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Photonic non-Bloch quadrupole topological insulators in coupled ring resonators
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We investigate the second-order topological phases in a two-dimensional ring resonator array with each
plaquette occupied by π gauge flux and imaginary gauge field. The real and imaginary gauge fields are induced
by shifting the displacement and integrating gain or loss into the two half perimeters of the auxiliary rings. The
system supports topological corner modes with their emergence being determined by the non-Bloch topological
invariant due to skin effects. The bulk modes, exhibiting second-order skin effects in both trivial and nontrivial
phases, are accumulated at opposite corners depending on whether clockwise or counterclockwise modes are
excited. By introducing an interface with different imaginary gauge fields, we show the bulk modes exist at the
interface while the topological corner modes are localized at the physical corners. Furthermore, the skin effects
are also presented in the passive ring resonators. The study may find applications in lasers and broadband light
trapping.
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I. INTRODUCTION

Topological photonics promises novel design of integrated
photonic circuits that minimize fabrication imperfections in
aid of topological boundary states [1–11]. Various topological
phases have been discovered in photonic lattices under the
interplay of external magnetic field [2], spin-orbit interaction
[11], and valley degree of freedom [12]. Ring resonators
are widely utilized to demonstrate topological lattice phe-
nomena [13] since the effective gauge fields for photons are
conveniently introduced by geometrical design via auxiliary
rings [14], dynamical modulation of refractive index [15,16],
or taking account of backscattering between clockwise and
counterclockwise modes [17]. Therefore, a wide variety of
ring-resonator based topological models are proposed in one,
two, and synthetic higher dimensions, such as the photonic
analogy of quantum Hall effects [14], anomalous Floquet
topological phases [18,19], and Weyl points [20]. Recently,
the concept of high-order topological phases was suggested
to generalize the bulk-boundary correspondence which relates
robust boundary modes to bulk topological invariants [21–23].
A high-order topological insulator supports topological modes
with at least two dimensions lower than that of the system
itself. For example, a two-dimensional second-order topolog-
ical insulator hosts zero-dimensional modes at its corners, in
contrast to the first-order insulator with one-dimensional edge
modes. The existence of these corner modes is guaranteed
by a quantized bulk quadrupole moment instead of dipole
momentum, giving rise to the quadrupole topological insula-
tors [24,25]. The corner modes are robust and independent
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of system termination and are experimentally observed in
silicon-based ring resonators [26].

Recent research interest of topological phases has been
extended to non-Hermitian systems [27–34]. The skin ef-
fects were proposed in non-Hermitian systems as a result
of asymmetric couplings, with mode accumulation at the
boundaries, which dramatically breaks the conventional bulk-
boundary correspondence [35]. The topological invariants
defined in Brillouin zone are not essential to predict the
existence of robust edge modes under open boundary con-
ditions, stimulating many theoretical investigations [35–44].
The principle is revised by utilizing non-Bloch theory via
including an imaginary gauge transformation [27]. The skin
effects and non-Bloch theory are experimentally observed
in quantum walks [45] and synthetic mesh lattices [46],
which are further investigated in two-dimensional systems
with high-order topology [47–51]. The interplay between non-
Hermiticity and high-order topology leads to novel effects.
In addition to zero-energy topological corner modes, a two-
dimensional system also hosts second-order skin effects with
bulk modes accumulated at its corners [47]. However, it is
difficult to realize the non-Bloch quadrupole insulator as the
model requires both negative and non-Hermitian asymmetric
coupling.

In this work, we construct such topological insulators by
utilizing evanescently coupled optical ring resonators where
adjacent site rings are indirectly connected via link rings.
The negative coupling can be induced by shifting the link
rings to arouse real gauge fields [14], while the non-Hermitian
asymmetric coupling is accomplished by inserting asym-
metric gain and loss into link rings to effectively generate
imaginary gauge fields [52–58]. The magnitudes of cou-
pling and the imaginary gauge field can be flexibly tuned
by the spatial gap distance and the amount of gain and
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FIG. 1. Schematic of non-Bloch quadrupole topological insula-
tor. (a) Tight-binding model. The black solid lines represent the
symmetric intercell coupling, and the red and green arrows indi-
cate the asymmetric intracell coupling. The dashed lines denote the
negative coupling. (b) Different kinds of couplings accomplished in
ring resonators by engineering the link rings. (c) The geometry of
proposed ring resonator arrays. The blue represents site rings, while
the gray, green, and red denote the link rings. The inset plots the first
Brillouin zone.

loss, respectively. Subsequently, the topological phases can
be manifested as desired. There are two important issues to
understand, the existence of the skin modes and topologi-
cal corner modes, which is determined by the generalized
Brillouin zone and non-Bloch winding number. We show
the location of skin modes is dependent on the excitation
direction of clockwise and counterclockwise modes. In ad-
dition, as the origins of corner and skin modes are different,
we show they exhibit distinct behaviors at the interface be-
tween two structures with different imaginary gauge field
or topologies. We also discuss a passive system and derive
the related tight-binding Hamiltonian using transfer matrix
method.

