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We theoretically study an optomechanical system which consists of a two-sided cavity and a mechanical
membrane that is placed outside of it. The membrane is positioned close to one of its mirrors, and the cavity is
coupled to the external light field through the other mirror. Our study is focused on the regime where the disper-
sive optomechanical coupling in the system vanishes. Such a regime is found to be possible if the membrane is
less reflecting than the adjacent mirror, yielding a potentially very strong dissipative optomechanical coupling.
Specifically, if the absolute values of amplitude transmission coefficients of the membrane and the mirror, t and
tm, respectively, obey the condition t2

m < t � tm � 1, the dissipative coupling constant of the setup exceeds the
dispersive coupling constant for an optomechanical cavity of the same length. The dissipative coupling constant
and the corresponding optomechanical cooperativity of the proposed system are also compared with those of
the Michelson-Sagnac interferometer and the so-called “membrane-at-the-edge” system, which are known for a
strong optomechanical dissipative interaction. It is shown that under the above condition, the system proposed
here is advantageous in both aspects. It also enables an efficient realization of the two-port configuration, which
was recently proposed as a promising optomechanical system, providing, among other benefits, a possibility
of quantum limited optomechanical measurements in a system which does not suffer from any optomechanical
instability.
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I. INTRODUCTION

Cavity quantum optomechanics is a promising branch of
quantum optics. It allows for exploration of fundamental
issues of quantum mechanics and paves a way for nu-
merous applications, e.g., in high-precision metrology and
gravitational-wave defection [1]. Mainly, the cavity optome-
chanics profits from the so-called dispersive coupling, which
originates from the dependence of the cavity resonance fre-
quency on the position of a mechanical oscillator. However, to
complete the set of optomechanical interactions, the so-called
dissipative coupling [2] and coherent coupling [3] should be
incorporated. The dissipative coupling originates from the
dependence of the cavity decay rate on the position of the me-
chanical oscillator while, in the case of the coherent coupling,
the mechanical displacement brings about a coupling between
two optical modes. Since its identification, the dissipative cou-
pling has been attracting an appreciable attention of theorists
[4–22] and experimentalists [23–28]. The dissipative coupling
can do virtually all the jobs of the dispersive coupling, such
as optomechanical cooling [6,22], optical squeezing [13], and
mechanical sensing [8], while the physical conditions and
mechanisms encountered in it are rather different. Among the-
oretical predictions analyzed for dissipative-coupling-assisted
systems are the possibility of simultaneous squeezing and
sideband cooling [7], a stable optical-spring effect, which is
not-feedback-assisted [9], a virtually perfect squeezing of the
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optical noise in a system exhibiting no optomechanical insta-
bility [14], and not-feedback-assisted cooling of a mechanical
oscillator under the resonance excitation [11]; the latter was
also demonstrated experimentally [24].

The experimental implementations of the dissipative cou-
pling are lagging significantly behind the theory. To a great
extent this is due to the fact that the dissipative coupling
is typically weak compared to the dispersive coupling [12].
Hence even under specific tuning conditions when the dis-
persive coupling vanishes, it is typically difficult to make the
dissipative coupling efficient. To date, the Michelson-Sagnac
interferometer (MSI) has been theoretically identified [12]
and experimentally addressed [24] as a system, which can be
tuned to be dominated by an “anomalously strong dissipative
coupling.” Recently, the so-called “membrane-at-the-edge”
system [20] (MATE), consisting of a one-sided cavity with
a membrane placed inside the main resonator close to the
input mirror, has been proposed as a candidate for an en-
hanced dissipative coupling. Another system dealing with
an anomalously strong dissipative coupling is the popular
“membrane-in-the-middle” cavity [29–33] once it is driven
close to the point of the spontaneous symmetry breaking [21].
Here even divergence of dissipative coupling constants of
individuals modes has been predicted. However, this system is
characterized by tight doublets of modes with opposite signs
of the dissipative coupling constants, leading to cancellation
of such divergencies and an optomechanical performance very
different from that of the dissipative coupling of a single
mode.
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FIG. 1. Membrane-outside system: A two-sided cavity with a
membrane set behind the second (“non-feeding”) mirror. The dashed
line represents the membrane, the solid lines represent semitranspar-
ent mirrors, the thick arrows represent the pumping light, and the thin
arrow represents the detected light.

In the present paper, we treat theoretically an optome-
chanical system which consists of a two-sided cavity and a
membrane that is placed outside of it, close to one of its mir-
rors. The cavity is coupled to the external laser light through
the other mirror, and the light leaving the cavity through that
mirror is detected (Fig. 1). We show that, for a properly po-
sitioned membrane, which is less reflecting than the adjacent
cavity mirror, the dispersive coupling in the system vanishes
while the dissipative coupling becomes anomalously strong.
We have identified the interval of the membrane transparency
providing the superior dissipative optomechanical coupling
in this system which we refer to as a “membrane-outside”
(MOS).

In addition to an example of an optomechanical device
fully controlled by a strong dissipative coupling, MOS enables
an efficient realization of the two-port configuration, which
was recently proposed [14] as a promising optomechanical
system.

We present a theoretical analysis of MOS (Sec. II), pay-
ing special attention to the two-port configuration (Sec. III).
A detailed comparison with the MSI (Sec. IV) and MATE
(Sec. V) in terms of the dissipative coupling constant and
optomechanical cooperativity in the regimes dominated by the
dissipative coupling is provided.

