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Spatially engineered photons from spontaneous parametric down-conversion (SPDC) are a valuable tool for
studying and applying photonic entanglement. An advantage of SPDC is that simple expressions for the two-
photon state can be obtained using justified approximations. In particular, the thin-crystal approximation has
often been invoked in the engineering of high-dimensional entangled states. Knowledge of the conditions under
which the thin-crystal approximation remains valid is essential for the realization of experimental setups. We
provide a quantitative guideline on the validity of the thin-crystal approximation in calculating the two-photon
spatial state. In particular, we show that the applicability of this regime is related to the focusing parameter
wp = wp/

√
λp L, where wp and λp are the beam waist and wavelength of the pump beam, respectively, and L is

the length of the nonlinear crystal. Additionally, the validity of the thin-crystal regime is investigated concerning
the size of a subspace in the Laguerre Gaussian basis, into which the two-photon state can be projected in a given
experiment.
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Spontaneous parametric down-conversion (SPDC) is a
nonlinear (optical) process that converts high-energy photons
by a nonlinear crystal into pairs of entangled photons, also
known as signal and idler. In general, these pairs of pho-
tons can be entangled in either time bins [1–4], polarization
[5–8], path [9], or in the spatial degree of freedom [10–14]
depending on the interplay between pump field and interaction
geometry. The efficiency of the photon-pair generation hereby
depends on the fulfillment of the wave vector conservation,
δk ≈ 0, also called phase-matching condition.

The phase-matching or momentum conservation condi-
tion can be achieved for specific target emission directions
and wavelengths by techniques such as quasi-phase-matching
or birefringent phase-matching [15]. Thereby one distin-
guishes between type-I [16] and type-II [17,18] interactions,
depending on the polarization of interacting fields (see
Fig. 1).

The characteristics of SPDC pairs can also be well ex-
plained theoretically [19–21]. The state of a photon pair also
called the two-photon state, is derived from the second-order
perturbation theory. The third order of the perturbation theory
gives rise to four photons generation, which is an unlikely
process and can be neglected. Here, we consider particular
experimental setups of SPDC, namely collinear and paraxial
geometries. The collinear geometries refer to the situation
where the pump, signal, and idler beams propagate nearly in
the same direction. If the angles between these beams is in the
range 0 − 5◦, the collinear regime could be still assumed well
fulfilled. Note that noncollinear geometries cause a violation
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of the conservation of orbital angular momentum in SPDC
[22]. Paraxial geometries, in turn, assume that the transverse
component of the momentum vector is much smaller than
the longitudinal component for each of the three beams. Any
research under these conditions will still be of great interest
since most experiments are performed in these regimes. For
simplicity, we will also assume that the refractive indices at
the pump, signal, and idler wavelengths are equal np ≈ ns ≈
ni. For instance, this is a good approximation for β-barium
borate (BBO) crystal in a large range of wavelengths λp =
200 − 1000 nm [23].

Experimentalists also often use approximations to model
experimental setups. An often-utilized approximation is the
assumption of a narrow-band spectrum for the signal and idler
beams. Usually, signal and idler beams are not spectrally pure.
They possess anticorrelation over many frequency modes,
which may preclude any observation of multi-photon interfer-
ence. This is, in turn, catastrophic for entanglement-swapping
protocol [24]. For this paper, we consider the frequency state
independent of the spatial state, i.e., there are no correlations
between spectral and spatial state. Experimentally this sce-
nario is readily obtained by placement of interference filters
in front of the detectors.

