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Bulk and surface plasmons: Wave-mechanical and second-quantized theories
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In this paper we formulate the quantum theory for longitudinal (rotational free) collective electron modes, the
so-called plasmons. Starting from the jellium dispersion relation, a first-quantized wave-mechanical theory is
established. We show that plasmon quantum (quasi)particles are charged bosons described by complex Klein-
Gordon fields satisfying a “relativistic” scalar Klein-Gordon equation in which the speed of light c is replaced
by a velocity a on the order of the Fermi velocity. Based on a formally (c → a) covariant description, the first-
quantized theory is extended to the second-quantized level via a Lagrangian formalism. We show how the second-
quantized theory enables the study of the plasmon quantum particles interaction with an electromagnetic gauge
field via a modification of the free plasmon Lagrangian density by the minimal coupling principle. Utilizing the
Weyl expansion, first- and second-quantized theories for surface-plasmon quantum particles are established in
close analogy to those of the bulk plasmon quantum particle. This work opens up for the study of, e.g., squeezed,
entangled, and coherent plasmon states in line with what has been studied theoretically and experimentally for
photons for many years.
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I. INTRODUCTION

In solid-state plasma physics one studies those electro-
dynamics properties which in a first approximation can be
described in terms of collective electron excitations [1]. In
free-electron metals and semiconductors, and in BCS super-
conductors, the jellium model constitutes a good starting point
for many theoretical analyses. In this model the electrons
interact with one another in a uniformly smeared-out ionic
background potential [2,3]. It is known that the collective
electrodynamics properties of the electrons are well described
in the framework of the random-phase-approximation (RPA)
model. In this approach both single-particle (electron-hole
pair formation) and collective excitations are included. At
long wavelength only collective modes contribute to the mi-
croscopic dielectric response ε(q, ω) at wave vector q and
cyclic frequency ω [4].

If we limit ourselves to the collective part of the excitation
spectrum, quantum physics tells us that one would expect
to be able to observe single-quantum phenomena. In the
limit q → 0, the quantum energy h̄ωp (ωp being the plasma
frequency) has been observed by external excitation with elec-
trons and light [1,4–8]. Also, plasmon dispersion relations
[q = q(ω)] have been investigated in some detail. For finite
q values it is important to distinguish between longitudinal
(rotational-free) and transverse (divergence-free) plasmons,
named L plasmons and T plasmons. The T plasmon can be
resonantly coupled to photons, and the coupled system we call
a plasmariton (to distinguish from the polariton, a resonantly
coupled T -phonon-photon entity) [9].
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In this work we study the quantum theory of the L plasmon,
in the following just called the plasmon. In the absence of
single-electron excitations, the plasmon plays the role as the
basic quantum (quasi)particle. In turn, this suggests that a
first-quantized description of the plasmon might be possible
and fruitful.

In Sec. III A, we establish such a description starting from
the plasmon dispersion relation. The plasmon is a boson, and
it satisfies a “relativistic” scalar Klein-Gordon equation, in
which the light velocity c is replaced by a = √

3/5vF , vF

being the Fermi velocity of the jellium. A comparison to the
dispersion relation for a relativistic boson of mass M indicates
that the plasmon mass is h̄ωp/a2, and its Compton wave
number is ωp/a. The “rest energy” of the plasmon Ma2 = h̄ωp

equals the self-field energy of the scalar field. The plasmon
has a charge Q = ne < 0 (n: electron bulk density, e: electron
charge), and its first-quantized formalism thus is described by
a complex Klein-Gordon field [10].

A formally (c → a) covariant description enables one
to extend the first-quantized theory to the second-quantized
level, via a Lagrangian formalism, as described in Sec. III B.
Via the relevant Euler-Lagrange equation for the free plasmon,
one regains the plasmon’s Klein-Gordon equation, and find
the canonical plasmon momenta for the plasmon field and its
complex-conjugate partner. The integral of the free-plasmon
Hamiltonian density finally gives one the plasmon energy and
momentum quanta h̄[(aq)2 + ω2

p]1/2 and h̄q, respectively.
In Sec. III C, the plasmon’s interaction with an electromag-

netic gauge field is established modifying the free-plasmon
Lagrangian density by the minimum coupling principle, re-
placing the electron charge (e) by the plasmon charge (Q =
ne). This principle also gives one the plasmon “four”-current
density. We illustrate the basic principle by an examination of
the plasmon’s coupling to a prescribed scalar field.
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In Sec. IV, we establish the first- and second-quantized
theories for surface plasmons confined to, and propagating
along, a sharp and flat jellium-vacuum interface. Starting from
a Weyl expansion [11,12] (Secs. IV A and IV B), the surface-
plasmon quasiparticle quantum theory is established in close
analogy to that of the bulk plasmon (Secs. IV C and IV E). The
free-surface plasmons are eigenmodes of the jellium-vacuum
half-space, and as such not directly observable. Resonant exci-
tation of surface plasmons can be achieved using the external
field from a moving electron, e.g., and observing characteris-
tic of the p-polarized reflection [13–15].