II. THEORETICAL ANALYSIS OF MOS

Primarily, we are interested in finding settings of MOS,
under which it does not exhibit the dispersive optomechanical
coupling, and in evaluating the strength of the dissipative
coupling under these settings. A simple way to do this is to
use the “effective mirror” approach (see, e.g., Refs. [12,24]),
following which the tandem mirror-membrane (Fig. 1) will
be treated as a synthetic mirror. For a fixed cavity length l ,
any variation of the mechanical variable, which is the distance
x between the membrane and the mirror, will not affect the
cavity optical length, while the cavity decay rate and the reso-
nance frequency will be fully conditioned by the x dependence
of the power transmission coefficient of the synthetic mirror
and that of the phase of its reflection coefficient, respectively.

We introduce the scattering matrices for the mirror,(
it −r
−r it

)
, (1)

and for the membrane,(
tmeiϕt rmeiϕr

rmeiϕr tmeiϕt

)
, (2)

where t and tm and r and rm are the absolute values of the am-
plitude transmission and reflection coefficients of the mirror
and the membrane, respectively, which obeys the following
relations:

t2 + r2 = 1, t2
m + r2

m = 1, and e2i(ϕr−ϕt ) = −1. (3)

Hereafter we assume that the fineness of the original cavity is
high, implying t � 1.

A. The effective mirror model

Straightforward calculations (see Appendix A) yield

T = t2t2
m

1 + r2r2
m + 2rrm cos ψ

(4)

for the power transmission coefficient of the synthetic mirror
and

tan μ = rmt2 sin ψ

rm(1 + r2) cos ψ + r
(
1 + r2

m

) (5)

for the phase of its the reflection coefficient μ. Here

ψ ≡ 2kx + ϕr, (6)

where k is the light wave vector.
The membrane position where the dispersive coupling van-

ishes is given by the condition

d tan μ

dψ
= 0. (7)

Such a derivative reads

d tan μ

dψ
= rmt2 rm(1 + r2) + r

(
1 + r2

m

)
cos ψ[

rm(1 + r2) cos ψ + r
(
1 + r2

m

)]2 . (8)

Thus, as follows from Eqs. (7) and (8), the positions of
the membrane where the dispersive coupling vanishes should
satisfy the following condition:

cos ψ = − rm(1 + r2)

r
(
1 + r2

m

) . (9)

This condition can be met if

rm < r, (10)

i.e., the membrane should be less reflective than the adjacent
mirror. Thus, under such a condition, at certain values of
ψ , which are controlled by the position of membrane x, the
system will be purely governed by the dissipative coupling,
the situation we are looking for.

Let us check if the positions given by Eq. (9) are of prac-
tical interest for implementation in optomechanics. For this
purpose, we find the range of parameters of the synthetic
mirror where Eq. (9) is compatible with the basic requirement

T � 1 (11)

(if any), and we evaluate the dissipative coupling in this com-
patible regime.

Inserting Eq. (9) into Eq. (4), one finds

T = t2 1 + r2
m

1 − r2r2
m

. (12)
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One readily checks that Eq. (10) ensures T � 1, while
Eqs. (11) and (9) are compatible at

t � tm. (13)

Now the strength of the dissipative coupling at the points
where the dispersive coupling vanishes can be evaluated. First,
if we neglect the energy stored in the synthetic mirror, which is
a good approximation for x � l (see Sec. II B), the decay rate
associated with the synthetic mirror can be written as follows:

γ = cT

2l
, (14)

where c is the speed of light. Thus, in view of Eq. (6), we find

dγ

dx
= ck

l

dT

dψ
. (15)

Next, the following relation,

dT

dψ
= 2rrmt2t2

m sin ψ[
1 + r2r2

m + 2rrm cos ψ
]2 , (16)

and condition (9) yield∣∣∣∣dγ

dx

∣∣∣∣ = ck

l

t2

t2
m

2rm
(
1 + r2

m

)
1 − r2

mr2

√
r2 − r2

m

1 − r2
mr2

≈ ck

l

t2

t4
m

2rm
(
1 + r2

m

)
,

(17)
where condition (13) was taken into account. This equation
predicts a potentially very strong dissipative coupling for
t2
m < t .

We conclude that, for the amplitude transparency of the
membrane satisfying the condition

t2
m < t � tm � 1 (18)

and with the suitably adjusted distance between the membrane
and the mirror, MOS can be dominated by the dissipative
coupling, which is stronger than the dispersive coupling ck

l
for an optomechanical cavity of the same length.

Equations (9), (18), and (4) imply that of interest are the
positions of the membrane with x close to

x̃ = λ

2

(
1

2
+ N − ϕr

2π

)
, λ = 2π/k, (19)

where cos ψ = −1 and the transparency of the synthetic mir-
ror is maximal. We introduce a small parameter:

� = k(x − x̃) � 1. (20)

Keeping the lowest-order terms in � in Eqs. (4), (16), and (8),
one readily finds a set of expressions that describe the system:

T = t2 �0

�2 + �2
0

, (21)

dT

d�
= −2t2 �0�(

�2 + �2
0

)2 , (22)

and

dμ

d�
= t2

2

�2 − �2
0(

�2 + �2
0

)2 , (23)

where

�0 = t2
m

4
. (24)

FIG. 2. Normalized dispersive (1) and dissipative (2) optome-
chanical constants of MOS, which are plotted as functions of
�/�0 = 4(x − x̃)k/t2

m, where x is the membrane position. g00 =
4ck

l
t2

t4
m

, k is the wave vector of the light wave, and t2
m and t2 are the

power transmission coefficients of the membrane and the mirror,
respectively. x̃ is given by Eq. (19).

The above relations enable us to write simple explicit
expressions for the cavity decay rate associated with the syn-
thetic mirror,

γ = γ0
1

1 + �2/�2
0

, γ0 = 2c

l

t2

t2
m

, (25)

as well as for the optomechanical coupling constants, which
we define as follows:

gω0 = −dωc

dx
and gγ 0 = −0.5

dγ

dx
, (26)

where ωc is a resonance frequency of the system. Thus, keep-
ing in mind that we are typically interested in k that is very
close to ωc/c, we can write

gω0 = g00
1 − �2/�2

0(
1 + �2/�2

0

)2 ,

gγ 0 = g00
2�/�0(

1 + �2/�2
0

)2 , (27)

g00 = 4ωc

l

t2

t4
m

.