II. THEORETICAL MODEL

The tight-binding model of the proposed non-Hermitian
insulator is schematically shown in Fig. 1(a). The system is
arranged in a square lattice with each unit cell comprising
four sites, where the intracell coupling is asymmetric denoted
by te±h and the intercell coupling is symmetric represented
by λ. Each unit cell also contains a negative coupling, which
effectively introduces a π gauge flux. The model is an ex-
tension of Hermitian quadrupole insulator with asymmetric
intracell coupling qualified by the imaginary gauge field ih.
The Bloch Hamiltonian can be written in an off-diagonal
form as

H =

⎛
⎜⎜⎝

te−h + λeikx −te−h − λeiky

teh + λe−iky teh + λe−ikx

teh + λe−ikx te−h + λeiky

−teh − λe−iky te−h + λeikx

⎞
⎟⎟⎠, (1)

where kx and ky represent the Bloch momentum along x
and y directions, respectively. For the Hermitian quadrupole
topological insulator, the system hosts midgap second-order
topological modes located at each of four physical corners
when the intercell coupling is stronger than the intracell cou-
pling, that is, λ > t . The topological modes are protected
against certain disorders, which is attributed to two non-
commuting reflection symmetries Mx = τxσz and My = τxσx

and fourfold rotational symmetry C4 = [(τx − iτy)σ0 − (τx +
iτy)(iσy)]/2 with σ and τ denoting Pauli matrices. In addition,
the system obeys sublattice symmetry S = τz, pinging the
second-order topological modes to zero energy. These modes
are related to the bulk quadrupole momentum rather than
a dipole one. Its topological property can be characterized
by the nested Wannier bands and the topological quadrupole
momentum [21]. When imaginary gauge fields are introduced,
the mirror and C4 symmetries are broken. Instead, the system
preserves sublattice symmetry and mirror-rotation symmetry
Mxy = C4My [47].

Different types of coupling can be realized between two
site rings connected via a link ring, as shown in Fig. 1(b). The
resonant frequency of link ring varies from that of site ring

by setting an extra length, which allows one to manipulate
the phase and magnitude of the coupling. Such a scheme
directly introduces an evanescent coupling t , whose strength
is controlled via the gap distance between two rings. By ver-
tically shifting the link ring, light that couples from right to
left and left to right experiences different path lengths, yield-
ing a direction-dependent phase ϕ which is π in our system
constructing a negative coupling –t. Similarly, by integrating
the same amount of gain and loss into the two semicircles of
link ring, direction-dependent amplification or dissipation is
induced, giving rise to non-Hermitian asymmetric coupling
te±h with imaginary gauge field [51]. Furthermore, the cou-
pling becomes –te±h if we simultaneously shift the link ring
and incorporate gain and loss. The geometry of proposed
ring resonator arrays is shown in Fig. 1(c), where the insert
represents the first Brillouin zone.

The system supports four energy bands, which are doubly
degenerate due to the existence of π flux [21]. The periodic
eigenvalues are derived as

E = ±
√

λt (eh+ikx + e−h−ikx + eh−iky + e−h+iky ) + 2(λ2 + t2).

(2)
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FIG. 2. Band structures versus various intracell couplings. (a–e) The real part of band structures for gλ = 0.293, 0.322, 0.350, 0.379, 0.408
μm. (f–j) The imaginary part corresponding to (a)–(e). In all cases, the intercell gap and gain-loss coefficient are fixed at gt = 0.350 μm and
γ = 0.01, respectively.

In Fig. 2 we plot the real and imaginary parts of band struc-
tures for different couplings. When λ = te–h [Figs. 2(b) and
2(g)] and λ = teh [Figs. 2(d) and 2(i)], the real and imaginary
parts of band structures coalesce at M point (kx = π, ky = π ).
Considering the twofold degeneracy of band structures, these
points are the fourth-order exceptional point. As λ < te–h

[Figs. 2(a) and 2(f)] and λ > teh [Figs. 2(e) and 2(j)], the
real part is gaped while Im(ω) is gapless. In contrast, Re(ω)
is closed and Im(ω) is open in the range te–h < λ < teh

[Figs. 2(c) and 2(h)]. The closing points imply topological
transition under periodic boundary condition. We also per-
form full wave simulations based on Comsol. The refractive
index of core and cladding is n = 3 and nair = 1, respectively.
The waveguide whose core width is fixed at w = 0.27 μm
supports only a single TE-polarized mode with effective re-
fractive index neff = 2.39 at frequency ω0 = 196.05 THz. The
vertical and horizontal lengths of site rings are L1 = L2 =
8 μm with fillet radius r = 3 μm. The extra length of link
rings is set to be 	L = π/(neffk0) to fulfill the antiresonant
condition. The resonant frequency of the site ring is figured
to be ω0 = (196.05 + 6i × 10–4) THz with a small imaginary
part induced by radiation loss. The intracell gap is fixed at
gt = 0.35 μm, while the intercell gap gλ is altered to tune
the coupling. The magnitude of the imaginary gauge field
increases with the augment of gain-loss coefficient γ , which
is the imaginary part of the refractive index of gain-loss link
rings. We select γ = 0.01 unless otherwise specified. Under
these parameters, we have t = 8.9 GHz and h = 0.51. The in-
tercell couplings in Fig. 2 are λ = 3.2, 5.4, 8.9, 14.8, and 24.5
GHz, respectively. The simulations plotted (dots) in Fig. 2
agree well with the theoretical results (lines).