In Sec. V, a screened propagator formalism [16] is used
to analyze the surface-plasmon excitation by a prescribed
external source. In particular, we obtain from the general
p-polarized reflection coefficient (Sec. V B) the nonre-
tarded reflection coefficient and the Ritchie dispersion relation
(Sec. V C) [17,18]. We finish Sec. V with a detailed analysis
of charged-particle excitation of surface plasmons in the case
where the particle propagates in vacuum with constant veloc-
ity parallel to the surface (Sec. V D). In the Appendix, we
summarize how the longitudinal Lindhard dielectric function
leads to the hydrodynamic dielectric function for collective
plasmon excitations, and how the domain of single-particle
excitations is characterized from a kinematic point of view.

II. FRAMEWORK OF THE DESCRIPTION

A. Longitudinal Lindhard dielectric function

Over the years, powerful many-body techniques have been
developed to describe the response of an electron gas to an
external field [2,3]. In the jellium formalism the electron
moves, as mentioned in the Introduction, in a smeared-out
ionic background with constant density, and the electrons
interact alone via nonretarded Coulomb forces, obeying also
the Pauli principle, of course.

The perhaps simplest theoretical method is the self-
consistent field (SCF) approach, also called RPA, for random-
phase approximation [19–22]. The derivation of the RPA
(SCF) approach can be based on a density matrix (Liouville
equation) approach, or on Green functions and the ring dia-
gram technique. In the SCF approach the individual electrons
behave as free particles subjected to the average potential
in the system. For this work the RPA model is sufficient
because it is known to lead to quantitatively correct dispersion
relations for collective bulk and surface excitations, as these
manifest themselves through resonant interactions with exter-
nally impressed fields. As mentioned in the Introduction, this
paper is devoted to a study of first- and second-quantized the-
ories of longitudinal (L) collective excitations, the plasmons.

The longitudinal dielectric function εL(q, ω) is a micro-
scopic scalar bulk quantity depending on the wave number
(q) and (cyclic) frequency (ω) of the excitation. It is defined
via

ε0EL(q, ω) + PL(q, ω) = εL(q, ω)EL(q, ω), (1)

where PL(q, ω) = PL(q, ω)κ is the microscopic longitudinal
polarization of the jellium in the κ = q/q direction, ε0 is the
vacuum permittivity, and EL(q; ω) = EL(q, ω)κ is the lon-
gitudinal part of the local electric field, both at frequency
ω. In RPA, εL(q, ω) is given by the Lindhard dielectric

function [23]

εL(q; ω) = 1 − lim
η→0

[
e2

ε0�

1

q2

∑
k

f0(Ek+q) − f0(Ek )

Ek+q − Ek − h̄ω − ih̄η

]
,

(2)

where Ek (Ek+q) is the free-electron energy belonging to
the wave vector k (k + q), f0(Ek ) [ f0(Ek+q)] is the Fermi-
Dirac distribution giving the occupation probability of state
k (k + q), and � is the box volume for mode quantization.
A deeper contour integral analysis shows that the collective
and single-particle excitations are associated with the pole and
branch-cut structure of the longitudinal Lindhard dielectric
function as this structure appears in a Green function approach
(e.g., see Sec. V). The Green function method is of particular
value (importance) for studies of surface plasmons and their
excitation (Secs. IV and V). With a somewhat limited scope,
sufficient for presenting the framework of this paper one
may derive the bulk plasmon dispersion relation by a long-
wavelength expansion of εL(q, ω) (to lowest order ∼q2). The
well-known calculation, briefly summarized in the Appendix,
gives the result

εL(q, ω) = 1 − ω2
p

ω2 − Dq2
, (3)

where ωp = [ne2/(mε0)]1/2 is the plasma frequency (electron
density: n, electron mass: m). The quantity

D = 3
5v2

F , (4)

where vF is the electron Fermi velocity, will be of utmost
importance in Secs. III and IV since D1/2 will turn out to be a
common characteristic phase velocity of the bulk and surface
plasmons in our quantum theories.