The next approximation, which has been widely used in
theoretical [22,25] and experimental [26–30] investigations,
is the thin-crystal approximation: If the crystal length is
much smaller than the Rayleigh range of the pump beam,
L � zR, the two-photon state is independent of the crystal
features. Moreover, in this thin-crystal approximation, the
two-photon state can be shaped by adjusting the pump beam.
This property has been used previously in order to engineer
high-dimensional entangled states [31–35].
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FIG. 1. Refractive index of birefringent materials depends on the polarization and propagation direction of the incident light. Consider the
plane formed by the optic axis of the crystal and the propagation direction of the incident beam. The light is then called “ordinary polarized”
(o-polarized) if its polarization direction is perpendicular to that plane. It is called “extraordinary polarized” (e-polarized) if its polarization
direction is parallel to the plane mentioned above. Subfigure (a) shows the type-I phase matching. The signal and idler beams form a single
cone and are both polarized in the ordinary direction. In contrast, the pump beam is polarized in an extraordinary direction. (b) In type-II
phase matching, the pump beam is again polarized in an extraordinary direction. However, here the signal and idler beams have different
polarization and form two cones. Note that the polarization states of signal and idler photons are indistinguishable in the intersection points
of two cones. Furthermore, in collinear geometries, the opening angle of cones is very small, and the beams propagate almost in the same
direction. Subfigures (a) and (b) do not represent the collinear geometries, but they are just for the illustrations of general type-I and type-II
phase matching geometries. The angle between signal (idler) and pump beams in collinear experimental setups can be up to 5◦. Paraxial
geometries mean that the deviation from propagation directions is negligible, i.e., the transverse momentum of the beam is much smaller than
the longitudinal component. Subfigure (c) indicates the experimental scenario, where two pump beams with different focusing parameters
wp = 0.1 (dashed curves) and wp = 2 (solid curves) are focused in the middle of a crystal of length L. We see that the curvature of the beam
with large wp does not change during the propagation in the crystal. Hence, the change of the pump beam focusing plane would cause no
change in the two-photon state. Subfigure (d) show the mode distribution of two-photon state in LG basis for different focusing parameters.
The plots have been calculated with the amplitudes of the thick-crystal regime C�s,�i

ps,pi
in the subspace ps,i = 0, 1 and �s,i = −2, −1, 0, 1, 2.

The larger wp is, the better is the thin-crystal approximation justified. Moreover, the deviation between the same modes from the thick- and
thin-crystal regimes increases with the mode number 2p + �.

The accessibility of the investigations in the thin-crystal or
narrow-band regimes depends on the validity of these approx-
imations. Therefore, the determination of the limits of both
regimes attaches importance. Here, we will investigate only
the thin-crystal approximation assuming that the narrow-band
regime is valid. The investigation of the limits of the narrow-
band regime remains still an exciting topic for future studies.

Previously, the thin-crystal regime has been investigated
by Ramírez et al . [36]. For a given pump beam radius wp,
they introduced a critical length of the crystal Lc, with the
following property: If the crystal length is smaller than the
critical length L < Lc, the crystal properties are suppressed,
and the pump beam features determine the angular spectrum
of generated photons. However, a quantitative discussion of
the two-photon mode distribution depending on the validity
of the thin-crystal approximation is still missing. Here, we
will analyze how the Rayleigh range of the pump beam or
the crystal length should be chosen in order to reach a good
fulfillment of the thin-crystal regime.

To analyze the thin-crystal approximation, we need first to
construct the spatial structure of the two-photon state for the
thick and thin-crystal regimes. Secondly, we should define a
quantity to determine the distance between these two states.

Let us start with the expression of the two-photon state in
the thick-crystal regime [20,28],

|�SPDC〉 = A
∫∫

dqs dqi �(qs, qi ) â†
s (qs) â†

i (qi ) |00〉 , (1)

where A is a normalization factor, |00〉 is the vacuum state,
qs,i are the transverse components of the signal and idler wave
vectors, and â†

s,i(qs,i ) are the creation operators of the signal
and idler modes. The form of the two-photon state (1) refers
to creating two photons from the vacuum state, where all
possible transverse momenta of signal and idler photons are
considered through the integration in the momentum space.
The so-called two-photon mode function �(qs, qi ) describes
the coupling between the wave vectors of the pump, signal,
and idler beams. It consists of the product of the angular
spectrum of the pump beam and the phase-matching function
[37]:

�(qs, qi ) =
Pump︷ ︸︸ ︷

V(qs + qi ) sinc

(
L|qs − qi|2

4kp

)
︸ ︷︷ ︸

Phase Matching

. (2)
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This expression refers to an experimental scenario, where a
pump beam with a wave vector kp = 2zR/w2

p propagates along
the z axis and interacts with the nonlinear crystal of length L
placed in the x − y plane at z = −L/2 (see Fig. 1). Despite the
simple form of the two-photon mode function (2), it describes
many experimental results very accurately [38–41].