The open-boundary spectra dramatically deviate from that
of periodic system because of the skin effect. The open sys-
tem whose eigenvalues are real numbers (neglect the uniform
radiation loss) exhibits distinct phase transition points. In
Fig. 3(a) we plot the eigenvalues as a function of intracell
coupling. We observe the zero-energy corner modes in the
range –1 < t/λ < 1. In addition, the system keeps the real-
ness of its spectrum irrespective of its non-Hermitian nature
because the open-boundary Hamiltonian exactly resembles
the Hermitian quadrupole counterparts by taking a gauge
transformation [47,57]. Therefore, the open-boundary eigen-
values remain unchanged with different h. On the other hand,

the bulk modes will be accumulated at the structure corners as
h �= 0, referred to as second-order skin effects. Figures 3(b)
and 3(c) plot intensity distributions of bulk eigenmodes at
two typical frequencies. For Hermitian cases, the fields are
distributed throughout the structure. For non-Hermitian cases,
the eigenmodes are mainly confined at lower-left and top-right
corners and decay exponentially with distance from the two
corners.

Generally, the transition from periodic boundary to open
boundary is considered as perturbation. Therefore, the topo-
logical invariant calculated by the periodic bulk modes is
able to predict the existence of robust boundary modes ac-
cording to the bulk-boundary correspondence. However, the

FIG. 3. The skin effects and the non-Bloch bulk-boundary cor-
respondence. (a) The open-boundary spectrum as a function of the
intracell coupling t . (b, c) The two typical intensity (|E|2) distribu-
tions of bulk modes. In both cases, the left and right panels are for
γ = 0 and γ = 0.01, respectively. The gap distance for (b)–(c) is
fixed at gt = 0.35 and gλ = 0.26 μm. (d) The generalized Brillouin
zone. (e) The topological phase diagram with h = 0.51, which is
used in the following simulation.

063507-3



LIN, DING, CHEN, LI, KE, LI, AND WANG PHYSICAL REVIEW A 103, 063507 (2021)

non-Hermitian skin effects violate the framework and require
essential revisions of this guiding principle. The non-Bloch-
wave character of bulk modes should be taken into account
when calculating the topological invariant on a generalized
Brillouin zone. Our system has mirror-rotation symmetry, and
thus the Hamiltonian can be expressed on a block-diagonal
form with kx = ky = k [47],

U −1H (k, k)U =
(

H+(k)
H−(k)

)
, (3)

where U is a unitary transformation matrix. The generalized
Brillouin zone Cβ is obtained by replacing the Bloch phase
factor eik → β in H± and calculating [59]

det [H±(β ) − E ] = 0. (4)

The above equation forms the algebraic equation for β,
which is derived as

2tλehβ2 + (2t2 + 2λ2 − E2)β + 2tλe−h = 0. (5)

As t = 0 or λ = 0, the energy is E2 = 2λ2 or E2 = 2t2.
Then the coefficients before β vanish. Thus, we could not get
the GBZ in this case. As t �= 0 and λ �= 0, we have

β1β2 = e−2h. (6)

The GBZ is the trajectory of β1 and β2 on the complex
plane by enforcing |β1| and |β2| to satisfy the boundary con-
dition, which leads to

|β1| = |β2| = e−h = r, (7)

with r being the radius of the generalized Brillouin zone of
H+(β ), forming a circle with radius eh on the complex plane.
Thereby we can get the Cβ of H−(β ) in the same way, which
is identical to that of H+(β ). There are degenerate clockwise
and counterclockwise modes in ring resonators. If the clock-
wise modes experience a positive imaginary gauge field, the
counterclockwise ones will undergo a negative h since the
traveling path in the link ring is reversed. The generalized
Brillouin zone is plotted in Fig. 3(d) with the radius e–h(eh)
within (outside) the unit circle. Any derivation from the unit
circle yields skin effects. Especially, the majority of modes
are accumulated at the lower-left (upper-right) corner with the
decay length Lskin = 1/h as Cβ within (outside) the unit circle.
The total winding number can be calculated by [47]

w = w+ − w−, (8)

with the non-Bloch winding number given by

w± =
∮

BZ

dk

4π i
Tr

[
S′H̃−1

± (β )
dH̃±(β )

dk

]
, (9)

with H̃± fulfilling

H̃±√
2

= (
te−h + λβ0eik

)
σ∓ +

(
teh + λ

β0
e−ik

)
σ±, (10)

where σ± = (σx ± iσy)/2. Figure 3(e) shows the phase dia-
gram of the winding number as a function of couplings t
and λ where the imaginary gauge field is chosen as h = 0.51
used in the following simulation. The total winding number is

w = –2 as t < λ and w = 0 as t > λ. We also compared the
phase diagram for other h, which keeps unchanged and is not
affected by the magnitude of imaginary gauge field.

