẇ = 0, such that Jtot (t ) = U̇ = Tr{ρ̇(t )Hs}. Based on
the master equation in Eq. (6), we have

Jtot (t ) =
∑

j=1,2

∑

α=L,R

γ j

2
Tr({nα

BLb†
j
[ρ(t )]

+ (nα
B + 1)Lb j [ρ(t )]}Hs)

+ κc

2
Tr

({
nC

BLa†
c
[ρ(t )] + (

nC
B + 1

)
Lac [ρ(t )]

}
Hs

)
.

(7)

Finally, the heat flux flowing from the baths to the system can
be defined as

Jα (t ) = χ

2
Tr({nα

BLβ† [ρ(t )] + (nα
B + 1)Lβ[ρ(t )]}Hs), (8)

where α labels the bath and its annihilation operator is marked
by β. χ is the coupling strength between the bosonic mode
and the bath. Here, α = L, R,C corresponds to β = b1, b2, ac

and χ = γ1, γ2, κc. In the steady state, U̇ = Tr{ρ̇(∞)Hs} =
0, one can get the energy conservation, that is, JL + JR + JC =
0 for t → ∞. To calculate the heat flux JL,R,C , one needs
to get the steady-state density matrix. The matrix elements
of the cavity-mirror density operator ρ(t ) can be defined as
ρnc,n1,n2;n′

c,n
′
1,n

′
2
(t ) := 〈nc, n1, n2|ρ(t )|n′

c, n′
1, n′

2〉, where nc(n′
c)

and n1, n2(n′
1, n′

2) refer to the Fock states of the cavity and the
mechanical modes. By using Eq. (6), we can obtain the time
evolution of the matrix elements, such as ρ̇nc,n1,n2;n′

c,n
′
1,n

′
2
(t ). In

the steady state, ρ̇nc,n1,n2;n′
c,n

′
1,n

′
2
(∞) = 0, a coupled set of equa-

tions can be found. By truncating the bosonic Hilbert space
in a certain order, for our case max{nc, n1, n2, n′

c, n′
1, n′

2} = 5,
the steady-state matrix elements can be achieved.

On the other hand, one may use the empirical formula to
calculate the steady-state flux [27,42]

Jα = χkB
(
Tα − T eff

B
)
, (9)

where α = L, R,C corresponds to B = 1, 2, c and χ =
γ1, γ2, κc. T eff

1,2,c represents the effective temperature of the me-
chanical modes and the cavity mode. When the three bosonic
modes are in the thermal state [59], we can define their
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FIG. 3. Frequency dependence of the mechanical power spec-
trum S1(ω) (black solid line) and S2(ω) (red dashed line) calculated
for different gDCE. The other parameters are the same as in Fig. 2.

effective temperatures as

T eff
1,2,c = h̄ω1,2,c/kB

ln(1/〈n1,2,c〉 + 1)
, (10)

where n j = b†
jb j and nc = a†

cac. Note that the effective tem-
perature is defined under the assumption that the bosonic
modes are in thermal equilibrium. In general, the equal-time
second-order correlation functions can be used to characterize
the states of the three bosonic modes and test the applicability
of the effective temperature and are defined as

g(2)
j (0) = 〈b†

jb
†
jb jb j〉

〈b†
jb j〉2

, g(2)
c (0) = 〈a†

ca†
cacac〉

〈a†
cac〉2

. (11)

III. RESULTS AND DISCUSSION

Before showing the results, we note that both the
SPOC and the DCE exist in real optomechanical sys-
tems [22,27,37,42–44]. For ω j � ωc, the DCE can be
ignored [2]. For ω j ∼ ωc, both the SPOC and the DCE may
play a key role in the heat transfer. In Figs. 2–4, and 9. we will
fix gs (gDCE) to study the dependence of heat transfer on the
DCE (SPOC).

A. DCE-induced heat transfer

First, we consider that the cavity is not driven by coherent
light, that is, ωL = 0 and E = 0. In Fig. 2(a) the equal-time
second-order correlation functions for the cavity g(2)

c (0) and
the mechanical mode g(2)

j (0) are calculated as a function of
the Casimir interaction gDCE. For gDCE = 0, the three bosonic

FIG. 4. (a) Effective temperature of the mechanical modes T eff
1

and T eff
2 as a function of the SPOC gs for the indicated values of the

Casimir interaction gDCE. The temperature of bath L (R) is marked
by upper (lower) shading. (b) Similar to (a), but for heat fluxes JL

and JR. The other parameters are the same as in Fig. 2.