B. Adjacent jellium-vacuum half-spaces: Surface plasmons

The quantum physical theory we shall develop for surface
plasmons in Sec. IV is based on the perhaps simplest model
for a spatially nonlocal jellium occupying a half-space. Thus,
it will be assumed that the electron barrier towards the vacuum
half-space is infinitely high, and that an incoming plane-
wave jellium wave function when scattered specularly from
the surface barrier does not interfere with its reflected part.
In this so-called semiclassical infinite barrier (SCIB) model
[24,25], the field-unperturbed electron density is constant up
to the surface, where it drops to zero in a sharp step. Spill-out
effects are thus neglected (due to the infinite barrier height),
as are spill-in effects (stemming from electron interference in
reflection processes).

C. Bulk and surface propagating eigenmode conditions

The first- and second-quantized theories for bulk plasmons
are established starting from the eigenmode condition

εL(q, ω) = 0, (5)

given the relevant dispersion relation ω = ω(q). The eigen-
mode condition for surface plasmons, given by

εL(q‖, ω) = −1, (6)
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gives the dispersion relation for modes running along the sur-
face plane. The wave vector of such modes along the surface is
q‖, and they decay exponentially perpendicular to the surface
plane, both in the jellium and in vacuum. The derivation of
Eq. (6) contains some in-depth analyses (see Sec. IV). The
conditions in Eqs. (5) and (6) lead to a uniform quantum
description of bulk and surface plasmons.

III. BULK PLASMONS

In this section we establish and discuss the first- and
second-quantized theory of bulk plasmons. Starting from the
plasmon dispersion relation a wave equation is introduced
for a new single-particle (plasmon) field. The plasmon is
a boson particle, and in the first-quantization it satisfies a
Klein-Gordon type of wave equation. A rigorous Lagrangian
formalism is set up for the plasmon field, and the related
Hamiltonian is quantized in the usual manner for a boson field.
The plasmon’s interaction with an external field is established
using a minimal coupling principle.

A. First-quantized theory

1. Dispersion relation, wave equation

Like for other particles (photons, electrons, plasmaritons,
magnon particles, etc.) the first-quantized theory describes a
single plasmon (in a sense a quasiparticle) on the basis of
a quantum mechanical formalism. In the collective regime
one no longer has the electron as the basic entity. Of course,
the roles of the individual electrons manifest themselves by
giving rise to a damping of the plasmon field. This damping
must not be included in a normal mode analysis leading to
the second-quantized field formalism. The coupling of the
plasmon particle to individual electrons can be studied using a
diagrammatic approach (with absorption, emission, and scat-
tering processes). It is also clear that the jellium formalism can
be extended to account for ion lattice periodicity, generalizing
the Lindhard formalism in a well-known manner [4]. Such a
generalization allows one to investigate individual plasmon-
phonon scattering processes, etc.

When the expression in Eq. (3) is inserted in the eigenmode
condition in Eq. (5), one obtains the (squared) dispersion
relation

ω2 = (aq)2 + ω2
p, (7)

where

a = D1/2 =
√

3

5
v f (8)

is a characteristic phase velocity, of the order of the Fermi
velocity. The following analysis holds also if a refined model
changes the prefactor

√
3/5 a bit. These refined models

account for the exchange and correlation hole around an elec-
tron. In the simplest extensions this amounts to a slight change
in the prefactor. A detailed discussion can be found in Ref. [3].
The important point is that a is a constant of the order of
the Fermi velocity. From the dispersion relation a quantum
mechanical wave equation for the plasmon is obtained via
the usual prescription −iω ⇒ ∂/∂t and iq ⇒ ∇. Thus, the
plasmon wave function φ(r, t ) satisfies a Klein-Gordon type

of wave equation, viz.,(
∇2 − 1

a2

∂2

∂t2

)
φ(r, t ) − Q2

Cφ(r, t ) = 0, (9)

where a Compton wave number is defined as

QC ≡ ωp

a
. (10)

The formal similarity of Eq. (9) to the relativistic Klein-
Gordon equation describing the dynamics of a boson particle
is striking. The relativistic boson satisfies the famous disper-
sion relation

ω2 = (cq)2 +
(

m0c2

h̄

)2

, (11)

where c is the vacuum speed of light, and m0 is the particle’s
rest mass. The plasmon wave equation is of course not a
relativistic equation, alone for the reason that it is founded
on a (special) type of solution of the Scrödinger equation.

