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Effective field theory for distorted photonic crystals
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In this study, we used differential geometry to develop an effective field theory to study the behavior of light
propagation in distorted photonic crystals (DPCs) of averagely homogeneous refractive index media. To study the
light-ray trajectories in DPCs, we derived a geodesic equation based on the principle of least action by defining
the metric tensor in terms of the lattice-position distortion. The geodesic equation implies that the lattice-position
distortion can curve the trajectory. We present multiple exact solutions for the trajectory for simple distortion
under the condition of having the same values of the lattice point filling factor at each unit cell. These solutions
explicitly demonstrate that the light is only bent through the introduction of lattice distortion, and that these
results are consistent with the finite-difference time-domain simulation results.
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I. INTRODUCTION

In recent years, differential geometry has been increas-
ingly applied to describe physical phenomena. Einstein’s
geometrization philosophy for general relativity [1] is a classic
example of the geometrization of physical laws by means
of differential geometry. Transformation optics technologies
[2–6] have also been developed based on differential geome-
try. In particular, Piwnicki studied the geometrical approach
to an inhomogeneous medium [4]. In addition, there are close
relationships between topological ideas and modern quantum
field theory: for example, Berry phases, magnetic monopoles,
Wess-Zumino terms, and skyrmions have been stated in the
gauge theory [7]; the quantum Hall effect has been rearranged
by means of topological indices [8,9]; and topological insula-
tors and superconductors have been investigated with regards
to topology [10].

Photonic crystals (PCs) have been studied as an arrange-
ment of well-ordered periodic lattice points. The periodic
structure facilitates the peculiar photonic dispersion that con-
trols light behavior in various media. The modification of
the lattice-point positions within a range that is narrower
than the periodicity has also been applied to enhance existing
nanocavity effects [11,12], or to add diffraction effects to the
resonant mode [13,14]. There are also some precedent studies
on PCs that consist of lattices without periodic structures
(or breaking periodicity), where Newtonian mechanics was
applied to wave packets of light to enhance the optical Hall
effect [15,16]. Similarly, Deng et al. [17] reported a distorted
photonic graphene structure in which the light is bent by the
effective magnetic field produced by the Dirac point in the
photonic band.

*Corresponding author: pamkitag@kit.ac.jp

The main research question being addressed by this study
is whether it is possible to bend propagating light in media
with averagely homogeneous refractive index. To investigate
this question, the key concepts of our hypothesis are as fol-
lows. The eigenstates of light in PCs are Bloch states. If
random or steep fluctuations are applied, the Bloch states
should be scattered. However, if the rate of fluctuations is
sufficiently low, the Bloch states may be changed adiabati-
cally. Based on this physical concept, we postulated that the
regular structure reflects flat space-time, whereas the gradual
changes of the structure reflect curved space-time. Accord-
ing to the theory of general relativity, gravity is a distortion
of space-time caused by the presence of matter (or energy).
Similarly, based on Fermat’s principle, the framework of
pseudogravity in inhomogeneous media has been developed
in transformation optics [4–6]. Therefore, in this study, we
investigate whether the pseudogravity is caused in a medium
with an averagely homogeneous refractive index. Moreover,
the above-mentioned pseudogravity can be represented using
differential geometry. To the best of our knowledge, there are
limited studies that apply differential geometry to PC struc-
tures.

In this paper, we discuss the characteristics of distorted
photonic crystals (DPCs), i.e., the gradual spatial distortion
that occurs in PC structures, from the perspective of differ-
ential geometry to elucidate the behavior of light passing
through DPCs. Thus, we first construct an effective field
theory for DPCs. Thereafter, we show that this field theory
can be used to develop a geodesic equation to describe the
trajectory of the light ray. We use a low-frequency region
where the equifrequency contours are closed curves in order
to not consider any peculiar photonic dispersion of photonic
crystals. Finally, the exact solution is applied to simple exam-
ples and the results are compared to those of finite-difference
time-domain (FDTD) simulations.
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FIG. 1. Lattice distortion of a 2D square lattice. ai
(0)(i = 1, 2)

corresponds to the undistorted lattice vectors, and ai (i = 1, 2) cor-
responds to the distorted lattice vectors. �r(x) is the lattice-point
displacement. The lattice-distortion tensors �L

i j (i, j = 1, 2) were
derived based on the deviation between ai

(0) and ai.