III. EXCITATION OF TOPOLOGICAL AND SKIN MODES

The remarkable feature of non-Hermitian quadrupole topo-
logical insulators is the coexistence of corner modes and
skin modes. Our 2D system supports three different types
of modes: second-order topological modes, second-order skin
modes, and hybrid skin-topological modes [60,61]. The topo-
logical modes have zero energy, which is induced by the
second-order topology of nontrivial bulk determined by the
relative coupling strength. The second-order skin modes, cor-
responding to the bulk modes in Hermitian cases, experience
skin effects in both the x and y directions and thus are lo-
cated at the physical corners affected by the imaginary gauge
field. Furthermore, some modes undergo a skin effect along
one direction and topological localization along the other
direction, resulting in hybrid skin-topological modes. In our
systems with the system size L × L, the total number of
second-order skin modes is O(L2), while the number of hy-
brid skin-topological modes is O(L). In contrast, the number
of topological modes is independent of system size, which is
O(1). These three kinds of mode can be excited by coupling
external waveguides to the arrays. Figure 4(a) illustrates the
tight-binding schematic of ring resonator with 10 × 10 sites
as t/λ ≈ 0.2. The corresponding eigenfrequencies are plotted
in Fig. 4(b). There are eight second-order topological modes
in the bandgap with frequency equal to that of the separate
individual site ring. We place two external waveguides at
right termination labeled A and B, which are independently
utilized to stimulate the three different types of modes. We
first consider the clockwise modes as light is injected from
the upper port of the two couplers. The absorption spec-
tra are shown in Fig. 4(c), where the solid lines and the
dotted lines with filling areas represent the Hermitian and
non-Hermitian cases, respectively. For corner excitation, the
narrow absorption peaks appear around ω0 = 196.05 THz as
the topological modes are excited. For excitation from cou-
pler A, we see prominent absorption peaks in two ranges,
196 < ω < 196.02 THz and 196.09 < ω < 196.11 THz, cor-
responding to hybrid skin-topological modes. In addition,
some small peaks are also observed in the range ω < 196 THz
and ω > 196.11 THz, which originate from the second-order
skin modes. This is because the second-order skin modes
have little energy distributed in the boundary rings, which
makes it difficult to excite them. In these frequencies, the
system exhibits some amplification for non-Hermitian cases.
To gain insight into skin effects, we plot spatial intensity
profiles at three typical resonant peaks marked by the dashed
lines. The topological modes are remarkably localized at the
corner resonator near the injected coupler for both γ = 0 and
0.01, indicating the topological modes are robust against the
asymmetric coupling [Figs. 4(e) and 4(h)]. The skin effect
is quite obvious for second-order skin modes. As γ = 0, the
bulk modes are mainly confined near the injected right port
due to the propagation loss of the waveguide [Figs. 4(d)]. In
contrast, for non-Hermitian cases, the bulk modes experienc-
ing skin effects in both the x and y directions are driven to the
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FIG. 4. The excitation of second-order topological, skin, and hybrid skin-topological modes in topological phase. (a) The schematic of the
lattice and the position of excitation ports. (b) The spectrum of eigenfrequencies with gt = 0.35 μm and gλ = 0.26 μm. (c) The absorption
spectra using different external ports. (d–f) The spatial intensity profiles (|E|2) of bulk, corner, and edge modes for Hermitian cases at
absorption peaks with ω = 195.996, 196.055, 196.094 THz, indicated by the arrows. (g–i) The spatial intensity profiles of second-order
skin, second-order topological, and hybrid skin-topological for non-Hermitian cases with γ = 0.01.

lower-left corner [Figs. 4(g)]. For hybrid skin-topological
modes, they intrinsically undergo topological localization

along one direction [Fig. 4(f)] and further are affected by the
skin effect for nonvanished γ . As a result, they are accumu-

FIG. 5. The excitation of second-order skin modes in trivial phase. (a) The schematic of trivial lattice and the sketch of the excitation port.
The gap between couplers and the arrays are gin = 0.45 and 0.35 μm for couplers A and B, respectively. (c) The absorption spectra for γ = 0
(black solid line) and γ = 0.01 (dotted line with pink area). (d, e) The spatial intensity profiles (|E|2) for clockwise modes as γ = 0 and
γ = 0.01, respectively. (f) The intensity profile for counterclockwise modes as γ = 0.01. The intensity profiles are plotted at ω = 196.067
THz. In all cases, gt = 0.35 μm and gλ = 0.40 μm
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FIG. 6. Topological and skin modes at two different domain boundaries. (a) The schematic of the boundaries formed by imaginary gauge
fields. (b)The absorption spectra corresponding to (a). (c, d) The spatial intensity profiles (|E|2) at ω = 195.987, 196.054, and 196.091 THz.
(f) Schematic of the lattice composed of topological and trivial systems. (g) The absorption spectra corresponding to (f). (h–j) The spatial
intensity profiles (|E|2) at ω = 196.005, 196.054, and 196.094 THz, indicated by the arrows in (g).

lated at the lower-right and lower-left corners [Fig. 4(i)]. In
a Hermitian quadrupole insulator, the fields of second-order
topological modes are distributed at all four corners, and
the waves are accumulated at the corners near the injected
port. This also applies to non-Hermitian cases with relatively
small imaginary gauge fields. The electric fields are gradually
concentrated on a single corner as h increases. This can be
understood by the interplay of intrinsic localization of topo-
logical property and the skin effects caused by imaginary
gauge fields. The skin effects drive light to the single corner
for large h, which becomes more dominated when approach-
ing trivial phases.