modes are respectively coupled to a thermal bath and therefore
in the thermal state, such that g(2)

c (0) ≈ 2, g(2)
1 (0) ≈ 2, and

g(2)
2 (0) ≈ 2. When gDCE increases, g(2)

c (0) is always greater
than 2, indicating that the Casimir photon pair is emitted from
the cavity. Meanwhile, the two mechanical modes are in the
thermal state even for large values of gDCE. Then, we can
introduce an effective temperature T eff

j to describe the ther-
modynamic properties of the mechanical mode j, as shown
in Fig. 2(b). When gDCE = 0, the two mechanical modes have
the same temperature as the baths near them, that is, T eff

1 = TL

and T eff
2 = TR. As expected, T eff

1 (T eff
2 ) decreases (increases)

with increasing gDCE, and finally, the two mechanical modes
have almost the same temperature, with T eff

1 ≈ T eff
2 . The rea-

son is as follows. Both mechanical modes are coupled to the
cavity; then a nonlocal interaction between the mechanical
modes is established through the DCE. Therefore, the me-
chanical quantum excitations and energies can be exchanged
between them. As a result, a net heat flux can be produced,
as shown in Fig. 2(c). We consider two approaches, indicated
by Eqs. (8) and (9), to calculate the heat flux. The heat flux
flowing from the baths (L and R) to the system for the two
methods are consistent qualitatively. Note that the energy con-
servation from Eq. (8) is satisfied, that is, JL + JR + JC = 0.
We cannot define an effective temperature for the cavity mode
in the bunched state, so the heat flux from the corresponding
bath to the system is not calculated by Eq. (9).

It is noted that the results in Figs. 2(a)–2(c) are obtained
by setting gs = 0.04ωm. Even in the presence of the SPOC,
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the cavity and the mechanical modes do not deviate from their
thermal equilibrium with the baths when the DCE is absent.
Consequently, we attribute the observed energy transfer solely
to the indirect mechanical coupling induced by the DCE,
which is consistent with a recent experiment [27]. The behav-
ior is also visible in the DCE dependence of the cavity mean
photon number 〈a†

cac〉 and correlation function Re[〈a†
ca†

c〉]
[see Fig. 2(d)]. As gDCE increases from 0 to 0.04 ωm, the value
of 〈a†

cac〉 does not start from 0 because the cavity is coupled
to a nonzero temperature bath. The finite populations in the
cavity cannot lead to an energy exchange between the two
mechanical modes, as shown in Figs. 2(b) and 2(c). However,
a finite value of gDCE yields a correlation of Re[〈a†

ca†
c〉] =

Re[〈acac〉], which can build a nonlocal interaction between
the mechanical modes induced by the Casimir two-photon
process.

The power spectrum for the two mechanical modes,
S j (ω) = ∫ ∞

−∞〈b†
j (t )b j (0)〉e−iωt dt , is shown in Fig. 3 for dif-

ferent gDCE. When the DCE is weak, the mechanical spectrum
exhibits one peak for each mode, although the heights of the
two peaks are different due to the temperature bias applied.
This indicates that the two mechanical modes are not coupled
via the DCE. For large gDCE, mechanical spectra with two
well-defined peaks are displayed, where the mode splitting
occurs, and the separation between the peaks increases by
increasing gDCE. Thus, we claim that an effective exchange
interaction between the mechanical modes becomes enhanced
with increasing gDCE. Such a dependence is consistent with
Figs. 2(b) and 2(c), as observed in a recent experiment [27].

In order to further reveal how the DCE influences the heat
transfer, Fig. 4(a) shows the variation of T eff

1 and T eff
2 with

gs for indicated values of gDCE. In the absence of the DCE,
that is, gDCE = 0, one can see that T eff

1 = TL and T eff
2 = TR.

Thus, the heat transfer becomes suppressed and disappears
completely; see the black solid (dashed) line (JL = JR = 0) in
Fig. 4(b). Once the DCE is introduced, the effective tempera-
ture of mechanical mode 1 (2) is always less (larger) than the
temperature of bath L (R), that is, T eff

1 < TL and T eff
2 > TR,

indicating that the modes deviate from thermal equilibrium
with the baths. Consequently, the heat flux becomes nonzero,
and its value depends on the relative magnitude of the Casimir
interaction; that is, JL and −JR increase by increasing gDCE.
Note that the values of T eff

1,2 and JL,R are almost unchanged by
varying gs. Thus, the key implication from the above discus-
sion is that the energy transfer between the mechanical modes
is caused by only the DCE. This again directly proves the
results in Fig. 2.