II. EFFECTIVE FIELD THEORY FOR DISTORTED
PHOTONIC CRYSTALS

A. Distortion tensor

In this study, we employ the long-wavelength approxima-
tion. Subsequently, we define the lattice-distortion tensors and
assume the lattice vectors; therefore, the base vectors of the
lattice correspond to the gradual function of space points.
Considering the lattice-point displacements �r(x) in a two-
dimensional (2D) square lattice (Fig. 1), the diagonal elements
of the lattice-distortion tensors are defined as

�r1(x1 + a(0), x2) − �r1(x1, x2) ≡ �L
11,

�r2(x1, x2 + a(0) ) − �r2(x1, x2) ≡ �L
22, (1)

Similarly, the off-diagonal elements of the lattice-
distortion tensors were defined as

�r2(x1 + a(0), x2) − �r2(x1, x2) ≡ �L
12,

�r1(x1, x2 + a(0) ) − �r1(x1, x2) ≡ �L
21, (2)

where (x1, x2) is a position vector, and a(0) is the undistorted
lattice constant.

Next, to consider the dielectric properties of the PC, we
defined the distortion tensor, i.e., the renormalized lattice-
distortion tensor �i j , as

�i j ≡ γ�L
i j . (3)

Here, γ is the weight factor, which is defined as follows:

γ ≡
[ ∑

G �=0 |κ (G)|2(∑
G �=0 |κ (G)|2)Max

](0)
σP + 1

2
, (4)

1

ε(r)
=

∑
G

κ (G) exp(iG · r), (5)

where σp = 1 for H polarization, σp = − 1 for E polarization,
ε(r) is the periodic dielectric function, and G is the reciprocal
lattice vector of undistorted (or regular) PCs. Note that in this
study, the dielectric constant of the medium was set at 3.52. As
detailed in the equations, γ contains the following information
about undistorted PCs: the filling factor, dielectric contrast
between the lattice point and background, and inclusion of the
second-order perturbative corrections of the eigenvalues for
PCs. Equation (4) also states that γ = 0 under the conditions
of E polarization. This is because the E-polarized light is not
affected by lattice distortion at long-wavelength frequencies.

B. Metric tensor

Our ansatz is that DPCs distort space-time in a way that can
be observed by analyzing the light transmission. Therefore,
we consider the metric tensor as a means to evaluate the
space-time structure of DPCs. The relationship between ei

(0)

and e j (i, j = 1, 2) is represented in terms of the distortion
tensors as follows:[

e1

e2

]
=

[
1 + �11/a(0) �12/a(0)

�21/a(0) 1 + �22/a(0)

][
e1

(0)

e2
(0)

]
, (6)

where ei
(0) and ei(i = 1, 2) are the undistorted and distorted

base vectors, respectively. The metric tensor of space was
constructed by incorporating the sets of scalar products of
the base vectors. Specifically, upon considering time and the
refractive indices, the metric tensor (gμν) of space-time was
constructed as follows:

gμν =
⎡
⎣−1 0 0

0 (n(0) )2{1 + 2(�11/a(0) + �n(x)/n(0) )} (n(0) )2(�12 + �21)/a(0)

0 (n(0) )2(�12 + �21)/a(0) (n(0) )2{1 + 2(�22/a(0) + �n(x)/n(0) )}

⎤
⎦, (7)

where n(0) and �n(x) are the average and deviated refractive indices of the DPC, respectively; this metric tensor possesses all
the geometric information about the DPC.

III. LIGHT PROPAGATION IN DISTORTED PHOTONIC
CRYSTALS

A. Geodesic equation

Herein, we discuss the propagation of light in a DPC. We
considered the trajectory of light by developing the geodesic

equation. The action S of a DPC is given by

S =
∫ √

−gμν

dxμ

dσ

dxν

dσ
dσ , (8)

where σ is the arc length of the trajectory, and μ,ν
= 0,1,2. Then, according to the principle of least
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action,

δS = 0 (9)

can be used to develop the geodesic equation

d2xμ

dτ 2
+ 
μ

νλ

dxν

dτ

dxλ

dτ
= 0, (10)

where 
μ
νλ is the connection coefficient given by the metric

tensor of the DPC:


μ
νλ = gμτ 1

2 (∂λgτν + ∂νgτλ − ∂τ gνλ), (11)

where λ, τ = 0, 1, 2. The elements of the connection coeffi-
cient are given as follows:


0
νλ = 0,


1
11 = ∂1

(
�11

a(0)
+ �n

n(0)

)
, 
1

12 = ∂2

(
�11

a(0)
+ �n

n(0)

)
,


1
22 = ∂2

(
�12 + �21

a(0)

)
− ∂1

(
�22

a(0)
+ �n

n(0)

)
,


2
22 = ∂2

(
�22

a(0)
+ �n

n(0)

)
, 
2

21 = ∂1

(
�22

a(0)
+ �n

n(0)