Next, we show the second-order skin effects retain in a
trivial system in the absence of topological modes. Figure
5(a) shows the diagram of trivial lattice as gt = 0.35 μm
and gλ = 0.40 μm, corresponding to a coupling strength of
t/λ ≈ 2.4. An external coupler is placed at the left edge. The
simulated eigenfrequencies are plotted in Fig. 5(b), and there
are no zero-energy modes in the bandgap. The absorption
spectra for γ = 0 (black line) and γ = 0.01 (pink filling area)
are shown in Fig. 5(c). The two spectra are similar, and both
have two broadband absorption bands caused by bulk modes.
Figures 5(d) and 5(e) show the field distributions for γ = 0

and 0.01 at frequency ω = 196.063 THz. The modes spread
into the bulk of the system for the Hermitian case. For a
non-Hermitian case, light experiences strong localization at
the lower-left corner due to the skin effects. Only a small
part of energy is confined at upper right-corner, which is
caused by the scattering in the structure. As discussed above,
the clockwise and counterclockwise modes undergo opposite
imaginary gauge fields and will concentrate at different cor-
ners. We launch light from the lower port of external coupler
to stimulate counterclockwise modes. As shown in Fig. 5(f),
light is confined at the upper-right corner.

The reasons for the formation of the topological and skin
modes are different. The former is determined by the sys-
tem topology and related to the relative coupling strengths,
whereas the latter is determined by the imaginary gauge fields.
Therefore, we can expect they will exhibit different behaviors
at the interface of two different imaginary gauge fields and
the interface of two topologically distinct structures. Figure
6(a) presents the effective lattice by connecting two structures
with or without h. The corresponding absorption spectra are
shown in Fig. 6(b). The position of absorption peaks is the
same as that of Hermitian cases because the eigenfrequencies
are irrelevant to the imaginary gauge field. The absorption in
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FIG. 7. Skin effects in passive resonator arrays. (a) The schematic of field amplitudes in coupled ring resonators. The spatial inten-
sity profiles are for the clockwise excitation in (b)–(d) and are for the counterclockwise excitation (e)–(g). The incident frequency is
ω = 196.11 THz.

the middle band is lower compared to the sidebands as the
incidence is weakly coupled to corner modes. For this config-
uration, the topological modes still appear in the lower-left
corner and are not affected by the interface [Fig. 6(d)]. In
contrast, the second-order skin modes in Fig. 6(c) are bound
to the left side of the interface due to the skin effect in both
dimensions. With similar localized properties to the second-
order skin modes, the hybrid skin-topological modes gather at
the interface [Fig. 6(e)], influenced by skin effect in y direc-
tion and topological localization in x direction. The situation
becomes different as the domain boundaries are composed of
the topological and trivial structures along the y direction, as
displayed in Fig. 6(f). Figure 6(g) plots the corresponding
absorption spectrum, which shows three absorption peaks.
The spatial intensity distribution corresponding to the middle
absorption peak around zero frequency detuning is confined
at the middle corners, which is a combination of a topological
boundary and a physical boundary [Fig. 6(i)]. Contrarily, as
shown in Figs. 6(h) and 6(j), the hybrid modes in two side-
bands penetrate though the interface and are accumulated at
the lower-left corner of the physical boundary. The hybrid
modes are immune to the topological boundary showing anal-
ogous features to the bulk modes in a one-dimensional system.
In summary, the accumulation of second-order topological
modes, skin modes, and hybrid skin-topological modes can
be understood from the topological localization and the in-
trinsic skin effects in the x and y directions, as well as their
interaction.

IV. THE PASSIVE RING RESONATORS

The imaginary gauge fields are induced by integrating
asymmetric gain and loss into the two semicircles of the link

rings. However, it is difficult to accurately keep them exactly
equal in experiments. When their amount is different, we show
the asymmetric coupling also can be be generated but with
additional on-site gain or loss. Specifically, we discuss the
passive cases with only loss inserted to the semicircle of link
rings. For simplicity, a one-dimensional lattice is considered,
as shown in Fig. 7(a). The fields between neighboring rings
fulfill [14] (

ε5

ε6

)
= 1

iκ

(
t −1
1 −t

)(
ε3

ε4

)
, (11)

where t and κ denote the transmission and coupling coeffi-
cients with t2 + κ2 = 1. Then the fields between two nearest
site rings are derived as(

ε9

ε10

)
= 1

(iκ )2

(
e−iβ LSR

2 0

0 eiβ LSR
2

)(
t −1
1 −t

)

