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Dissipative soliton interaction in Kerr resonators with high-order dispersion
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We consider an optical resonator containing a photonic crystal fiber and driven coherently by an injected beam.
This device is described by a generalized Lugiato-Lefever equation with fourth-order dispersion. We use an
asymptotic approach to derive interaction equations governing the slow time evolution of the coordinates of two
interacting dissipative solitons. We show that Cherenkov radiation induced by positive fourth-order dispersion
leads to a strong increase of the interaction force between the solitons. As a consequence, a large number of
equidistant soliton bound states in the phase space of the interaction equations can be stabilized. We show that
the presence of even small spectral filtering not only dampens the Cherenkov radiation at the soliton tails and
reduces the interaction strength, but can also affect the bound state stability.
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I. INTRODUCTION

Optical frequency combs generated by microcavity res-
onators have revolutionized many fields of science and
technology, such as high-precision spectroscopy, metrology,
and photonic analog-to-digital conversion [1]. A particular
interest is paid to the soliton frequency combs associated with
the formation in the time domain of the so-called temporal
cavity solitons—nonlinear localized structures of light, which
preserve their shape in the course of propagation. Temporal
dissipative solitons, often called cavity solitons, were reported
experimentally in mode-locked lasers, microcavity resonators
[2,3], and in coherently driven fiber cavities [4].

In this work, we consider a photonic crystal fiber cavity
driven by a coherent injected beam. When operating close to
the zero dispersion wavelength, high-order chromatic disper-
sion effects could play an important role in the dynamics of
the system. Taking into account these effects together with
spectral filtering, the dimensionless model equation in the
mean-field limit reads

∂tU = S − (1 + iθ )U + iU |U |2 + (δ + i)∂2
τ U + β3∂

3
τ U

+ iβ4∂
4
τ U, (1)

where U (τ, t ) is the complex electric field envelope, τ is time,
and t is the slow time variable describing the number of round
trips in the cavity. The parameter S measures the injection
rate, θ describes frequency detuning, second-order dispersion
and Kerr nonlinearity coefficients are normalized to unity, β3

and β4 are the third- and fourth-order dispersion coefficients,
respectively, and 0 < δ � 1 is the small spectral filtering co-
efficient (or, in time domain, dispersion of the losses) [5]. The
optical losses are determined by the mirror transmission and
the intrinsic material absorption. This losses are normalized to
unity.

In the absence of high-order dispersion and spectral filter-
ing, we recover from Eq. (1) the Lugiato-Lefever equation
[6] which is a paradigmatic model to study temporal cavity
solitons (see overview in [7,8]). It is widely applied to de-
scribe two important physical systems: a passive ring fiber
cavity with coherent optical injection and a driven optical
microcavity used for frequency comb generation [9–12]. The
inclusion of the fourth-order dispersion allows the modula-
tional instability to have a finite domain of existence delimited
by two pump power values [13]. As a consequence, the upper
homogeneous steady-state solution becomes modulationally
stable and dark dissipative solitons sitting in this solution
can appear [14]. In the presence of third-order dispersion,
bright and dark dissipative solitons become asymmetric and
acquire an additional group velocity shift associated with this
asymmetry [15–18].

Being well separated from one another, dissipative solitons
can interact via their exponentially decaying tails and form
bound states characterized by fixed distances between the
solitons. This weak interaction can be strongly affected by
different perturbations, such as periodic modulation [5,19,20]
and high-order dispersions [21], which lead to the appearance
of the so-called soliton Cherenkov radiation at the soliton tails
[22]. Single soliton self-locking by Cherenkov radiation in
a microring resonator with high-order dispersions was stud-
ied in [23]. Soliton interaction in the presence of high-order
dispersions was studied in several works in one-dimensional
(1D) [17,18,20,21,24,25] and 2D settings [26]. However, they
were either focused on the asymmetric soliton interaction in
the presence of third-order dispersion or based mainly on
the numerical calculation of the soliton interaction potential.
Unlike these works, here we present an analytical theory of the
interaction of two dissipative solitons of the Lugiato-Lefever
equation with the fourth-order dispersion term based on the
asymptotic approach developed in [27,28]. In this approach,
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FIG. 1. Phase velocity V of small dispersive waves with (a) posi-
tive and (b) negative fourth-order dispersion coefficient β4, and β3 =
0. Solid line corresponds to (a) β4 = 0.025 and (b) β4 = −0.025.
Dashed line corresponds to β4 = 0. The parameter values are S =
1.8, θ = 3.5, and δ = 0.02.