Here, when calculating gω0, we use the approximate relation

dωc

dx
= − c

2l

dμ

dx
, (28)

written neglecting the frequency dependence of μ, which is a
good approximation for x � l (see Sec. II B).

The optomechanical constants of the system and the decay
rate associated with the synthetic mirror, which are plotted
as functions of the mirror position, are shown in Figs. 2 and
3, respectively. As illustrated in Fig. 2, the position of the
reflecting membrane with respect to the adjacent mirror at
which the dissipative coupling is much larger than the disper-
sive coupling is defined by �/�0 ≈ 1. This condition imposes
the requirement on the membrane position x − x̃ ≈ λt2

m/8π ≈
0.3 nm which should be maintained with about 20% accuracy.
Here we assumed t2

m = 10−2 and λ = 0.85 μ. Note that the
precision of the membrane positioning of the order of 0.1 nm
is much smaller than the typical thickness of SiN membranes
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FIG. 3. Normalized decay rate associated with the synthetic mir-
ror, which is plotted as a function of �/�0 = 4(x − x̃)k/t2

m, where x
is the membrane position and k is the wave vector of the light wave.
γ0 = 2c

l
t2

t2
m

and t2
m and t2 are the power transmission coefficients of

the membrane and the mirror, respectively. x̃ is given by Eq. (19).

used in optomechanics, about 10–100 nm [34]; however, this
is not a problem. The membrane can be modeled as a mirror
for which an effective plane of reflection can be introduced. It
is the position of that plane that should be maintained with the
subnanometer precision.

It is also worth elucidating the origin of the enhancement
of | dγ

dx | at decreasing tm. As it is clear from Eqs. (20), (21),
and (24), for tm � 1 and x close to x̃, the transparency of the
synthetic mirror exhibits a sharp maximum (cf. Fig. 3). Its
height scales as 1/t2

m while its width scales as t2
m, implying the

average slope ∝1/t4
m. It is this tm dependence that is seen in

Eq. (17) for | dγ

dx |.
To conclude this section, we would like to note that, strictly

speaking, the validity of the presented above results may re-
quire a more stringent condition than x � l . This important
issue is addressed in Sec. II B, where it is shown the exact
condition reads

x � l
t4
m

4t2
. (29)

B. Criterion of applicability of the effective mirror
approach to MOS

Confider a two-sided cavity of a fixed length l , where one
of the mirrors is reflecting with the π phase shift while the
other one is synthetic. We would like to find out how thin the
tandem mirror-membrane should be to justify the applicability
of the above synthetic mirror approach to such a system.

1. Dispersive coupling constant

One readily checks that the resonance frequencies of the
system ωc are equal to ck, where k satisfies the following
equation:

2lk = π + 2πN − μ(kx). (30)

Here N is an integer and μ(kx) is the phase shift at the
synthetic mirror. In view of Eqs. (5) and (6), μ a function of
kx. Equation (30) implies

dωc

dx
= −ωcμ

′

2l

1

1 + xμ′
2l

,

μ′ = dμ

d (kx)
. (31)

Taking into account that, according to Eq. (23) in the range of
interest, |μ′| is about 8t2/t4

m or smaller, we conclude that, if

x � l
t4
m

4t2
, (32)

the second fraction in Eq. (31) can be replaced with 1 to yield

dωc

dx
= − c

2l

dμ

dx
. (33)

Equations (32) and (33) bring us to Eqs. (29) and (28).

2. Decay rate and dissipative coupling constant

In terms of the complex amplitudes (see Appendix A and
Fig. 7), the decay rate associated with the synthetic mirror can
be written as follows [20]:

γ = Ẇ

W
= ct2

m|G1|2
2(l|U2|2 + x|G1|2)

= ct2
m

2(l|U2|2/|G1|2 + x)
,

(34)
where W is the energy stored in the system and Ẇ is the
dissipated power. Equations (A1) and (4) imply

|U2|2
|G1|2 = 1 + r2r2

m + 2rrm cos ψ

t2
= t2

m

T
(35)

such that Eq. (34) can be rewritten as follows:

γ = cT

2l

1

1 − x
l

T
t2
m

. (36)

Taking into account that, in the case of interest, T is about
4t2/t2

m or smaller [see Eq. (21)], we conclude that, if x is
small enough such that inequality (32) is satisfied, the second
fraction in Eq. (36) can be replaced with 1 to justify Eq. (14).

Next, Eq. (36) yields

dγ

dx
= ct2

m

1 + lt2
m

T 2
dT
dx

2
(
lt2

m/T + x
)2 . (37)

Using Eqs. (21) and (22), in the case of interest, lt2
m

T 2
dT
dx can

be evaluated as 4kl/T � 1 such that 1 in the numerator in
Eq. (37) can be neglected. As a result, one concludes that,
if x is small enough such that inequality (32) is satisfied,
Eq. (37) can be rewritten as follows: dγ

dx = c
2l

dT
dx , justifying

the calculation of the dissipative coupling constant by using
the synthetic mirror approach.