)
,


2
11 = ∂1

(
�12 + �21

a(0)

)
− ∂2

(
�11

a(0)
+ �n

n(0)

)
. (12)

B. Exact solutions for simple models

We consider the simple cases in which the local displace-
ment �r(x) is given as the quadratic function of the space
points. In these cases, the geodesic equation provides exact
solutions. Illustrations of the models and solutions are shown
in Figs. 2(a) and 2(b). Figure 2(a) shows uniaxial distortion,
and Fig. 2(b) shows biaxial distortion. To only consider the
effects of lattice distortion, i.e., �n(x) = 0, we changed the
radii r (n), r (m,n) in the direction of the distortion to ensure that
all of the filling factors for the lattice point in the unit cell had
the same values. The averaged refractive index (nav) is ho-
mogeneous (�n(x) = 0). In the case of uniaxial (y-direction)
distortion, the displacement �r(x) is given by

�r(x)/a(0) = (0, β(y/a(0) )2), (13)

where the constant β is a dimensionless distortion coefficient
for the y direction. In this case, the geodesic equation is given
by

d2x

dσ 2
= 0,

d2y

dσ 2
= −2γ β

(
dy

dσ

)2

. (14)

The solution of these simultaneous differential equations,
which yields the trajectory of the light ray input from the
origin, is given by

y = 1

2γ β
ln |(2γ β tan φ)x + 1| , (15)

where the incident angle from the x axis is φ. Figure 2(c)
shows the trajectories of the light ray in the cases of β =
± 0.006. Note that the sign of β changes the bending di-
rection.

FIG. 2. Illustrations of example models and exact solutions.
(a) Uniaxial distortion model. (b) Biaxial distortion model. (c, d)
Light-ray trajectories in the case of uniaxial distortion and biax-
ial distortion, respectively. The incident angle, φ, from the x axis
was π /4; the radius of the circular lattice point was set as r (0) =
0.4a(0); �n(x) = 0. The brown (middle), blue (upper), and green
(lower) curves of (c) correspond to β = + 0.006, −0.006, and
+0.012, respectively. The black (upper) straight line of (d) corre-
sponds to α = + 0.006 and β = + 0.006, whereas the red (lower)
curve of (d) corresponds to α = −0.006 and β = + 0.006, which
yield a strong curve. The extent of curvature was very similar to
that predicted for uniaxial distortion with double the β value [green
(middle) curve].

In the case of biaxial distortion, the displacement �r(x)
is given by

�r(x)/a(0) = (α(x/a(0) )2, β(y/a(0) )2), (16)

where α and β are the dimensionless distortion coefficients
for the x and y directions, respectively. The geodesic equation
is expressed as follows:

d2x

dσ 2
= −2γα

(
dx

dσ

)2

,

d2y

dσ 2
= −2γ β

(
dy

dσ

)2

. (17)

Then, the trajectory of the light ray is defined as follows:

y = 1

2γ β
ln

∣∣∣∣
(

β

α
tan φ

)
(e2γαx − 1) + 1

∣∣∣∣. (18)
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FIG. 3. Comparison of the theoretical and simulated results. The
red curves represent the theoretical results, and the wavy field dis-
tributions show the results of FDTD simulation. �n(x) = 0 and
φ = π/4. (a–e) Uniaxial distortion results. The radius of the cir-
cular lattice point was set as r (0) = 0.4a(0) for (a–c). (a) Air-hole
lattice results for β = + 0.006. (b) Dielectric-rod lattice results
for β = + 0.006. (c) Air-hole lattice results for β = + 0.01. (d)
Air-hole lattice results for β = + 0.002. (e) Air-hole lattice results
for r (0) = 0.2a(0) and β = + 0.006. (f) Biaxial distortion results for
α = −0.006, β = + 0.006, and r (0) = 0.4a(0).

The predicted light-ray trajectories in these cases are
shown in Fig. 2(d). In the case of α = + 0.006 and β =
+ 0.006 , the trajectory is a straight line; in contrast, the
conditions of α = − 0.006 and β = + 0.006 yield a strongly
curved trajectory. This curved trajectory is very similar to
that corresponding to uniaxial distortion with twice the value
of β.

IV. NUMERICAL EXPERIMENT

To verify our ansatz, we compared the aforementioned
results to those of FDTD simulations. H polarization was ap-
plied in the FDTD simulation, and the normalized frequency
was set to 0.1. It is worth mentioning that, in this study, we
focused on the behavior of light without the influence of the
Dirac point, in contrast to the study by Deng et al. [17], im-

plying that the long-wavelength approximation (normalized
frequency of less than 0.1 approximately) is applicable.