×
(

eiβ LLR
2 eh 0

0 e−iβ LLR
2

)(
t −1
1 −t

)(
ε1

ε2

)

= M

(
ε1

ε2

)
, (12)

where LSR and LLR are the total length of site and link
rings, and exp(h) indicates the decay times for light traveling
through the lower path of the link rings. The Bloch theo-
rem gives rise to (ε9, ε10)T = εiϕ (ε1, ε2)T . Combining with
Eq. (12), solving equation |M–eikI| = 0 yields the dispersion
relation. We also have βLLR–βLSR = π + 2 mπ or antireso-
nant condition. Then we arrive at

2 sin (βLSR + ih/2)

= it2(eh/2 − e−h/2) + κ2eh/2e−ik + κ2e−h/2eik . (13)
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In the vicinity of resonance, we can approximate sin(βLSR + ih/2) ≈ (ω − ω0)LSR/vg + ih/2 with vg denoting group
velocity. The dispersion relation reduces to

ω = ω0+ith + t (eh/2e−ik + e−h/2eik ), (14)

with τ = vgk2/(2LSR). The imaginary gauge potential is the half of loss coefficient, and the on-site loss is ith. The results can be
generated to a two-dimensional lattice, and the Hamiltonian of passive quadrupole insulator is

H =

⎛
⎜⎜⎝

ith te−h/2 + λeikx −te−h/2 − λeiky

ith teh/2 + λe−iky teh/2 + λe−ikx

teh/2 + λe−ikx te−h/2 + λeiky ith
−teh/2 − λe−iky te−h/2 + λeikx ith

⎞
⎟⎟⎠. (15)

The skin effects also can be observed in the passive lattice.
In Figs. 7(b)–7(g), we plot the intensity profiles for clockwise
and counterclockwise excitation for three different γ . The
wave is launched near the lower-left corner. The system is in
topological trivial phase as the inter- and intracell gaps are
gt = 0.35 μm and gl = 0.40 μm. For vanished γ , the fields
are distributed through the structure because there are no
skin effects, as shown in Figs. 7(b) and 7(e). We see the
waves are localized at the lower-left corner for clockwise
modes as γ > 0 [Figs. 7(c) and 7(d)]. For counterclockwise
excitation, SS modes tend to be localized at the upper-right
corner. As displayed in Fig. 7(f), there are some fields in the
upper corner. However, the light is not able to spread to the
upper-right corner due to the strong propagation loss for large
γ [Fig. 7(g)]. To inspect the counterclockwise second-order
skin mode, the incident port needs to be set in the upper-right
corner.

V. CONCLUSIONS

In conclusion, we have proposed a non-Bloch quadrupole
topological insulator with skin effects based on coupled ring
resonator arrays. The π gauge flux and imaginary gauge
fields are introduced by shifting and integrating asymmetric
gain and loss into the auxiliary rings to induce a direction-

dependent phase or amplification. The system simultaneously
supports topological modes and skin modes, whose origins are
different. The former is determined by the system topology
and related to the couplings, whereas the latter is determined
by the imaginary gauge potential. We show the emergency of
the corner modes can be controlled by tuning the spatial gap
distance between adjacent rings. The clockwise and counter-
clockwise modes experience opposite imaginary gauge fields.
As a result, the skin modes are localized at the opposite
corners depending on mode orientations. Moreover, we show
the topological and skin modes can be localized at different
boundaries by constructing topological or non-Hermitian in-
terfaces, which can be understood by the interplay between
topological localization and skin effects. We also show the
imaginary gauge field can be introduced in passive ring res-
onators with additional on-site loss, and the skin effects are
prominent only for single orientation modes. The results en-
rich the study of topological phases in non-Hermitian systems
and promise potential applications in lasers and broadband
light trapping.
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Joannopoulos, M. Soljačié, H. Chen, L. Lu et al., Probing topo-
logical protection using a designer surface plasmon structure,
Nat. Commun. 7, 11619 (2016).

[19] Y. G. Peng, C. Z. Qin, D. G. Zhao, Y. X. Shen, X. Y. Xu, M. Bao,
H. Jia, and X. F. Zhu, Experimental demonstration of anoma-
lous Floquet topological insulator for sound, Nat. Commun. 7,
13368 (2016).

[20] Q. Lin, M. Xiao, L. Yuan, and S. Fan, Photonic Weyl point in
a two-dimensional resonator lattice with a synthetic frequency
dimension, Nat. Commun. 7, 13731 (2016).

[21] W. A. Benalcazar, B. A. Bernevig, and T. L. Hqughes, Quan-
tized electric multipole insulators, Science 357, 61 (2017).

[22] W. Zhang, X. Xie, H. Hao, J. Dang, S. Xiao, S. Shi, H. Ni,
Z. Niu, C. Wang, K. Jin, X. Zhang, and X. Xu, Low-threshold
topological nanolasers based on the second-order corner state,
Light. Sci. Appl. 9, 109 (2020).