III. IMPLICATION FOR SYMMETRIC TWO-SIDED
CAVITY

It was recently shown [14] that a two-port cavity, which
is pumped through one of the mirrors while the transparency
of the other composite mirror is modulated with the motion
of a mechanical oscillator, is an optomechanical device that is
promising for quantum state generation and measurement, not
suffering from any optomechanical instability. For example, it
may be used for quantum limited measurements of the oscil-
lator position and/or for a virtually perfect light squeezing.
This can be realized under the following conditions: (i) res-
onance excitation, (ii) the unresolved sideband regime (“bad
cavity limit”), (iii) the system is dominated by the dissipa-
tive optomechanical coupling associated with the second port,
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FIG. 4. The impact of the intracavity losses on the backaction-
imprecision product for the symmetric membrane-outside system.
The normalized backaction-imprecision product is plotted as a func-
tion of the ratio of the optomechanical constants gω0/gγ 0 for γ3 = 0
(“0%”), γ3 = 0.5γ (“50%”), and γ3 = γ (“100%”), where γ is the
decay rate through each of the mirrors of the symmetric cavity and
γ3 is the decay rate associated with the intracavity losses. We assume
the resonance excitation, the unresolved sideband regime, and the
average transmission of the synthetic mirror being equal to that of
the input mirror.

(iv) the average transparency of the second mirror equals that
of the input mirror (“symmetric” cavity), and (v) the output
signal is that reflected from the input mirror. On the other
hand, if a symmetric two-sided optomechanical cavity is dom-
inated by the dispersive coupling, the quantum limit cannot be
reached such that only a 3-dB squeezing is possible [35].

MOS readily enables the realization of such a device. For
this purpose, one fixes � = �0 by setting the membrane at
the distance

δx = λ
t2
m

8π
(38)

from the position x̃ given by Eq. (19) where the synthetic
mirror is the most transparent. Under those conditions the
system is governed by the dissipative coupling (Fig. 2) and the
decay rate due to the synthetic mirror is equal to γ0/2 (Fig. 3).
The decay rate of the input mirror is chosen to be γ0/2 to
match that of the synthetic mirror. The cavity is exploited in
the unresolved sideband regime.

Remarkably, under such settings, MOS enables switching
from the purely dispersive to the purely dissipative coupling
by a very small displacement of the membrane. Specifically,
as is clear from Fig. 2, at x = x̃, i.e., � = 0, the optomechan-
ical coupling is purely dispersive and after a displacement of
the membrane by δx, given by Eq. (38), it becomes purely
dissipative. A transition between dissipative and dispersive
types of coupling is of special interest since, according to
Ref. [14], it corresponds to the transition between the states of
the system where quantum limited measurements are possible
and impossible, respectively. For an ideal situation, where
the intracavity losses are absent, this result is illustrated by
the curve 0 % in Fig. 4. To estimate the effect of the losses
we follow Ref. [14] where the backaction-imprecision prod-
uct Simp

xx SFF was calculated as a function of the ratio of the

dispersive to the dissipative coupling constant. Here Simp
xx is

the equivalent displacement noise power spectral density in
the detected light (Fig. 1) and SFF is the spectral density of the
quantum backaction force acting on the membrane. The cavity
is driven with a strong monochromatic light. A quantum lim-
ited measurement is possible if Simp

xx SFF = h̄2/4, where h̄ is
the Plank constant. We generalize the calculations of Ref. [14]
by incorporating an additional noise source characterized with
the decay rate γ3 (see Appendix B) to find

Simp
xx SFF = h̄2

4

A2 + 2Aξ 2

1 + ξ 2
, ξ = gω0

gγ 0
, A = 1 + γ3

2γ
(39)

for the resonance excitation of the symmetric cavity (the
decay rate of both the synthetic mirror and the input mirror
equals γ ). Equation (39) is plotted in Fig. 4 for γ3 = 0
(“0%”), γ3 = 0.5γ (“50%”), and γ3 = γ (“100%”). A clear
persistence of the kink in this figure suggests that the “switch-
ing” effect in question is rather robust to the presence of the
intracavity loss.

The kink shown in Fig. 4 provides a qualitative description
of what happens when the membrane is shifted from a position
with � = �0 to that with � = 0. Quantitatively, the kink is
larger because, as follows from Fig. 3, the shift from � = �0

to � = 0 also leads to an increase of the decay rate associated
with the synthetic mirror, which results in an additional in-
crease of the backaction-imprecision product in the dispersive
limit.

Note that the membrane-outside system considered here
allows achieving substantial quantum optomechanical coop-
erativity for the single photon field circulating in the cavity.
Consider the device pumped with a strong monochromatic
light (a0 is the number-of-photons-normalized amplitude of
the pumping field inside the cavity). Using the results from
Ref. [14] for a symmetric two-sided MOS controlled by the
dissipative coupling associated with the “non-feeding” mirror,
the cooperativity, via Eqs. (27) and (25), can be expressed as
follows:

C = (gγ 0xzpfa0)2

γ γm
= M

4t2

t6
m

, (40)

M ≡ c(ka0xzpf)2

lγm
, (41)

where xzpf is the amplitude of zero-point fluctuations and γm is
the decay rate of the mechanical oscillator. For state-of-the-art
phononic band-gap membranes [34] the amplitude of zero-
point fluctuations is xzpf = 10−15 m and the mechanical decay
rate is γm = 0.1 s−1. For 2π/k = 0.85 μ, the cavity length
l = 0.1 mm, and the amplitude transmission coefficients tm =
0.1 and t = 0.014 for the membrane and the adjacent mirror,
respectively, we obtain close to unity cooperativity for a single
photon in the cavity (a0 = 1). The symmetric cavity condition
requires that the power transmission coefficient of the input
mirror is equal to the effective power transmission coefficient
of the synthetic mirror T = 2t2/t2

m = 0.04. The correspond-
ing finesse of such a symmetric cavity is F = π/T = 80.
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FIG. 5. Schematic of Michelson-Sagnac interferometer. The
rectangular part marked with the dashed line can be considered as
an effective input mirror with x-dependent parameters such that the
system can be viewed as a one-sided cavity [12].