Let us write the plasmon energy-momentum relation in the
“relativistic” form

h̄ω = +[(ah̄q)2 + (Ma2)2]1/2, (12)

where

M ≡ h̄ωp

a2
(13)

is the plasmon “rest mass.” In a sense, the plasmon mass
concept is quite illuminating. Thus,

E0 ≡ Ma2 = h̄ωp (14)

plays the role of a self-field energy of the scalar field. This
is so because the wave propagation vanishes in the long-
wavelength limit (q → 0). The Einstein–de Broglie–type
relation between particle and wave properties in the plasmon
case is for the energy E = h̄ω and the momentum p = h̄q,
where q = qκ is the plasmon wave vector in the direction
κ. The plasmon kinetic energy ah̄q has the “usual” form,
replacing c by a. The characteristic length scale in scattering
processes is the plasmon Compton wavelength

�C = h

Ma
. (15)

2. Plasmon “four-current” density: Charge conservation

For what follows it is convenient to make use of a “formally
covariant” notation. Thus, we define the “covariant” and “con-
travariant” derivatives{

∂

∂xμ

}
≡ {∂μ} ≡

(
1

a

∂

∂t
,∇

)
, (16){

∂

∂xμ

}
≡ {∂μ} ≡

(
1

a

∂

∂t
,−∇

)
, (17)

using the “metric” signature (1,−1,−1,−1). Above, we have
put relevant notational names between quotation marks be-
cause the various quantities are not relativistically covariant.
In the remaining part of our article we shall leave out the
quotation marks for simplicity.
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In the covariant notation the plasmon wave equation
reads as (

∂μ∂μ + Q2
C

)
φ(r, t ) = 0. (18)

Since the plasmon is charged (global charge = charge of all
jellium electrons), we know from analogy to the relativistic
Klein-Gordon equation that φ(r, t ) is not a probability am-
plitude, but a charge probability amplitude [9,26]. [If φ(r, t )
in the relativistic case describes the dynamics of negatively
charged bosons, the independent complex-conjugate charge
probability amplitude φ∗(r, t ) relates to the positively charged
antiparticles, or vice versa.] In the jellium case there is of
course no antiplasmon. However, if one extends the theory
to semiconductor plasmas (InSb, GaAs, ...), a longitudinal
collective state of holes in the valence band takes the role
of an antiplasmon. A coupling between the plasmon and an-
tiplasmon can be made by interaction with light, e.g., in the
same manner a relativistic boson and its amplitude can be
coupled via γ radiation. It is obvious also that single-particle
wave packets can be formed, subjected to analogous spatial
confinement limitations as for other bosons, like the photon.

The components of the (unnormalized) plasmon four-
current density

Jμ = i(φ∗∂μφ − φ∂μφ∗), μ = 0−3 (19)

satisfy the equation of continuity

∂μJμ = 0, (20)

as one may realize with the help of the Klein-Gordon equation
in Eq. (18). The charge of the plasmon (Q = ne < 0; n the
jellium electron density) is given by

Q = i
∫

V
(φ∗∂0φ − φ∂0φ

∗)d3r, (21)

where V is the box volume of the spatial mode quantization.

B. Second-quantized theory

1. Lagrangian formalism for free plasmons: Hamilton density

Taking as a starting point the plasmon Lagrangian den-
sity (this Lagrangian density follows from the well-known
relativistic Klein-Gordon density [10] replacing covariant
derivatives by our formal covariant derivatives)

LP = (∂μφ)(∂μφ∗) − Q2
Cφφ∗ (22)

for a free particle (subscript P for particle or plasmon), the
Euler-Lagrange equation for φ∗, viz.,

∂μ

[
∂LP

∂ (∂μφ∗)

]
− ∂LP

∂φ∗ = 0, (23)

immediately gives the Klein-Gordon equation in Eq. (18).
The second quantization of the plasmon field is based on the
plasma Hamiltonian density. From the canonical momenta πφ

and πφ∗ for φ and φ∗, i.e.,

πφ ≡ ∂LP

∂ (∂0φ∗)
= ∂0φ, (24)

π∗
φ ≡ ∂LP

∂ (∂0φ)
= ∂0φ∗, (25)

one obtains for the Hamiltonian density HP, given by

HP = πφφ̇∗ + πφ∗ φ̇ − LP (26)

(with the abbreviation φ̇ ≡ ∂0φ[= ∂0φ]), the explicit expres-
sion

HP = (∂0φ)(∂0φ
∗) + (∇φ) · (∇φ∗) + Q2

Cφφ∗ (27)

since πφφ̇ = πφ∗ φ̇ = (∂0φ)(∂0φ
∗). The total Hamiltonian

(HP) for the plasmon is obtained by integration of HP

over V :