[23] G. Pelegri, A. M. Marques, V. Ahufinger, J. Mompart, and R.
G. Dias, Second-order topological corner states with ultracold
atoms carrying orbital angular momentum in optical lattices,
Phys. Rev. B 100, 205109 (2019).

[24] A. Dutt, M. Minkov, I. A. D. Williamson, and S. Fan, Higher-
order topological insulators in synthetic dimensions, Light Sci.
Appl. 9, 131 (2020).

[25] Y. Chen, Z. K. Lin, H. Chen, and J. H. Jiang, Plasmon-
polaritonic quadrupole topological insulators, Phys Rev. B 101,
041109(R) (2020).

[26] S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny,
and M. Hafezi, Photonic quadrupole topological phases, Nat.
Photonics 13, 692 (2019).

[27] Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M.
Notomi, Y. Arakawa, and S. Iwamoto, Active topological pho-
tonics, Nanophotonics 9, 547 (2020).

[28] Z. Fu, N. Fu, H. Zhang, Z. Wang, D. Zhao, and S. Ke,
Extended SSH model in non-Hermitian waveguides with al-
ternating real and imaginary couplings, Appl. Sci. 10, 3425
(2020).

[29] H. Fan, J. Chen, Z. Zhao, J. Wen, and Y. Huang, Anti-parity-
time symmetry in passive nanophotonics, ACS Photon. 7, 3035
(2020).

[30] S. Ke, D. Zhao, Q. Liu, S. Wu, B. Wang, and P. Lu, Optical
imaginary directional couplers, J. Lightwave Technol. 36, 2510
(2018).

[31] Y. Ao, X. Hu, Y. You, C. Lu, Y. Fu, X. Wang, and Q. Gong,
Topological Phase Transition in the Non-Hermitian Coupled
Resonator Array, Phys. Rev. Lett. 125, 013902 (2020).

[32] M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A. Bandres, J.
Ren, M. C. Rechtsman, M. Segev, D. N. Christodoulides, and
M. Khajavikhan, Edge-Mode Lasing in 1D Topological Active
Arrays, Phys. Rev. Lett. 120, 113901 (2018).

[33] S. Malzard, C. Poli, and H. Schomerus, Topologically Protected
Defect States in Open Photonic Systems with Non-Hermitian
Charge-Conjugation and Parity-Time Symmetry, Phys. Rev.
Lett. 115, 200402 (2015).

[34] S. Ke, D. Zhao, J. Fu, Q. Liao, B. Wang, and P. Lu, Topological
edge modes in non-Hermitian photonic Aharonov-Bohm cages,
IEEE J. Sel. Top. Quantum Electron. 26, 4401008 (2020).

[35] S. Yao and Z. Wang, Edge States and Topological Invariants of
Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803 (2018).

[36] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[37] C. Yuce, Non-Hermitian anomalous skin effect, Phys. Lett. A
384, 126094 (2020).

[38] X. Wang, C. Guo, and S. Kou, Defective edge states and
number-anomalous bulk-boundary correspondence in non-
Hermitian topological systems, Phys. Rev. B 101, 121116(R)
(2020).

[39] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Topological
Origin of Non-Hermitian Skin Effects, Phys. Rev. Lett. 124,
086801 (2020).

[40] Y. He and C. C. Chien, Non-Hermitian generalizations of ex-
tended Su-Schrieffer-Heeger models, J. Phys. Condens. Matter.
33, 085501 (2020).

[41] Z. Zhang, R. Huang, L. Qi, Y. Xing, Z. Zhang, and H. Wang,
Topological phase transition and eigenstates localization in a
generalized non-Hermitian Su–Schrieffer–Heeger model, Ann.
Phys. 533, 2000272 (2020).

[42] S. Mandal, R. Banerjee, and T. C. H. Liew, From the topological
spin-Hall effect to the non-Hermitian skin effect in an elliptical
micropillar chain, arXiv:2103.05480 (2021).

[43] W. X. Cui, L. Qi, Y. Xing, S. Liu, S. Zhang, and H. F. Wang,
Localized photonic states and dynamic process in nonreciprocal
coupled Su-Schrieffer-Heeger chain, Opt. Express 28, 37026
(2020).

[44] K. Zhang, Z. S. Yang, and C. Fang, Correspondence between
Winding Numbers and Skin Modes in Non-Hermitian Systems,
Phys. Rev. Lett. 125, 126402 (2020).

[45] L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and P. Xue,
Non-Hermitian bulk–boundary correspondence in quantum dy-
namics, Nat. Phys. 16, 761 (2020).

[46] S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A.
Stegmaier, M. Greiter, R. Thomale, and A. Szameit, Topologi-
cal funneling of light, Science 368, 311 (2020).

[47] T. Liu, Y. R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda, and
F. Nori, Second-Order Topological Phases in Non-Hermitian
Systems, Phys. Rev. Lett. 122, 076801 (2019).

[48] Y. Song, W. Liu, L. Zheng, Y. Zhang, B. Wang, and P. Lu,
Two-Dimensional Non-Hermitian Skin Effect in a Synthetic
Photonic Lattice, Phys. Rev. Appl. 14, 064076 (2020).