B. Resonance-enhanced heat transfer

The heat transfer discussed above is determined by the
strength of the DCE. If the DCE is very weak, such as
gDCE < 0.004 ωm, mechanical mode 1 decouples completely
from mechanical mode 2, and the heat transport vanishes [see
Figs. 2(b), 2(c) and 3]. Figure 5(a) displays the heat flux
JL,R,C versus the cavity frequency ωc. As ωc < 0.5 ωm (ωc >

0.5 ωm) increases (decreases) approaching the resonant posi-
tion ωc = 0.5 ωm, the heat transfer is enhanced substantially.
This is because the energy conversion of the cavity to the me-
chanical modes induced by the resonant DCE is energetically

FIG. 5. (a) Heat fluxes JL , JR, and JC as a function of the cavity
frequency ωc. Frequency dependence of the power spectrum calcu-
lated for (b) ωc = 0.49 ωm, (c) ωc = 0.5 ωm, and (d) ωc = 0.51 ωm.
Both the SPOC and the DCE are considered here, and we take
gs = gDCE = 0.0004 ωm. The other parameters are the same as in
Fig. 2.

favorable to achieve the resonance-enhanced heat transfer be-
tween the mechanical modes. Correspondingly, mechanical
mode splitting at the resonant frequency is clearly shown in
the power spectrum [see Fig. 5(c)]. When the cavity frequency
deviates from the resonance, the mechanical mode splitting
disappears [see Figs. 5(b) and 5(d)], and consequently, the
heat fluxes JL and −JR decrease significantly. Unlike the case
in Fig. 2, the resonance-enhanced heat transfer does not rely
on the large gDCE, indicating that the energy transfer between
mirrors may take place when they are far apart, for example,
in the range of a few hundred nanometers. In this region, the
energy transfer induced by the near-field thermal radiation
almost disappears [60–66]. Meanwhile, the near-field thermal
radiation is independent of the frequency matching. In such
a case, the role of the DCE in energy transfer may be high-
lighted. Our proposal was not observed experimentally [27]
and is a consequence of a resonance-enhanced energy transfer
process. We note that, in many optomechanics experiments,
the mechanical frequency of the mirror is far from the cav-
ity frequency. To make the cavity and mechanical modes
resonate, one can tune the cavity frequency by squeezing
itself [34,67–69].

Figure 6(a) presents the heat flux JL,R as a function of
the optomechanical-coupling strength gs = gDCE for different
values of the cavity frequency ωc. When the cavity frequen-
cies are comparable to the mechanical frequency, 0.49 ωm �
ωc � 2 ωm, the heat fluxes are independent of ωc for large
gs = gDCE. However, at high cavity frequencies ωc � ωm, JL

and −JR decrease with increasing ωc for the whole range of
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FIG. 6. (a) Heat fluxes JL and JR as a function of the optomechanical-coupling strength gs = gDCE for different cavity frequencies ωc.
(b) Enlarged image of the region (0, 0.001 ωm ) in (a). The other parameters are the same as in Fig. 5.

gs = gDCE. In this case, for example, ωc = 200 ωm, the role of
the DCE in the heat transfer can almost be ignored. Here, we
focus on the weak-optomechanical-coupling case, as shown in
Fig. 6(b). As expected, the resonant DCE for ωc = 0.5 ωm re-
sults in an effective mechanical coupling, and hence, the heat
transfer is enhanced significantly, which is more pronounced
in the shading marked in Fig. 6(b). We show the case of weak
cavity-bath coupling in Fig. 5. By increasing the coupling rate
κc, an activated behavior of the heat flux is not found in Fig. 7.
This means that the resonance-enhanced heat transfer weakly
relies on κc. Note that, for κc = 0, our device is simplified to
the two-terminal case, such that JL = −JR.

In Fig. 8, we plot the heat flux JL,R,C as a function of
the mechanical frequency ω2 for ω1 = ωm and ωc = 0.5 ωm.
At ω2 = ω1, the cavity and the mechanical modes are res-
onant, resulting in an enhanced heat transfer between the
mechanical modes, as discussed in Fig. 5. It is obvious that
for ω2 
= ω1, the efficiency of the energy transfer is signif-
icantly reduced. As shown in the inset, in the nonresonant
region ω2 ∈ (0.993 ω1, 0.995 ω1), the heat flux injected from
the left bath mainly flows into the bath coupled to the cavity
instead of the right one. Thus, the energy exchange between
the mechanical modes cannot be established effectively. This
indicates that the resonance-enhanced energy transfer in Fig. 5

FIG. 7. Heat fluxes JL and JR as a function of the cavity-bath
coupling rate κc for two cavity frequencies, ωc = 0.49 ωm and ωc =
0.5 ωm. The other parameters are the same as in Fig. 5.

is more pronounced when the mechanical frequencies ω1 and
ω2 are closer to each other.