only a single complex number has to be calculated numeri-
cally that is the product of the Cherenkov radiation amplitudes
for the soliton itself and the neutral mode of the adjoint oper-
ator obtained by linearization of the model equation on the
soliton solution. Note that the asymptotic method for estima-
tion of the Cherenkov radiation amplitude was discussed in
[22,29]. Furthermore, we show that similarly to the case of the
interacting oscillatory solitons [5], a small spectral filtering
effect can strongly affect the interaction force and the stability
properties of the bound soliton states.

II. SINGLE PEAK DISSIPATIVE SOLITON

Without high-order dispersion and spectral filtering terms,
β3 = β4 = δ = 0, Eq. (1) supports single or multipeak dis-
sipative solitons characterized by damped oscillatory tails
[30]. Stable dissipative solitons have been found in a strongly
nonlinear regime, where the modulational instability is sub-
critical, i.e., for θ > 41/30. More precisely, they have been
found in the pinning region, where the lower stationary ho-
mogeneous solution coexists with a periodic one. The number
of dissipative solitons and their distribution in the cavity are
determined by the initial conditions, while their maximum
peak power remains constant for fixed values of the system
parameters [30]. Note that the stability and bifurcations of
the soliton solutions of the Lugiato-Lefever model with small

dissipation were studied analytically in a number of earlier
works; see, e.g., [31–34].

For θ > 41/30, Eq. (1) supports a single peak dissipa-
tive soliton solution in the form U (t, τ ) = U0 + u0(τ ), where
I0 = |U0|2 = const is the intensity of the stationary homo-
geneous solution of Eq. (1) and u0(τ ) decays exponentially
at τ → ±∞. This solution persists also at sufficiently small
β3, β4, and δ. It remains motionless for β3 = 0 and be-
comes uniformly moving otherwise, U (t, τ ) = U0 + u0(τ −
vt ). Asymptotic analytic theory of the asymmetric dissipative
soliton interaction via Cherenkov radiation induced by the
third-order dispersion coefficient β3 was developed in [18].
Below we assume that only small fourth-order dispersion is
present, β3 = 0 and |β4| � 1. In this case, we consider only
soliton solutions, which are invariant under the symmetry
property of Eq. (1), τ → −τ . For these solutions, the soliton
velocity is equal to zero, v = 0. Note that traveling localized
solutions were reported in the undamped Lugiato-Lefever
model [35] as well as in the parametrically driven damped
nonlinear Schrödinger equation [36].

The dispersion relation for the small amplitude waves
is determined by substituting U (t, τ ) = U0 + A0eikτ−i�t into
Eq. (1) and linearizing the resulting equation at U = U0. This
yields

� = −2I2
0 + i

√
(1 + δk2)2 − I2

0 + k2 − β4k4.

The phase velocity of the dispersive waves V = Re(�)/k is
shown in Fig. 1(a) for positive [1(a)] and negative [1(b)] β4, as
a function of the wave number k. Cherenkov radiation appears
when the phase velocity V coincides with the zero soliton
velocity, as shown in Fig. 1(a). It is seen from this figure
that the Cherenkov radiation emitted from the soliton tail
occurs only when β4 is positive. Therefore, below we consider
only the case of positive fourth-order dispersion coefficient
0 < β4 � 1 when the Cherenkov radiation is present. For
negative β4, the soliton interaction is only weakly affected by
the small fourth-order dispersion term.

Linear stability of the dissipative soliton solution u0(τ ) is
determined by calculating the eigenvalue spectrum λ of the
operator,

L̂(u0) = L̂0 + L̂1(u0), (2)

obtained by linearization of Eq. (1) around the soliton so-
lution. Here, u0 = (u0

u∗
0
), L̂0 = L̂(0) is the linear differential

operator evaluated at the stationary homogeneous solution
U = U0,

L̂0 =
(−1 − iθ + 2iI2

0 + (i + δ)∂2
τ + iβ4∂

4
τ iU 2

0
−iU ∗2

0 −1 + iθ − 2iI2
0 − (i − δ)∂4

τ − iβ4∂
4
τ

)
and

L̂1(u0) =
(

2iU ∗
0 u0 + 2iU0u∗

0 + 2i|u0|2 2iU0u0 + iu2
0

−2iU ∗
0 u∗

0 − iu∗2
0 −2iU ∗

0 u0 + 2iU0u∗
0 − 2i|u0|2

)
.