063507-9

https://doi.org/10.1038/nmat4573
https://doi.org/10.1038/nmat4807
https://doi.org/10.1515/nanoph-2020-0415
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1364/OL.41.000741
https://doi.org/10.1103/PhysRevB.97.104105
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/ncomms11619
https://doi.org/10.1038/ncomms13368
https://doi.org/10.1038/ncomms13731
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1038/s41377-020-00352-1
https://doi.org/10.1103/PhysRevB.100.205109
https://doi.org/10.1038/s41377-020-0334-8
https://doi.org/10.1103/PhysRevB.101.041109
https://doi.org/10.1038/s41566-019-0452-0
https://doi.org/10.1515/nanoph-2019-0376
https://doi.org/10.3390/app10103425
https://doi.org/10.1021/acsphotonics.0c01053
https://doi.org/10.1109/JLT.2018.2814038
https://doi.org/10.1103/PhysRevLett.125.013902
https://doi.org/10.1103/PhysRevLett.120.113901
https://doi.org/10.1103/PhysRevLett.115.200402
https://doi.org/10.1109/JSTQE.2020.3010586
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1016/j.physleta.2019.126094
https://doi.org/10.1103/PhysRevB.101.121116
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1088/1361-648X/abc974
https://doi.org/10.1002/andp.202000272
http://arxiv.org/abs/arXiv:2103.05480
https://doi.org/10.1364/OE.403330
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1038/s41567-020-0836-6
https://doi.org/10.1126/science.aaz8727
https://doi.org/10.1103/PhysRevLett.122.076801
https://doi.org/10.1103/PhysRevApplied.14.064076


LIN, DING, CHEN, LI, KE, LI, AND WANG PHYSICAL REVIEW A 103, 063507 (2021)

[49] K. Kawabata, M. Sato, and K. Shiozaki, Higher-order non-
Hermitian skin effect, Phys. Rev. B 102, 205118 (2020).

[50] C. H. Lee, L. Li, and J. Gong, Hybrid Higher-Order Skin-
Topological Modes in Nonreciprocal Systems, Phys. Rev. Lett.
123, 016805 (2019).

[51] Y. Tian X. Zhang, J. Jiang, M. Lu, and Y. Chen, Observation
of higher-order non-Hermitian skin effect, arXiv:2102.09825
(2021).

[52] S. Longhi, D. Gatti, and G. Della Valle, Non-Hermitian trans-
parency and one-way transport in low-dimensional lattices by
an imaginary gauge field, Phys. Rev. B 92, 094204 (2015).

[53] S. Longhi, D. Gatti, and G. Della Valle, Robust light transport
in non-Hermitian photonic lattices, Sci. Rep. 5, 13376 (2015).

[54] S. Longhi, Non-Hermitian gauged topological laser arrays,
Ann. Phys. 530, 1800023 (2018).

[55] X. Zhu, H. Wang, S. K. Gupta, H. Zhang, B. Xie, M. Lu, and Y.
Chen, Photonic non-Hermitian skin effect and non-Bloch bulk-
boundary correspondence, Phys. Rev. Res. 2, 013280 (2020).

[56] L. Qi, G. Wang, S. Liu, S. Zhang, and H. Wang, Robust
Interface-State Laser in Non-Hermitian Microresonator Arrays,
Phys. Rev. Appl. 13, 064016 (2020).

[57] Z. Lin, S. Ke, X. Zhu, and X. Li, Square-root non-Bloch
topological insulators in non-Hermitian ring resonators, Opt.
Express 29, 8462 (2021).

[58] Z. Zhang, H. Zhao, D. G. Pires, X. Qiao, Z. Gao, J. M. Jornet,
S. Longhi, N. M. Litchinitser, and L. Feng, Ultrafast control of
fractional orbital angular momentum of microlaser emissions,
Light. Sci. Appl. 9, 179 (2020).

[59] K. Yokomizo and S. Murakami, Non-Bloch Band Theory
of Non-Hermitian Systems, Phys. Rev. Lett. 123, 066404
(2019).

[60] Y. Fu, J. Hu, and S. Wan, Non-Hermitian second-order skin and
topological modes, Phys. Rev. B 103, 045420 (2021).

[61] Y. Yu, M. Jung, and G. Shvets, Zero-energy corner states
in a non-Hermitian quadrupole insulator, Phys. Rev. B 103,
L041102 (2021).

063507-10

https://doi.org/10.1103/PhysRevB.102.205118
https://doi.org/10.1103/PhysRevLett.123.016805
http://arxiv.org/abs/arXiv:2102.09825
https://doi.org/10.1103/PhysRevB.92.094204
https://doi.org/10.1038/srep13376
https://doi.org/10.1002/andp.201800023
https://doi.org/10.1103/PhysRevResearch.2.013280
https://doi.org/10.1103/PhysRevApplied.13.064015
https://doi.org/10.1364/OE.419852
https://doi.org/10.1038/s41377-020-00415-3
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevB.103.045420
https://doi.org/10.1103/PhysRevB.103.L041102