IV. COMPARISON WITH MICHELSON-SAGNAC
INTERFEROMETER

The signal-recycled Michelson-Sagnac interferometer
(MSI) [11,12] is schematically depicted in Fig. 5. It consists
of three mirrors, a beam splitter, and a membrane shown with
a wiggled line. This system can be viewed as a one-sided
optomechanical cavity with an effective input mirror, the pa-
rameters of which are functions of the membrane position
[12]. For certain membrane positions the system is controlled
exclusively by the dissipative coupling [12]. At such positions,
in terms of definition (26), the dissipative coupling constant of
the MSI can be evaluated as follows (see Appendix C):

|gγ 0| = rms
ωc

l

√
Tms, (42)

where l is the effective optical length of the cavity, rms is
the modulus of the amplitude reflection coefficient of the
membrane, and Tms is the power transmission coefficient of
the effective mirror. This result can be compared with the
dissipative coupling constant of MOS at |�| = �0, which, via
Eq. (27), reads

|gγ 0| = 2
ωc

l

t2

t4
m

. (43)

Clearly for the MSI, |gγ 0| is always appreciably smaller than
ωc
l while, for MOS, |gγ 0| can be appreciably larger than ωc

l .
However, for a balanced comparison, it is reasonable to use

the optomechanical cooperativity, which can serve as a figure
of merit for optical squeezing and position measurements.
Consider the device pumped with a strong monochromatic
light (ωL is its frequency and a0 is the number-of-photons-
normalized amplitude of the pumping field inside the cavity).
For the MSI as a one-sided cavity in the dissipative coupling
regime [13], such a cooperativity, via Eq. (42), reads

C = (gγ 0xzpfa0)2

γmsγm

(
2ω

γms

)2

= 2Mr2
ms

(
2ω

γms

)2

, (44)

γms = cTms

2l
, (45)

FIG. 6. Membrane-at-the-edge system: A one-sided cavity with
a membrane set inside it, close to the input mirror. The dashed line
represents the membrane, the thin solid line represents the semi-
transparent input mirror, the thick solid line represents the perfectly
reflecting back mirror, the thick arrows represent the pumping light,
and the thin arrow represents the detected light.

where M comes from Eq. (41). Here ω = ck − ωL, where ck is
the frequency of the detected light. Typically, ω is close to the
mechanical resonance frequency ωm. Relation (44) is written
for the bad cavity regime, i.e., for ωm � γms. Note that, in
the result for MOS given by Eq. (40), where the dissipative
coupling is associated with the non-feeding mirror, the small
sideband resolve factor ( 2ω

γms
)2 is absent [14].

To compare the cooperativity C for the MSI and MOS
we keep parameter M equal. Being given by Eq. (41), this
parameter characterizes the basic features of optomechanical
systems. Then, via Eqs. (40) and (44), we find that, for the
MSI, C is always smaller than M while for MOS it can be
larger.

All in all, we see that, in terms of both the coupling con-
stant and cooperativity, MOS is advantageous compared to the
MIS.

V. COMPARISON WITH MEMBRANE-AT-THE-EDGE
SYSTEM

The membrane-at-the-edge (MATE) system is a one-sided
cavity with a mechanical membrane placed inside it close to
the input mirror [20] as shown in Fig. 6. In Ref. [20], various
optomechanical features of MATE are addressed to demon-
strate an advanced optomechanical performance in the case of
a highly reflecting membrane. Specifically, such an advanced
performance is identified in a situation where tm � 1, λ � l ,
and

x � l
t2
m

4
(46)

(see Appendix D). Among other features, Ref. [20] covers
the dissipative coupling. The membrane positions where the
ratio |gγ 0|/γ is maximal are identified, with |gγ 0| reaching
the value given by Eq. (43).

This conclusion also readily follows from our results from
Sec. II. Indeed, MATE can be viewed as an optomechanical
cavity containing the same synthetic mirror as in MOS, which,
however, faces the inner part of the cavity with the opposite
side. The power transmission of such a synthetic mirror is the
same in both directions (see Appendix A) such that, under
condition (46), all results obtained in Sec. II for the decay
rate and the dissipative coupling constant of MOS hold for the
MATE system (see Appendix D). Next, combining Eqs. (27)
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and (25) we find that |gγ 0|/γ reaches maxima at � = �0,
leading to the value of |gγ 0| given by Eq. (43).

At the same time, there is no reason to expect that the
dispersive coupling constant of MATE will vanish at � = �0,
since the amplitude reflection coefficients of the synthetic
mirror are not the same for the opposite directions (see Ap-
pendix A) and, in addition, in the case of MATE, the length of
the inner part of the cavity is not fixed. Moreover, as shown
in Appendix D, at � = �0, the system is dominated by the
dispersive coupling.

Being interested in the situation where the dispersive cou-
pling is absent, one can show (see Appendix D) that it occurs
at �2 = �0, implying, via Eq. (27),

|gγ 0| = ωc

l

t2

tm
, (47)

for tm � 1. Thus, comparing this result with Eq. (43), one
concludes that, in terms of the dissipative coupling constant,
MATE is less advantageous than MOS.

The same conclusion holds in terms of the cooperativity.
Indeed, at �2 = �0, Eq. (25) yields

γmate = ct2

2l
(48)

for the MATE decay rate, implying

C = (gγ 0xzpfa0)2

γmateγm

(
2ω

γmate

)2

= M
t2

t2
m

(
2ω

γmate

)2

, (49)

which is written for the bad cavity regime such that
ω/γmate � 1.

To compare the cooperativity of MATE and MOS, we keep
parameter M equal. Then, via Eqs. (49) and (40), we find that
the MOS cooperativity is a factor of (γmate/ω)2/t4

m larger.