We have calculated numerically the soliton solution and the
eigenvalue spectrum λ of the operator L̂(u0) by discretizing
Eq. (1) on a uniform grid of 2000 points on the interval τ ∈

[0, 80] with periodic boundary conditions. The result is shown
in Fig. 2 for β3 = β4 = δ = 0. The continuous spectrum lies
on the line Re(λ) = −1, while the discrete spectrum of the
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FIG. 2. (a) Soliton solution of the Lugiato-Lefever equation (1)
with β3 = β4 = δ = 0 and (b) eigenvalue spectrum obtained by nu-
merical linear stability analysis of this solution. Other parameters are
the same as in Fig. 1.

soliton is symmetric with respect to this line [37]. For the pa-
rameter values of Fig. 2 apart from two real eigenvalues, i.e.,
the zero eigenvalue λ = 0, associated with the translational
symmetry of the Lugiato-Lefever equation, and the symmetric
one λ = −2, the soliton has two symmetric pairs of com-
plex conjugated eigenvalues. The right pair of these complex
eigenvalues is responsible for an Andronov-Hopf bifurcation
taking place with the increase of the injection parameter S.
The decay rates of the soliton tails depend on the eigenvalues
μ satisfying the characteristic equation

β2
4μ8 + 2β4μ

6 + [1 + δ2 + 2β4(2I0 − θ )]μ4

+ 2(2I − θ − δ)μ2 + [
1 − I2

0 + (2I0 − θ )2
] = 0 (3)

obtained by linearization of Eq. (1) with ∂tU = 0 at the ho-
mogeneous steady-state solution U = U0.

In the case when the high-order dispersion and spectral
filtering are absent, β3 = β4 = δ = 0, Eq. (3) gives two pairs
of complex conjugate eigenvalues,

μ
(0)
1,2 = ±

√
θ − 2I0 + i

√
1 − I2

0 (4)

and μ
(0)∗
1,2 , which determine the decay and oscillation rates of

the soliton tails. For example, for S = 2.0 and θ = 3.5, we
have μ

(0)
1,2 = ±(1.6837 + 0.275817i), which means that in the

absence of high-order dispersions, the soliton tail oscillations
are strongly damped. This might explain the fact that without
soliton Cherenkov radiation, it is hardly possible to observe
experimentally the formation of bound states with large dis-
tances between the solitons [4].

For nonzero but sufficiently small fourth-order dispersion
coefficient, 0 < β4 � 1, the eigenvalues (4) of Eq. (3) are
only slightly perturbed. However, in addition to (4), two more
pairs of complex conjugate eigenvalues, μ3,4 and μ∗

3,4, appear.
For zero spectral filtering coefficient, δ = 0, they are given by

μ3,4 = ∓i

√
1

2β4

[
1 +

√
1 − 4β4

(
2I0 − θ + i

√
1 − I2

0

)]
.

(5)

It is seen that real (imaginary) parts of μ3,4 in Eq. (5) vanish
(diverge) in the limit β4 → 0. When the spectral filtering
coefficient is nonzero, δ > 0, analytical expressions for the

FIG. 3. (a) Soliton solution of the Lugiato-Lefever equation (1)
with β4 = 0.025 and δ = 0.02; (b) eigenvalue spectrum obtained by
numerical linear stability analysis of this solution. Other parameters
are the same as in Fig. 1.

eigenvalues μ3,4 become very cumbersome. However, in the
limit β4 = O(δ) � 1, we get

μ3,4 = ∓
√

β4

⎡
⎣

√
(1 + δ/β4)2 − I2

0

2

+ i

(
1

β4
+ θ − 2I0

2

)
+ O(δ)

]
. (6)