HP =
∫

V
HP(r, t )d3r. (28)

2. Plasmon particle operators for energy and momentum
and their eigenvalues

The form given for the plasmon HP clearly allows a quan-
tization procedure as for other massive boson fields. The
quantization becomes particularly easy if one rewrites the
expression for HP in the alternative form

HP =
∫

V

[
(∂0φ)(∂0φ

∗) − φ∗(∇2φ − Q2
Cφ

)]
d3r

=
∫

V
[(∂0φ)(∂0φ∗) − φ∗∂0∂

0φ]d3r. (29)

The form of the first member of Eq. (29) is obtained inte-
grating the term (∇φ) · (∇φ∗) by parts (dropping the surface
terms). The second member follows by utilizing the Klein-
Gordon equation. The plasmon Hamilton operator ĤP is
obtained by upgrading the fields φ and φ∗ to operator status,
i.e., φ ⇒ φ̂ and φ∗ ⇒ φ̂†. If one hereafter expands these
operators in a complete monochromatic plane-wave set, one
obtains

φ̂(r, t ) =
∑

n

[ânφ
(+)
n (r, t ) + b̂†

nφ
(−)
−n (r, t )], (30)

φ̂†(r, t ) =
∑

n

{â†
n[φ(+)

n (r, t )]∗ + b̂n[φ(−)
−n (r, t )]∗}, (31)

where the normalized (running) plasmon mode functions are

φ(±)
n (r, t ) =

(
h̄a

2EnV

)1/2

exp

[
i

(
qn · r ∓ En

h̄
t

)]
(32)

with energies

En = h̄ωn = h̄a
[
q2

n + Q2
C

]1/2
. (33)

We have retained the antiplasmon (hole) part for later ap-
plications to semiconductor plasmon theory. The plasmon (a
operators) and antiplasmon (b operators) annihilation (ân, b̂n)
and creation (â†

n, b̂†
n) operators satisfy the boson commutation

relations

[ân, â†
m] = [b̂n, b̂†

m] = δnm, (34)

all other commutators being zero. By inserting the mode
expansion in Eqs. (30) and (31) into Eq. (29) and using the
commutation rules one obtains

ĤP =
∑

n

h̄ωn[â†
nân + b̂†

nb̂n + 1]. (35)
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Leaving out the antiplasmon part (jellium system) the plas-
mon energy and momentum operators are

ĤP =
∑

q

h̄
[
(aq)2 + ω2

p

]1/2
(

N̂ (q) + 1

2

)
(36)

and

P̂P =
∑

q

h̄qN̂ (q), (37)

where

N̂ (q) = â†(q)â(q) (38)

is the number operator for mode q. In the number state |nq〉
(for a single mode q) we thus obtain the eigenvalue equations

ĤP(q) |nq〉 = h̄
[
(aqn)2 + ω2

p

]1/2
[

nq + 1

2

]
|nq〉 , (39)

P̂P(q) |nq〉 = h̄qn |nq〉 , (40)

where nq is the eigenvalue of the number operator. The expres-
sions for the plane-wave plasmon eigenvalues, which in our
paper have been derived in a rigorous manner, may perhaps
have been guessed. However, our formalism opens the door-
way for constructing and studying coherent states, squeezed
states, entangled states, single-plasmon wave-packet states,
two-plasmon states, and more.

C. Plasmon interaction with electromagnetic gauge fields

1. Minimal coupling principle for the plasmon:
Interaction Lagrangian

In order to calculate the plasmon’s interaction with an
electromagnetic field, described by the four-potential {Aμ} =
(A0, A), we shall make use of minimal coupling, replacing
the charge (e) by the plasmon charge (Q = ne). The potential
of the electromagnetic field is a relativistic four-vector in the
fundamental sense. Thus,

{Aμ} =
{

A0 = �

c
, A

}
, (41)

where � is the scalar potential. The minimal coupling substi-
tution we give the plasmon form [27]

∂μ ⇒ ∂μ − iQ

h̄
Aμ, (42)

where it must be remembered that {∂μ} is the plasmon co-
variant derivative [Eq. (16)]. In our second article on the
plasmariton, which always is a coupled system of transverse
(T ) plasma displacements and an electromagnetic field, all
covariant and (contravariant) derivatives will be genuine rel-
ativistic four-vectors: the plasmariton propagates with the
vacuum speed of light (as phase velocity).