VI. CONCLUSIONS

We have theoretically addressed an optomechanical system
which consists of a two-sided cavity and a membrane that
is placed outside of it, close to one of its mirrors, while the
cavity is fed from the other mirror and the light leaving it
through this mirror is being detected. We term such a setup
the membrane-outside system (MOS). We have shown that,
if the membrane is less reflecting than the adjacent mirror
and it is properly positioned very close to the point x̃ where
the transparency of the tandem mirror-membrane is maximal,
the dispersive coupling can be fully suppressed while the
dissipative coupling constant can be potentially record high.
Specifically, if

t2
m < t � tm � 1, (50)

where t and tm are the absolute values of amplitude transmis-
sion coefficients of the membrane and the mirror, respectively,
and the membrane is displaced from x̃ by

δx = λ
t2
m

8π
, (51)

the system is governed by the dissipative optomechanical
interaction with the coupling constant, which exceeds the
dispersive coupling constant for an optomechanical cavity of
the same length.

FIG. 7. A synthetic mirror consisting of a semitransparent mirror
(solid line) and a semitransparent membrane (dashed line). Running
electromagnetic waves are schematically shown with arrows and
labeled with their complex amplitudes.

MOS enables an efficient realization of the two-port con-
figuration, which was recently proposed [14] as a promising
optomechanical system, allowing among other benefits, e.g., a
possibility of quantum limited optomechanical measurements
in a system which does not suffer from any optomechanical
instability. Such a setup also enables a kind of switching be-
tween the regimes where the quantum limited optomechanical
measurements are possible and where they are not. It is shown
that manifestation of that switching is robust to the presence
of an appreciable intracavity loss.

The optomechanical performance of MOS is compared
with that of other systems, where the dissipative coupling is
viewed as strong: with the Michelson-Sagnac interferometer
(MSI) [11,12,24] and with the so-called “membrane-at-the-
edge” system (MATE) [20]. This comparison is performed
in terms of the dissipative coupling constant and optome-
chanical cooperativity for the regime where the dispersive
coupling is absent. It is found that, for an optimized set of
these parameters, the optomechanical performance of MOS is
advantageous in both aspects.

All in all we have identified a system which, among all
the systems dominated by the dissipative optomechanical cou-
pling, exhibits the strongest optomechanical interaction.
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APPENDIX A: THE SCATTERING MATRIX OF THE
SYNTHETIC MIRROR

The synthetic mirror in question is schematically depicted
in Fig. 7. It consists of a semitransparent mirror shown with
a solid line and a semitransparent membrane shown with a
dashed line. Their scattering parameters are given by Eqs. (1)
and (2). The complex amplitudes of the wave G1, G2, G3,
U1, U2, and U3, which are shown in Fig. 7, are linked by the
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following relations:

G1 = itU2 − rU1,

G2 = −rU2 + itU1,

U3eikx = tmeiϕt +ikxG1 + rmeiϕr−ikxG3,

U1e−ikx = rmeiϕr+ikxG1 + tmeiϕt −ikxG3, (A1)

where all amplitudes are taken at the mirror. The wave vector
of the light is denoted as k.

We are looking for the scattering matrix M of the whole
system, which is defined as follows:(

U3

G2

)
= M

(
U2

G3

)
. (A2)

Equations (A1) readily imply

M = 1

1 + rrmeiψ

(
ittmeiϕt e2iϕr (r + rme−iψ )

−r − rmeiψ ittmeiϕt

)
, (A3)

where ψ ≡ 2kx + ϕr .

APPENDIX B: THE BACKACTION-IMPERFECTION
PRODUCT IN THE PRESENCE OF INTRACAVITY LOSSES

To evaluate the impact of the intracavity losses on the
backaction-imperfection product of a two-port cavity, we
model the intracavity losses as the third port. The system is
pumped with a strong coherent light of frequency ωL from the
first port, and the light backscattered from this port is detected.
We describe the fluctuations in the system with the following
equations written for the Fourier transforms of all variables
(the argument ω is dropped) in the reference rotating with the
frequency ωL:[γ1 + γ2 + γ3

2
− iω

]
X + �Y

=
√

γ1

2
Xin1 +

√
γ2

2
Xin2 +

√
γ3

2
Xin3 + a0gγ 0x, (B1)[γ1 + γ2 + γ3

2
− iω

]
Y − �X

=
√

γ1

2
Yin1 +

√
γ2

2
Yin2 +

√
γ3

2
Xin3 + a0gω0x, (B2)

F = −a0
h̄gγ 0√

γ
Yin2 + 2a0 h̄gω0X, (B3)

where gγ 0 and gω0 are defined by Eq. (26). Here � = ωL −
ωc, where ωc is the resonance frequency, γ1,2,3 are the decay
rates of the three ports, a0 is a number-of-photons-normalized
amplitude of the intracavity pumping field. The operator of
mechanical displacement is denoted as x. The quadratures of
operators of fluctuating parts of the intracavity field a and
those of the input fields Ain1,2,3 are defined as follows:

X(ω) = [a(ω) + a†(−ω)]/2,

Y(ω) = −i[a(ω) − a†(−ω)]/2,

Xin1,2,3(ω) = Ain1,2,3(ω) + A†
in1,2,3(−ω),

Yin1,2,3(ω) = −i[Ain1,2,3(ω) − A†
in1,2,3(−ω)].