Due to the presence of the eigenvalues μ3,4 and μ∗
3,4, the

tails of the soliton of Eq. (1) with β3 = 0 and 0 < β4 � 1
become weakly decaying and fast oscillating, which favors
the formation of soliton bound states, and can be referred to
as the soliton Cherenkov radiation [22]. Note that when β4

is sufficiently small, the term δ/β4 describing, in Eq. (6), the
contribution of spectral filtering into the real part of μ3,4 can
lead to a considerable increase of the decay rate of the soliton
tails without significant change of their oscillation frequency.
For example, for S = 2.0, θ = 3.5, β4 = 0.025, and δ = 0.02,
we get μ3 = −0.123 − 6.529i, while for the same parameter
set and δ = 0, one obtains μ3 = −0.063 − 6.528i. The nu-
merically calculated intensity profile of the soliton solution
of Eq. (1) with small fourth-order dispersion coefficient β4 =
0.025 is depicted in Fig. 3, together with the corresponding
eigenvalue spectrum of the operator L̂(u0) defined by Eq. (2).

Note that the proof of the reflectional symmetry property
of the discrete soliton spectrum with respect to the Reλ = −1
line given in [37] is trivially generalized to the case when even
high-order dispersions are present. Nevertheless, the soliton
spectrum shown in Fig. 3 does not possess this symmetry
property due to the presence of nonzero spectral filtering
coefficient δ = 0.02. Furthermore, as seen from Fig. 3, for
δ = 0.02, real parts of the complex conjugate eigenvalues,
responsible for the Andronov-Hopf bifurcation of the soliton,
are shifted to the left from the imaginary axis as compared to
those shown in Fig. 2 obtained for δ = 0.

Sufficiently far away from the soliton core, its trailing tail
can be represented in the form

u0(τ ) ∼ a3eμ3τ + a4eμ∗
3τ when τ → +∞, (7)

where the Cherenkov radiation amplitude a3 is exponentially
small in the limit β4 → 0 [22,29], a4 = paa∗

3, and, for β4 =
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O(δ) � 1, we get

pa = i
1 −

√
1 − I2

0

A∗2
0

(
δ

β4

√
1−I2

0

+ 1
) + O(δ), (8)

where pa is independent of β4 at δ = 0. Numerically for
S = 2.0, θ = 3.5, δ = 0.02, and β4 = 0.025, we obtain pa ≈
0.0571 + 0.0833i.

III. INTERACTION BETWEEN DISSIPATIVE SOLITONS

The study of weak dissipative soliton interaction in optical
systems and, in particular, in the Lugiato-Lefever equation
has a relatively long history [19,27,28,38–47]. Two or more
solitons will interact through their overlapping oscillatory tails
when they are sufficiently close to one another. In what fol-
lows, we investigate the interaction between two dissipative
solitons. We consider the limit of weak overlap when the soli-
tons are well separated from each other and derive the in-
teraction equations describing the slow time evolution of the
soliton coordinates denoted by τ1,2. To this end, let us first
rewrite Eq. (1) in a general form,

∂t U = F̂U, (9)

where U = ( U
U ∗), F̂U = ( f̂ U

f̂ ∗U ∗), and f̂ is the differential opera-

tor defined by the right-hand side of Eq. (1). We look for the
solution of Eq. (9) in the form

U (τ, t ) = U0 + u1 + u2 + 	u(τ, t ). (10)

Here, u1,2 = u0(τ − τ1,2) are two unperturbed soliton so-
lutions, with slowly evolving-in-time coordinates τ1,2(εt ),
	u(τ, t ) = O(ε) is a small correction to the superposition of
two solitons, and small parameter ε describes the weakness
of the overlap of the two solitons. Substituting Eq. (10) into
the model equation (9) and collecting first-order terms in ε,
we obtain the following linear inhomogeneous equation for
�u = ( 	u

	u∗):

L̂(u1 + u2)�u = −∂xu1∂tτ1 − ∂xu2∂tτ2 − F̂ (u1 + u2),

(11)

where the linear operator L̂(u) is defined by Eq. (2). Due
to the translational invariance of Eq. (1), this linear operator
evaluated at the soliton solution u0 has zero eigenvalue corre-
sponding to the so-called translational neutral (or Goldstone)
mode v0 = (v0

v∗
0
), with v0 = du0/dτ , L̂(u0)v0 = 0. The adjoint

linear operator L̂†(u) obtained from L̂(u) by transposition and
complex conjugation also has zero eigenvalue with the eigen-
function w0 = (w0