Let us now consider the condition of the thin-crystal ap-
proximation L � zR. Under this condition, the argument of
the sinc function becomes very small. Consequently, the func-
tion itself can be approximated to one. Next, we replace all
functions from Eq. (1) with their Fourier transform and ex-
ecute the integration over qs and qi. It is then easy to show
that the four-dimensional integration in momentum-space can
be replaced by a mathematically more straightforward two-
dimensional integral in real space [20,42],

|�̃SPDC〉 =
∫

dr⊥V(r⊥) â†
s (r⊥) â†

i (r⊥) |00〉 , (3)

where the t ilde refers to the thin-crystal regime, r⊥ is the
radial coordinate with regard to the beam axis, and V(r⊥) is
the spatial distribution of the pump beam at the input face
of the crystal. The investigation of the transition from the
thick-crystal (1) to the thin-crystal regime (3) is the main topic
of this paper.

As we mentioned before, here we are interested in the
spatial structure of the two-photon state that can be expressed
as a mode decomposition in terms of Laguerre Gaussian (LG)
modes |p, �〉 = ∫

dq LGp,�(q) â†(q) |0〉 [25,37,42],

|�SPDC〉 =
∞∑

ps,pi=0

∞∑
�s,�i=−∞

C�s,�i
ps,pi

|ps�s; pi�i〉 , (4)

where ps,i and �s,i are the discrete mode numbers of signal
and idler photons, also called the radial and orbital angular
momentum numbers [43]. The expansion coefficients in the
thick- and thin-crystal regimes are given respectively by

C�s,�i
ps,pi

=
∫∫

〈ps�s; pi�i|�SPDC〉

=
∫∫

dqs dqi �(qs, qi )
[
LGps,�s (qs)

]∗[
LGpi,�i (qi )

]∗
,

(5)

C̃�s,�i
ps,pi

=
∫∫

〈ps�s; pi�i|�̃SPDC〉

=
∫

dr⊥V(r⊥)
[
LGps,�s (r⊥)

]∗ [
LGpi,�i (r⊥)

]∗
. (6)

If the sums run over all possible p and �, the state (4) is
independent of the choice of the basis. On the other hand, the
signal-to-noise ratio increases with selected values of p and
�, leading to difficulties in detecting high modes. Therefore,
most of the spatial correlation experiments are performed in
small subspaces. Mathematically subspace means that the
summation in Eq. (4) is restricted to a particular range of p and
�. Therefore, we will discuss the validity of the thin-crystal
regime also for in experiments available spatial subspace. As
a pump laser, we will consider a Gaussian beam, as it is the
most used pump beam in SPDC experiments:

V(qs + qi ) = wp√
2π

exp

(
−w2

p

4
|qs + qi|2

)
.

The two-photon states are then constructed using Eq. (4),
where C�s,�i

ps,pi
are calculated numerically [25], and C̃�s,�i

ps,pi
are

received from an analytical expression [32,42].
We can now construct the states from the thick- and thin-

crystal regimes. However, we are still missing the quantity,
which should determine the similarity of these two quantum
states. For this goal, we can use an appropriate distance mea-
sure such as fidelity or trace distance. For the states from
Eqs. (1) and (3), the trace distance is then given by [44]

D =
√

1 − |〈�̃SPDC|�SPDC〉|2, (7)

where the scalar product |〈�̃SPDC|�SPDC〉| is the fidelity of
these two states. In general, if two quantum states are iden-
tical, the scalar product between them is equal to one, and
consequently, the trace distance D = 0. However, if the states
are perpendicular, the scalar product is equal to zero, repre-
senting the trace distance D = 1. In the following, we analyze
the dependence of the trace distance on crystal and pump
beam parameters and find conditions that minimize D. This
will determine under which experimental conditions the thin-
crystal approximation has very good predictive behavior.

The normalized amplitudes C�s,�i
ps,pi

in the LG-mode decom-
position can be shown to depend only on the dimensionless
focusing parameter wp defined by [37]

wp = wp√
λp L

=
√

zR

π np L
, (8)

where np is the refractive index that the pump beam of wave-
length λp experiences in the crystal. Note, that we chose for
the LG waists ws and wi of signal and idler modes to be
equal to wp. The perfect thin-crystal regime is reached in the
limit case L/zR → 0, which means for the focusing parameter
wp → ∞. Nevertheless, we can assume a good agreement be-
tween the thick- and thin-crystal regimes even for small values
of the focusing parameter when one deals with small spatial
subspaces in respect of p and � (see Fig. 1). Furthermore, since
the amplitudes of the thick (5) and thin (6)-crystal regimes
depend only on wp, from Eq. (7) follows that the trace distance
D is also uniquely determined by wp. This statement can be
confirmed if the relation wp ∝ √

λp L applies for a fixed trace
distance D [see Eq. (8)], which we will investigate next.