The minimal coupling substitution in Eq. (42) changes the
Lagrangian density in Eq. (22) to LP + LI :

LP + LI =
(

∂μφ + iQ

h̄
Aμφ

)(
∂μφ∗ − iQ

h̄
Aμφ∗

)

− Q2
Cφφ∗, (43)

which shows that the interaction Lagrangian density (LI ) is
given by

LI = iQ

h̄
[(Aμφ)(∂μφ∗) − (∂μφ)(Aμφ∗)]

+
(

Q

h̄

)2

AμAμφφ∗. (44)

The last term of LI describes a nonlinear coupling between the
plasmon and the electromagnetic field. The total Lagrangian
density (L), which we do not need in this work, is obtained by
adding the free-field electromagnetic Lagrangian density

LF = ε0

2

[(
∂A
∂t

)2

− c2(∇ × A)2

]
, (45)

that is,

L = LP + LF + LI . (46)

2. Plasmon current density: Interaction Hamiltonian

In the presence of an electromagnetic field the minimal
coupling principle leads to a plasmon current density

Jμ = i

[
φ∗

(
∂μφ + i

Q

h̄
Aμφ

)

−φ

(
∂μφ∗ − i

Q

h̄
Aμφ∗

)]
, μ = 0−3 (47)

which we divide into “paramagnetic” [Jμ
para(Aμ = 0)] and

“diamagnetic” [Jμ

dia(Aμ)] parts, viz.,

Jμ
para(Aμ = 0) = i(φ∗∂μφ − φ∂μφ∗), μ = 0−3 (48)

and

Jμ

dia(Aμ) = −2Q

h̄
Aμφφ∗, μ = 0−3. (49)

The form of the paramagnetic part is the same as that of
Eq. (19), but φ must now be calculated from an inhomoge-
neous plasmon Klein-Gordon equation; see Sec. III C 3.

With coupling present the canonical momenta become

πφ = ∂ (LP + LI )

∂ (∂0φ∗)
= ∂0φ + iQ

h̄
A0φ, (50)

πφ∗ = ∂ (LP + LI )

∂ (∂0φ)
= ∂0φ∗ − iQ

h̄
A0φ∗. (51)

From these the sum of the plasmon (HP) and interaction (HI )
Hamiltonian densities

HP + HI = πφφ̇∗ + πφ∗ φ̇ − LP − LI (52)

is obtained:

HP + HI = (∂0φ)(∂0φ
∗) + (∇φ) · (∇φ∗) + Q2

Cφφ∗

+ iQ

h̄
A0(φφ̇∗ − φ∗φ̇)

+ iQ

h̄
[(∂μφ)(Aμφ∗) − (∂μφ∗)(Aμφ)]

−
(Q

h̄

)2

AμAμφφ∗, (53)
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and then finally

HP + HI = (∂0φ)(∂0φ
∗) + (∇φ) · (∇φ∗) + Q2

Cφφ∗

+ iQ

h̄
[(Aφ) · (∇φ∗) + (Aφ∗) · (∇φ)]

−
(Q

h̄

)2

AμAμφφ∗. (54)

The reader may check that the “standard” form of the interac-
tion Hamiltonian density [28], viz., −JμAμ deviates from the
one in Eq. (54) by a term i(Q/h̄)[φ∗∂0φ − φ∂0φ∗]A0.

3. Inhomogeneous plasmon Klein-Gordon equation

It is often claimed that plasmons do not couple to the
(transverse) photon field. This is certainly only correct in spe-
cial cases, as we shall realize in Sec. V, where the plasmon’s
coupling to the field from an externally impressed prescribed
current source is analyzed. The coupling also appears in a
manifest manner from the Euler-Lagrange equation

∂μ

[
∂ (LP + LI )

∂ (∂μφ∗)

]
− ∂ (LP + LI )

∂φ∗ = 0, (55)

from which one obtains the following inhomogeneous Klein-
Gordon equation for the scalar field:

(
∂μ∂μ + Q2

C

)
φ + iQ

h̄
[∂μ(Aμφ) + Aμ(∂μφ)]

−
(Q

h̄

)2

AμAμφ = 0. (56)

Let us close this subsection by a brief account of a most
simple example, viz., the interaction of the plasmon with a
space-time constant scalar potential �. Equation (56) now is
simplified to

(
∂μ∂μ + Q2

C

)
φ + 2iQ�

h̄c

∂φ

∂t
+

(
Q�

h̄

)2

φ = 0 (57)

since ∂0φ = ∂0φ [metric signature (1,−1,−1,−1)]. From
Eq. (57) one obtains a dispersion relation

ω = a2

h̄c
Q� +

{
(aq)2 + ω2

p +
(

aQ�

h̄

)2[
1 +

(a

c

)2]}1/2

.