The correlators of the field quadratures satisfy the following
relations:

〈Xin1,2,3(ω)Xin1,2,3(ω′)〉
= 〈Yin1,2,3(ω)Yin1,2,3(ω′)〉
= i〈Yin1,2,3(ω)Xin1,2,3(ω′)〉
= −i〈Xin1,2,3(ω)Yin1,2,3(ω′)〉
= δ(ω + ω′), (B4)

where 〈· · · 〉 stands for the ensemble averaging.
The output field from the first port, which is detected, obeys

the following relations:

Xin1 + Xout1 = 2
√

γ1X, Yin1 + Yout1 = 2
√

γ1Y. (B5)

We are interested in the backaction-imperfection prod-
uct for the symmetric two-sided cavity (γ1 = γ2 = γ ), the
resonance excitation (� = 0), and the low-frequency limit
(ω/γ ⇒ 0). In such a situation, using the above relations, we
find

Xout1 = X̃in + 2a0gγ 0
√

γ

γ + γ3/2
x, (B6)

Yout1 = Ỹin + 2a0gω0
√

γ

γ + γ3/2
x, (B7)

where the input noise operators X̃in and Ỹin evidently meet
Eqs. (B4).

The optimal quantum-mechanical measurements must em-
ploy the quadrature Zout = Xout1 cos θ + Yout1 sin θ such that
the orthogonal quadrature carries no information about x.
This condition is met at θ = tan−1(gω0/gγ 0). For the optimal
quadrature, we find

Zout = Zin + a0

2
√

γ
√

g2
γ 0 + g2

ω0

γ + γ3/2
x, (B8)

where the input noise operator Zin obeys relations (B4),
implying the following spectral power density for the impre-
cision of position measurements:

Simp
xx = (γ + γ3/2)2

4a2
0γ

1

g2
γ 0 + g2

ω0

. (B9)

In the situation considered, for the stochastic backaction
force, Eqs. (B1) and (B3) yield

F = − h̄a0√
γ

gγ 0Yin2 + h̄a0gω0

√
γ

γ + γ3/2
(Xin1 + Xin2

+ Xin3

√
γ3/γ ), (B10)

which, via Eqs. (B4), leads to the following expression for the
spectral density of this force:

SFF = h̄2a2
0γ

(γ + γ3/2)2

[(
1 + γ3

2γ

)2

g2
γ 0 + 2

(
1 + γ3

2γ

)
g2

ω0

]
.

(B11)
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Combining Eqs. (B9) and (B11), we arrive at the following
backaction-imperfection product:

Simp
xx SFF = h̄2

4

A2 + 2Aξ 2

1 + ξ 2
, ξ = gω0

gγ 0
, A = 1 + γ3

2γ
,

(B12)
which is given by Eq. (39) of the main text.

APPENDIX C: MICHELSON-SAGNAC INTERFEROMETER

The Michelson-Sagnac interferometer (MSI) is schemat-
ically depicted in Fig. 5. It consists of a beam splitter, a
membrane, and three perfectly reflecting mirrors. The beam
splitter and the membrane are characterized by the following
scattering matrices:(

Tb −Rb

Rb Tb

)
and

(−rms tms

tms rms

)
, (C1)

respectively, where all coefficients of the matrices are real and
positive, and tms and Tb stand for the amplitude transmission
coefficients. The membrane is displaced to the left from its
symmetric position by the distance x. According to Ref. [11],
the MSI can be treated as an optomechanical cavity of a fixed
length l with the input mirror, the scattering matrix of which
reads [11]

M =
(

ρ τ

τ −ρ∗

)
, ρ = |ρ|eiμ, (C2)

ρ = −2RbTbtms − (
R2

b − T 2
b

)
rms cos 2kx + irms sin 2kx,

(C3)

τ = tms
(
T 2

b − R2
b

) + 2RbTbrms cos 2kx, (C4)

where τ stands for the amplitude transmission coefficient,
while, for the decay rate and the optomechanical coupling
constants, the following relations can be used:

γms = cTms

2l
, Tms = τ 2 (C5)

for the decay rate and

gω0 = −dωc

dx
= dμ

dx

c

2l
, (C6)

gγ 0 = −1

2

dγms

dx
= −τ

dτ

dx

c

2l
(C7)

for the coupling constants, where

dτ

dx
= −4krmsRbTb sin 2kx,

dμ

dx
= −2krms

[
2tmsRbTb cos 2kx − rms

(
T 2

b − R2
b

)]
. (C8)

We are interested in the values of gγ 0 and γms for the
position x of the membrane where the dispersive coupling
vanishes. According to Eq. (C6), this happens when dμ

dx = 0,
implying via Eq. (C8) the condition for x, which reads

cos 2kx = rms
T 2

b − R2
b

2tmsRbTb
. (C9)

Under this condition, according to Eq. (C4)

τ = T 2
b − R2

b

tms
. (C10)

For the validity of our calculations, we need |τ | � 1, yielding

T 2
b ≈ R2

b ≈ 1
2

and as a result

| cos 2kx| = |rmsτ | � 1. (C11)

To be specific, we work close to the point where 2kx ≈ π/2.
Then Eq. (C8) implies

∂τ

∂x
≈ −2krms (C12)

and∣∣∣∣dγms

dx

∣∣∣∣ =
∣∣∣∣dτ 2

dx

∣∣∣∣ c

2l
≈ 2

∣∣T 2
b − R2

b

∣∣rms

tms

ωc

l
= 2

√
Tmsrms

ωc

l
.

(C13)

Equations (C7) and (C13) bring us to Eq. (42) of the main
text.

APPENDIX D: MEMBRANE-AT-THE-EDGE SYSTEM

1. Vanishing of the dispersive coupling

For MATE, we are interested in the position of the mem-
brane where the dispersive coupling vanishes. Solving the
following well-known resonance equation [20,29]

cos(kl + ϕr ) = −rm cos(2kx − kl ), (D1)

we find

2x − l = 1

k

[
± cos−1

(
cos(kl + ϕr )

rm

)
+ 2πN

]
, (D2)

where N is an integer, and we calculate dk/dx at the resonance
values of k, k = ωc/c, as(

dk

dx

)−1

= l

2k

[
1 − 2x

l
± r−1

m

√
1 + t2

m cos2(kl − 2kx)

1 − cos2(kl − 2kx)

]
.