w∗
0
), which is referred to below as the “adjoint

neutral mode,” L̂†(u0)w0 = 0. Below, we will assume that

w0 satisfies the normalization condition 〈w0 · u0〉 = ∫ ∞
−∞(w0 ·

u0)dτ = 2
∫ ∞
−∞ Re(w∗

0u0)dτ = 1. Far away from the soliton
core, the asymptotic behavior of the adjoint neutral mode is
given by

w0(τ ) ∼ b3eμ∗
3 τ + b4eμ3τ , τ → +∞, (12)

with b4 = pbb∗
3, where the asymptotic expression for pb coin-

cides with that of pa given by Eq. (8).
When the two interacting solitons are located sufficiently

far away from one another, the solvability conditions of
Eq. (11) can be written as

∂tτ1,2 ≈ G1,2, G1,2 = 〈w1,2 · F̂ (u1 + u2)〉, (13)

where we approximated the adjoint neutral modes of the
operator L̂†(u1 + u2) by the adjoint neutral modes w1,2 =
w0(τ − τ1,2) of the operators L̂†(u1,2).

In order to derive the soliton interaction equations, we
need to calculate G1,2 in Eq. (13). To this end, we split the
integral in Eq. (13) into two parts and, using the relations
L̂†(u1,2)w1,2 = 0 together with the fact that u1 and w1 (u2

and w2) are small for τ ∈ [0,+∞) (τ ∈ (−∞, 0]), where the
origin of coordinates τ = 0 corresponds to the central point
between two solitons, (τ2 + τ1)/2 = 0, we get

G1,2 = 〈w1,2 · F̂ (u1 + u2)〉1,2 + 〈w1,2 · F̂ (u1 + u2)〉2,1

≈ 〈w1,2 · F̂ (u1 + u2)〉1,2

≈ 〈w1,2 · L̂(u1,2)u2,1〉1,2 − 〈
L̂†(u1,2)w1,2 · u2,1

〉
1,2

= (δ + i)
[〈
w1,2∂

2
τ u2,1

〉
1,2 − 〈

u2,1∂
4
τ w1,2

〉
1,2

]
+ iβ4

[〈
w1,2∂

4
τ u2,1

〉
1,2 − 〈

u2,1∂
4
τ w1,2

〉
1,2

] + c.c., (14)

with 〈w · u〉1 = ∫ 0
−∞(w · u)dτ , 〈w · u〉2 = ∫ ∞

0 (w · u)dτ , and
L̂†(u1,2)w1,2 = 0.

Next, performing integration by parts and using the
symmetry properties of the soliton and its neutral modes,
u0(τ ) = u0(−τ ), ∂τ u0(τ ) = −∂τ u0(−τ ), w0(τ ) = −w0(−τ ),
and ∂τw0(τ ) = ∂τw0(τ ), we get

G1,2 ≈ ±[
(δ + i)(w∗

1,2∂τ u2,1 − u2,1∂τw
∗
1,2)

+ iβ4
(
w∗

1,2∂
3
τ u2,1 − u2,1∂

3
τ w∗

1,2 − ∂τw
∗
1,2∂

2
τ u2,1

+ ∂2
τ w∗

1,2∂τ u2,1
)]

τ=0 + c.c.

= ±{
(δ + i)∂τ (w∗

0u0) − iβ4
[
w∗

0∂
3
τ u0 + u0∂

3
τ w∗

0

+ ∂τ (∂τw
∗
0∂τ u0)

]}
τ=(τ2−τ1 )/2 + c.c. (15)

Finally, substituting into Eq. (15) the asymptotic relations
(7) and (12), we obtain

d (τ2 − τ1)

dt
≈ − 12√

β4
e−γ (τ2−τ1 )Re

[(
1 − i

δ

3

)
(a3b∗

3e−i�(τ2−τ1 ) − pa p∗
ba∗

3b3ei�(τ2−τ1 ) )

]
, (16)

d (τ2 + τ1)

dt
= 0, (17)
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FIG. 4. Right-hand side of Eq. (16) as a function of the soliton
separation τ2 − τ1. Black (red) dots indicate the separations of the
two solitons in stable (unstable) bound states calculated numerically.
Parameter values: S = 2.0, θ = 3.5, δ = 0.02, and β4 = 0.025.