Figure 3 shows a comparison of the results. The red line
represents the theoretical results, and the wavy field distri-
bution reflects the z component of the magnetic field in the
simulation. We applied β = + 0.006, φ = π/4, and r (0) =
0.4a(0). Although the beam divergence was slightly deviated,
the theoretical results were consistent with the simulated re-
sults for the air-hole [Fig. 3(a)] and dielectric-rod [Fig. 3(b)]
lattices. Increasing β to +0.01 resulted in a strongly curved
trajectory [Fig. 3(c)]; conversely, reducing β significantly re-
duced the curvature of the trajectory [Fig. 3(d)]. Reducing
r (0) to 0.2a(0) also significantly reduced the curvature, with
r (0) = 0 tending toward a straight line [Fig. 3(e)]. These find-
ings confirm that γ provides information about the PC. Even
in the biaxial distortion case [Fig. 3(f)], the theoretical results
are consistent with the simulated results. Thus, the ansatz
presented in Sec. III is valid.

V. SUMMARY

From the perspective of differential geometry, we con-
structed an effective field theory to theoretically describe
DPCs, which have been defined as PC structures that are
subject to gradual spatial distortions. According to this the-
ory, the trajectory of a light ray can be described by a
geodesic equation that is similar to that for general rela-
tivity. Our results, which were derived under the condition
that the averaged refractive index of a DPC is homogeneous,
indicate that the trajectory of a light ray can be curved by
only introducing lattice distortion. In this case, the source
of pseudogravity in DPCs is described by the lattice distor-
tions, while pseudogravity arises from the inhomogeneity of
the medium in transformation optics. This finding was unex-
pected, considering Fermat’s principle. This study presents
a phenomenological low-energy (long-wavelength) effective
field theory for DPCs, which is expected to contribute to
the pseudogravity engineering applications in homogeneous
optical media. However, the accuracy of this theory is not
sufficient at high frequency, in particular, near the band-gap
frequency, because long-wavelength approximation is not sat-
isfied. As a side note, the light is not bent in the case of
E polarization [σp = − 1 in Eq. (4)] at low frequency, but
is slightly affected by lattice distortion at high frequency.
However, we have presented in this theory that light can be
bent even if we have not used the peculiar photonic dispersion
of photonic crystals.
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APPENDIX

In the main text, we only applied �n(x) = 0 to focus solely
on the effects of lattice distortion. However, the influence of
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�n(x) can be investigated by setting the radii of all lattice
points as constant. A similar case has already been reported
by Deng et al. [17]; they concluded that effective magnetic
field bends the light trajectory. However, in our viewpoint,
their results include both effects of effective magnetic field
and pseudogravity, because their structure is inhomogeneous
media as follows. In the uniaxial distortion case, the geodesic
equations become

d2x

dσ 2
= −2∂y

(
�n

n(0)

)(
dx

dσ

)(
dy

dσ

)
,

d2y

dσ 2
= −2γ β

(
dy

dσ

)2

+
[(

dx

dσ

)2

−
(

dy

dσ

)2]
∂y

(
�n

n(0)

)
,

(A1)

where β > 0. Here, we set

∂y

(
�n

n(0)

)
≡ γα′, (A2)

and assume that

α′ ∼= α (A3)

and

φ ∼= π/4. (A4)

Then, incorporating Eq. (A4) results in the following:(
dx

dσ

)
∼=

(
dy

dσ

)
,

(
dx

dσ

)(
dy

dσ

)
∼=

(
dx

dσ

)2

, (A5)

(
dx

dσ

)2

−
(

dy

dσ

)2
∼= 0,

which yields

d2x

dσ 2
∼= −2γα

(
dx

dσ

)2

,
d2y

dσ 2
∼= −2γ β

(
dy

dσ

)2

. (A6)

These equations are similar to those corresponding to the
biaxial distortion case of �n(x) = 0. The trajectory is also
given by

y ∼= 1

2γ β
ln

∣∣∣∣
(

β

α
tan φ

)
(e2γαx − 1) + 1

∣∣∣∣. (A7)

Based on Eqs. (A2) and (A3), if the lattice points are
air holes, then α < 0, but if the lattice points correspond to
a dielectric rod, then α > 0. Thus, for an air-hole lattice,
α > 0 and β > 0; these conditions yield similar results to
those shown by the black line in Fig. 2(d), which shows
minimal curvature of the light trajectory. Alternatively, under
the conditions of a dielectric-rod lattice, α < 0 and β > 0;
these conditions yielded a similar result to that shown by the
red line in Fig. 2(d), which shows a strongly curved light-ray
trajectory. The above-mentioned case is consistent with the
results of Ref. [17].
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