(D3)

Equation (D3) implies that the dispersive coupling vanishes,
i.e., dωc/dx = 0, at the resonance wave vector satisfying the
following condition,

cos2(kl − 2kx) = 1, (D4)

or, alternatively, after some algebra, at

cos(2kx + ϕr ) = −rm. (D5)

In the case of interest where rm is close to 1, Eq. (D5) implies
that � defined by Eq. (20) is small, such that Eq. (D5) yields

−1 + (2�)2/2 = −1 + t2
m/2. (D6)

The solution to this equation reads

�2 = t2
m/4 = �0, (D7)

which is the result used in the main text.
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2. Condition on x for the enhanced optomechanical
performance of MATE

Let us find the condition on x, enabling the enhanced
value of the dispersive coupling constant of MATE identified
in Ref. [20]. For λ � l and x � l , according to Eq. (D3),
the maximum modulus of the dispersive coupling constant is
reached if cos(kl − 2kx) is close to 0 while taking “−” in this
formula. Under such settings, via Eqs. (D3) and (26), we find

gω0 = dωc

dx
= ωc

x + lt2
m/4

. (D8)

This relation implies that the aforementioned enhanced value
of the dispersive coupling constant of MATE, which is equal
to 4ωc/(lt2

m), corresponds to

x � l
t2
m

4
. (D9)

This brings us to inequality (46) of the main text.

3. Dispersive coupling at � = �0

According to Eq. (D3), to evaluate the dispersive coupling
constant at � = �0, it suffices to know cos2(kl − 2kx). To
find it, we note that Eq. (D1) can be rewritten as follows:

tan(kl − 2kx) = rm + cos(2kx + ϕr )

sin(2kx + ϕr )
, (D10)

while, at � = �0 and t � tm � 1, Eq. (9) implies

cos(2kx + ϕr ) = − 2rm

1 + r2
m

, sin(2kx + ϕr ) = ±1 − r2
m

1 + r2
m

.

(D11)
Combining the above relations we find

cos(kl − 2kx)2 = 1

1 + tan(kl − 2kx)2
= 1

1 + r2
m

= 1/2,

(D12)
leading, for the two modes corresponding to ± in Eq. (D3),
to the following expressions for the dispersive coupling con-
stants:

gω0+ = −dωc

dx
= − ωc

l − x + lt2
m/2

(D13)

and

gω0− = dωc

dx
= ωc

x + lt2
m/2

, (D14)

respectively.
The mode-exhibiting coupling constant given by Eq. (D14)

is relevant to our consideration. The reason is as follows. The

spectrum of the whole cavity in the k-x plane is, actually,
made of the resonance curves of its two parts with small
areas of the avoided crossing. Evidently, the dispersive cou-
pling constant of the resonance curves originating from the
resonance curves for the x-long part is positive while the dis-
persive coupling constant of the resonance curves originating
from the resonance curves for the l − x-long part is negative.
Addressing � � 1, we are close to the line given by the
equation cos(2kx + ϕr ) = −1, which is the resonance curve
for the x-long part. Thus, we conclude that, for � � 1, the
dispersive coupling constant should be positive like that given
by Eq. (D14) is.

Next, in view of condition (D9), Eq. (D14) yields

gω0− = dωc

dx
= ωc

l

2

t2
m

, (D15)

and, finally, combining Eqs. (43) and (D15) we find∣∣∣∣ gγ 0

gω0−

∣∣∣∣ = t2

t2
m

= T

2
� 1, (D16)

where Eq. (21) is taken into account. Equation (D16) implies
that, at � = �0, MATE is dominated by the dispersive cou-
pling.

4. Applicability of the synthetic mirror approach to MATE

Let us show that under conditions (D9) and λ � l , the
results for the decay rate and the dissipative coupling constant
obtained in Sec. II using the synthetic mirror approach can be
applied to MATE.

According to Ref. [20], for t � tm, the decay rate of MATE
reads

γmate = ct2t2
m/2

xt2
m + (l − x)

[
1 + r2

m + 2rm cos(2kx + ϕr )
] , (D17)

which can be rewritten as follows:

γmate = cT

2l

1

1 + A
,

A = xt2
m/(l − x)

1 + r2
m + 2rm cos(2kx + ϕr )

− xt2
m

l − x
, (D18)

where T comes from Eq. (4). In the situation of interest, where
cos(2kx + ϕr ) ≈ −1, in view of Eq. (D9), A = 4x/(lt2

m) � 1
such that the use of Eq. (14) for the calculation of the MATE
decay rate is justified.

Next, using Eq. (D17), we find

dγmate

dx
= ct2t2

m

r2
m + rm cos(2kx + ϕr ) + 2rmk(l − x) sin(2kx + ϕr ){

l
[
1 + r2

m + 2rm cos(2kx + ϕr )
] − 2x

[
r2

m + rm cos(2kx + ϕr )
]}2 . (D19)

Here, as was shown just above, condition (D9) enables dropping of the second term in the denominator, while for cos(2kx +
ϕr ) ≈ −1 the numerator can be rewritten as follows:

−t2
m/2 + 2kl sin(2kx + ϕr ).
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In the present text, we discuss MATE for � � �0, implying, via Eq. (D11), | sin(2kx + ϕr )| � t2
m/2 such that the first two terms

in the numerator in Eq. (D19) can be dropped if λ � l . Thus we find

dγmate

dx
= ck

l

2t2t2
m sin(2kx + ϕr )[

1 + r2
m + 2rm cos(2kx + ϕr )

]2 . (D20)

This relation is consistent with the results given by Eqs. (15) and (16), which are obtained using the synthetic mirror approach.
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