Figure 2 shows the trace distance D as a function of the
crystal length L and the beam waist wp for the typical wave-
length λp = 405 nm. The thin-crystal approximation is well
fulfilled in the white region (upper left quarter), whereas in
the purple region (region under solid line), it is not justi-
fied. Any calculations in the purple area would lead to a
deviation from the thin-crystal regime and strongly affect
the spatial mode distribution of the two-photon state. Espe-
cially, spatially engineered high-dimensional, entangled states
based on thin-crystal approximation will dramatically change
if the approximation is not well satisfied. In principle, if the
pump beam waist is large enough, a good fulfillment of the
thin-crystal regime can be reached for any crystal length.
Furthermore, we also indicated in Fig. 2 the curves with
conditions D = 0.1 (dashed line) and D = 0.5 (solid line) to
confirm the expected relation wp ∝ √

L. As we can see, the
smaller the selected trace distance D is, the larger the curve
slope.
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FIG. 2. Trace distance D as a function of crystal length L and
pump beam waist wp for the typical wavelength, λp = 405 nm. The
white region (upper left quarter) refers to a well fulfillment of the
thin-crystal approximation. In contrast, the purple region (region un-
der solid line) indicates a strong violation of the approximation. The
dashed and solid lines display the conditions D = 0.1 and D = 0.5,
respectively. These curves show a square root dependence wp ∝ √

L,
where the higher D is, the larger the slope of the curve.

To consider also different wavelengths, we analyzed the
trace distance as a function of the focusing parameter wp

(the dashed curve in Fig. 3). As we can see, the trace dis-
tance tends to one, D → 1 if the focusing parameter tends to
zero. In contrast, the trace distance tends to zero, D → 0 if
wp → ∞. In order to reach a good fulfillment of the thin-
crystal approximation (for the full state), very large values
of the focusing parameter are required. On the other hand,
most spatial correlation experiments are performed in small
spatial mode subspaces, where the condition of reaching the
thin-crystal regime will be less strict.

The solid curve in Fig. 3 represents the same as the
dashed curve but for the subspace ps,i = 0, 1 and �s,i =
−2, −1, 0, 1, 2 that was already presented in Fig. 1. As we
could expect, for the same wp, the approximation is better
satisfied for the subspace case. The reason for this behavior

FIG. 3. The relation between the trace distance D and the fo-
cusing parameter wp was calculated for the full state (dashed line)
and the subspace ps,i = 0, 1 and �s,i = −2, −1, 0, 1, 2 (solid line).
The efficiency of the thin-crystal approximation increases with wp.
In contrast to the full state, the approximation is well fulfilled for
relatively small focusing parameter values if small subspaces are
considered.

is that the modes with higher mode numbers 2p + � diverge
faster than the lower modes (see Fig. 1). In other words,
the deviation between the same modes from the thick and
thin-crystal regimes increases with the mode number.

The possible Poynting walk-off of the pump beam in the
crystal has not been considered in our calculations. Torres
et al . have shown that the Poynting walk-off can be neglected
if wp  L [45]. Since we are more interested in the region
wp  1 or wp  L, where the thin-crystal approximation
is valid, the results for the determination of the thin-crystal
regime should not be affected by a possible Poynting walk-off
of the pump beam. The spatial walk-off can be neglected for
periodically poled KRiOPO4 (PPKTP) crystal even if wp ∝ L,
but should be taken into account, for BBO crystal. In general,
the spatial walk-off plays a role if the angle of the optical axis
and the polarization of the pump is not neglectable.

In conclusion, we have explored the validity of the thin-
crystal approximation in the SDPC process and find that
fulfillment of this often-employed approximation can be de-
termined for many experimental situations by just calculating
wp and comparing it either with Fig. 2 or Fig. 3. Our
quantitative guideline will be helpful for experimentalists, in
particular in high-dimensional quantum-information process-
ing with spatially entangled photons as well as quantum and
nonlinear imaging techniques based on SPDC [46].
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