where γ = Re(μ3) ≈ (
√

β4/2)
√

(1 + δ/β4) − I2
0 , � =

−Im(μ3) ≈ 1/
√

β4 + √
β4(θ − 2I0), and the Cherenkov

radiation coefficients a3 and b3 are exponentially small in
the limit β4 → 0. For S = 2.0, θ = 3.5, d = 0.02, and β4 =
0.025 numerically, we get a3 ≈ −0.158 + 0.149i and b3 ≈
0.017 + 0.136i. Finally, neglecting O(δ) terms and taking into
account that in the leading order in δ, we have pa = pb ≡ p,
Eq. (16) can be rewritten in the form

d (τ2 − τ1)

dt
≈ 12√

β4
e−γ (τ2−τ1 )|a3b3|(|p|2 − 1)

× cos[�(τ2 − τ1) + arg(b3/a3)]. (18)

The right-hand side of Eq. (18) is plotted in Fig. 4, where
the intersections of the black solid line with axis of abscissas
correspond to the soliton bound states. Examples of stable
and unstable soliton bound states calculated numerically are
shown in Figs. 5 and 6, respectively, together with the most
unstable eigenvalues of the operator L̂ evaluated on the bound
state solutions.

Finally, in Fig. 7, we present the same soliton bound state
as the one shown in Fig. 5, but calculated for δ = 0. It is

FIG. 5. A stable bound state of two dissipative solitons cor-
responding to a black point in Fig. 4, δ = 0.02. (a) Intensity
distribution and (b) eigenvalue spectrum. Other parameter values are
the same as for Fig. 4.

FIG. 6. Unstable bound state of two dissipative solitons corre-
sponding to a red point in Fig. 4, δ = 0.02. (a) Intensity distribution
and (b) eigenvalue spectrum. Other parameter values are the same as
for Fig. 4.

seen that the eigenvalue spectrum of this state contains many
discrete eigenvalues, which split from the continuous spec-
trum, and that it is oscillatory unstable due to the presence of
two complex conjugate eigenvalues with positive real parts.
Therefore, we can conclude that in the absence of spectral
filtering, the one-dimensional asymptotic equations (16)–(18)
can be insufficient to describe the soliton interaction. The
derivation of the interaction equations taking into account
an Andronov-Hopf bifurcation of the soliton bound states in
the presence of fourth-order dispersion is beyond the scope
of this study. A related problem concerning the effect of
oscillatory instability on the soliton interaction was studied
in [5].

IV. CONCLUSIONS

We have considered an all-fiber photonic crystal cavity
coherently driven by an injected field. The intracavity field
inside the fiber experiences self-phase modulation, dispersion,
optical injection, and optical losses. Its space-time evolu-
tion can be described by the Lugiato-Lefever equation with
high-order dispersion, where, in addition, we have taken
into account the small spectral filtering term. We have first
discussed the properties of a single dissipative soliton and
derived asymptotic expressions for the soliton Cherenkov

FIG. 7. The same bound state as shown in Fig. 5, but calculated
for δ = 0. (a) Intensity distribution and (b) eigenvalue spectrum.
The bound state is unstable with respect to an Andronov-Hopf
bifurcation.
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radiation amplitudes. We have focused our analysis on the
regime, where the fourth-order dispersion and the spectral fil-
tering coefficients are small, 0 < β4, δ � 1. Second, we have
investigated the interaction between two dissipative solitons
in the case when they are well separated from each other.
Assuming a weak overlap of soliton tails, we have established
analytically the interaction law [Eqs. (17) and (18)] governing
the slow time evolution of the coordinates of two interacting
solitons. We have shown that although the Cherenkov radi-
ation due to the small fourth-order dispersion can strongly
enhance the soliton interaction and thus lead to the formation
of a large number of soliton bound states, in the absence of
spectral filtering these states can be unstable with respect to
an oscillatory instability even when a single soliton is well
below the Andronov-Hopf bifurcation threshold. This means
that taking into consideration, in the interaction equations,
additional degrees of freedom responsible for the Andronov-
Hopf bifurcation (as was done in Ref. [5]) can be necessary
to describe the soliton interaction in the generalized Lugiato-
Lefever model (1) with zero spectral filtering coefficient, δ =

0. On the other hand, the inclusion of small but sufficiently
large spectral filtering, 0 < δ � 1, allows one to suppress the
oscillatory instability and to keep the interaction equation one
dimensional.
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