C. Laser-driven cavity

In Secs. III A and III B, the heat transfer is dominated by
the DCE when the cavity is not driven by coherent light.
Once the laser is introduced, the SPOC-induced indirect in-
teraction between mechanical modes can be observed, such
that the heat flux can be driven by a temperature bias [41,42],
where the DCE is not considered. Thus, it is also interesting
to study the DCE-dependent heat flux in the presence of the
coherent light, as shown in Fig. 9. The contribution of the
SPOC to heat transfer is mainly due to cavity-induced non-
local interactions, as discussed in previous studies [41,42].
The explicit DCE dependence of the heat flux may provide
important information about such optomechanical systems.
Especially, the DCE-mediated heat transfer survives even for
ωc � ωm (not shown here). This indicates that both the SPOC
and the DCE can yield nonlocal energy transfer, which can be

FIG. 8. Heat fluxes JL , JR, and JC as a function of the mechanical
frequency ω2 with ω1 = ωm and ωc = 0.5 ωm. The inset shows an
enlarged image of the region (0.993 ω2/ω1, 0.995 ω2/ω1). The other
parameters are the same as in Fig. 5.
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FIG. 9. Heat flux JL as a function of the optomechanical-
coupling strength (gs, gDCE). For the laser, we take ωL = ωc − ωm

and E = 0.05 ωm. The other parameters are the same as in Fig. 2.

further enhanced by combining the two interactions. In this
case, one cannot separate out the role of the DCE in heat
transfer from the optomechanical couplings.

Let us now study how the laser field affects the energy
transfer process. We plot the dependence of the heat flux JL,R

on the laser frequency ωL in Fig. 10(a). It is clear that local
maxima of JL and −JR appear at the point where ωL = 1.5 ωm

(equivalent to �c = 0.5 ωm), which can be attributed to the
resonance-enhanced energy transfer. In this case, both the
SPOC and the DCE are considered, while the resonance-
enhanced heat transfer is induced by the DCE. This is because
g(2)

c (0) is greater than 2 in the resonant regime [see Fig. 10(b)],
indicating that the bunched photons induced by the DCE emit-
ted from the cavity appear. As expected, a maximum value of
〈a†

cac〉 is also obtained around the resonant point, as shown
in Fig. 10(b). Thus, the heat transfer induced by the DCE
in such optomechanical systems can then be controlled by a
laser field and can be completely enhanced by resonance. In
detail, energy can be transferred from one mechanical mode to

FIG. 10. Laser field dependence of heat fluxes JL and JR for
gs = gDCE = 0.0004 ωm. (b) The same as in (a) calculated for the
cavity equal-time second-order correlation function g(2)

c (0) and mean
photon number 〈a†

cac〉. The other parameters are the same as in Fig. 9.

the other in a controlled way. This is thanks to the controlled
modulation of the laser frequency ωL, which can make the
cavity and mechanical modes reach resonance. Very recently,
laser-controlled heat transfer mediated by the SPOC was re-
alized experimentally [42]; one may expect its application to
the resonance-enhanced process manifested by the DCE.

IV. CONCLUSION AND OUTLOOK

By employing the quantum master-equation method, we
studied the effect of the SPOC and the DCE on the heat
transfer in an optomechanical system composed of one optical
cavity and two mechanical resonators with or without a laser
field. In the absence of the laser, we remark that only the
DCE-induced indirect coupling between mechanical modes
can yield an observable heat transfer driven by a tempera-
ture bias, which is consistent with a recent experiment [27].
When the cavity is driven by the laser, the nonlocal heat
transfer induced by both the SPOC and the DCE can be found.
Particularly interesting for applications is our finding of the
resonant-DCE-enhanced heat transfer. This not only provides
a possibility to control the energy transfer actively but also
allows one to highlight its dependence on the DCE.

In our model, the cavity contains only one mode, which
is a valid approximation when the other cavity modes can-
not be excited effectively by the mechanical motion of the
mirrors. This happens when the frequencies of the cavity
modes are not evenly distributed in space [70,71] or the
mechanical frequencies are far from the frequency spacing
between neighboring cavity modes [43,44,72,73]. Beyond this
approximation, an important consequence of the introduction
of a multimode cavity with mode-mode coupling is that extra
transport channels between mechanical modes appear. Then,
the heat transfer induced by the DCE in the resonant region
may be enhanced, which remains to be analyzed.

Another platform that achieves the DCE is supercon-
ducting circuits [32,74], where a superconducting quantum
interference device (SQUID) is positioned near the transmis-
sion line and then the boundary condition of the line can be
adjusted by the SQUID. Recently, a doubly tunable supercon-
ducting resonator has been proposed to produce a microwave
photon induced by the DCE [75], in which both ends are
coupled to a SQUID. When the two SQUIDs are pumped by
magnetic fluxes with different phases, the device is equivalent
to a cavity with two movable mirrors; then the generation of
photons by the resonant DCE is affected by the interference
effects. From the perspective of heat transport, how one cap-
tures the interference effects in thermodynamic signals (such
as heat flux) induced by the DCE is interesting. In turn, it is
also possible to use such interference effects to regulate heat
transport.
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