(58)

Since a/c � 1, the dispersion relation may (∼ always) be
reduced to

ω 

[

(aq)2 + ω2
p +

(
aQ�

h̄

)2]1/2

. (59)

The term (aQ�/h̄)2 originates in the nonlinear part of the
coupling, and this displaces the plasma frequency to

ωp(�) = ωp(� = 0)

[
1 +

(
Q�

h̄QC

)2]1/2

. (60)

One may conclude that it is a simultaneous two-photon scalar
photon interaction with the plasmon which is responsible
for the upwards displacement [ωp(�) > ωp(� = 0)] of the
plasma frequency. In Sec. IV E 2 we derive a closely related
dispersion relation for surface plasmons.

IV. SURFACE PLASMONS

A. Weyl expansion of the bulk wave function

We begin our study of the first-quantized theory of surface
plasmons by establishing a Weyl expansion of the bulk plas-
mon wave function in the space-frequency domain φ(r; ω).
The Weyl expansion we obtain in a sense represents a general-
ization of the well-known Weyl expansion for electromagnetic
fields in vacuum [12]. The expansion derived below holds for
relativistic boson fields if one makes the replacements a → c
and ωp → m0c2/h̄.

It appears from the dispersion relation in Eq. (7) that
φ(r; ω) satisfies the Helmholtz equation(∇2 + κ2

L

)
φ(r; ω) = 0, (61)

where

κL = 1

a

(
ω2 − ω2

p

)1/2
. (62)

Let us then assume that in any plane z = constant the field
may be represented by a two-dimensional (2D) Fourier inte-
gral of the form

φ(r; ω) =
∫ ∞

−∞
φ(q‖, ω; z)eiq‖·r‖d2q‖, (63)

where q‖ = (q‖,x, q‖,y, 0) and r‖ = (x, y, 0). It must be re-
membered that the collective wave number from a physical
point of view must be limited to small wave numbers to
avoid single-particle excitations [2,23]. The domain of single-
particle excitations is briefly discussed in the Appendix. By
inserting Eq. (63) into Eq. (61) one has∫ ∞

−∞

(
κ2

L − q2
‖ + ∂2

∂z2

)
φ(q‖, ω; z)eiq‖·r‖d2q‖ = 0. (64)

Since Eq. (64) must hold for all values of r‖, it appears that
φ(r‖, z) satisfies the second-order differential equation(

∂2

∂z2
+ w2

)
φ(q‖, ω, z) = 0, (65)

where

w =
{

+(
κ2

L − q2
‖
)1/2

, q‖ � κL

+i
(
q‖ − κ2

L

)1/2
, q‖ > κL.

(66)

The general solution to Eq. (65) thus is

φ(q‖, ω; z) = A(q‖, ω)eiwz + B(q‖, ω)e−iwz. (67)

This in turn means that the bulk plasmon wave function has
an expansion (over a chosen q‖ plane)

φ(r; ω) =
∫ ∞

−∞
A(q‖, ω)ei(q‖·r‖+wz)d2q‖

+
∫ ∞

−∞
B(q‖, ω)ei(q‖·r‖−wz)d2q‖. (68)

The general solution for φ(r; ω) thus consists of a superposi-
tion of three-dimensional (3D) propagating plane waves (q‖ �
κL) and so-called inhomogeneous plane modes propagating
along the given q‖ directions and evanescent (exponentially
decaying) in the direction perpendicular to the q‖ plane (q‖ >

κL). The expansion in Eq. (68), with ω given by Eq. (66), is
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the renowned Weyl expansion. By combining Eqs. (62) and
(66) (for q‖ > κL) it follows that the one-dimensional (1D)
evanescent components must satisfy the condition

(aq‖)2 + ω2
p − ω2 > 0. (69)

As we shall see in Sec. IV B, the surface plasmons are related
to the 1D evanescent modes. Modes which are evanescent for
all |q‖|, hence must have frequencies below ωp. Wave-packet
surface-plasmon wave functions can be constructed by rele-
vant q‖ superposition of 1D evanescent modes. The theoretical
limitation on how well localized a given wave packet can be is
determined by the cutoff condition for the evanescent modes
[inequality in Eq. (69)].

B. Surface plasmons on a sharp and flat
jellium-vacuum interface

In the so-called semiclassical infinite-barrier model (SCIB
model) it is assumed that the individual jellium electrons
hiding the surface are (i) specularly reflected, that (ii) quantum
interference between the incoming and reflected parts of the
electron can be neglected, and that (iii) the sharp smeared-out
ion barrier is infinitely high. This model has it limitations in
that selvedge effects [Friedel-type spill out and spill in (for
infinitely high barrier)] are omitted [24,29]. A Green function
approach allows a study of selvedge effects for surface plas-
mons and surface plasmaritons [30]. In the SCIB model the
relevant spatially nonlocal microscopic conductivity tensor
σ(z, z′; q‖, ω) is known [25] to have elements (leaving out the
reference to q‖ and ω)

σi j (z, z′) = �(z)�(z′)
[
σ∞

i j (z − z′) + ξ jσ
∞
i j (z + z′)

]
, (70)

where ξ j = 1 for j = x, y and ξ j = −1 for j = z. � denotes
the Heaviside unit step function. Above, we assume that the
surface is placed at the z = 0 plane. σ∞ is the microscopic
conductivity tensor of an infinitely extended jellium. σ∞ con-
tains both longitudinal (L) (relevant for bulk plasmons)and
transverse (T ) parts. As we shall see in Sec. V, both parts
are of importance in resonance excitation of surface plasmons.
The implications of the text accompany Fig. 1. As discussed
in the text to Fig. 1 the SCIB model makes the jellium behave
like an infinite medium with a sheet source at z = 0.

C. Dispersion relation

The surface-plasmon dispersion relation now can be de-
duced as follows: The bulk plasmon dispersion relation
originates in the nonretarded Coulomb interaction in the entire
space. At long wavelength (q → 0) the classical energy in the
jellium mode is proportional to ω2

p. For a half-space (z > 0),
one thus expects a jellium energy proportional to ω2

p/2 in the
framework of the SCIB model (cf. Fig. 1). In consequence, we
must have a (squared) dispersion relation for surface plasmons
of the form

ω2 = (aq‖)2 + ω2
pS, (71)

where

ωpS = ωp√
2

(72)

FIG. 1. Schematic illustrations of the SCIB model and the Weyl
expansion used in the establishment of the surface-plasmon disper-
sion relation. In (a) it is shown how the radiation from a source
point at a distance z′ from the surface is connected via direct (D) and
indirect (I) field propagation to an observation point at z. The neglect
of quantum interference in electron reflection from the surface allows
one to consider the semi-infinite jellium as in infinitely extended
medium in which [as shown in (b)] the indirect field propagation
appears to originate from the mirror point at (depth) −z′. For the
equivalent infinite jellium the Weyl expansion of the bulk plasmon
field φ(q‖, ω, z) from a sheet source located at depth z0 is shown in
(c). As indicated, the field decays exponentially with distance from
z0 (the decay constant is the same for z < z0 and z > z0). To describe
the surface-plasmon field, the sheet is moved from z0 to the interface
at z = 0 (d). The decay constant now is smaller for z < 0 than for
z > 0 [cf. Eqs. (62) and (65)].

is the (well-known) surface-plasmon frequency. A rigorous
derivation of Eq. (71) can be found in Ref. [13], Chap. 1.
Equation (71) is identical to Eq. (6). Note that we have
reached this dispersion relation (essentially) on the basis of
the SCIB model applied to longitudinal collective electron
dynamics in bulk jellium. As we shall see in Sec. V, more
“complicated” (in our point of view) surface-plasmon disper-
sion relations have been suggested in the literature [13,17,18].
All these are established from resonance studies, not giving
a quite clear picture of the basics, and not of the “sim-
ple oscillator” type, a direct starting point for the first- and
second-quantized theories for surface plasmons (at sharp jel-
lium and vacuum interfaces). The boson character of the
surface plasmons is obvious from the form in Eq. (71). We
have in Eq. (71) used the same a ∼ vF as for bulk plas-
mons (consistent with the SCIB model). Refined models may
(and probably will) change the prefactor (3/5)1/2 [in Eq. (8)]
slightly.
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D. First-quantized theory

At this point, it is clear that a first-quantized theory for
surface plasmons can be established in analogy that given for
bulk plasmons in Sec. III A. The wave function of the surface
(S) plasmon, denoted from now on as φS (r‖, t ), satisfies the
2D Klein-Gordon equation (prescription: iq‖ ⇒ ∇‖)

(
∇2

‖ − 1

a2

∂2

∂t2

)
φS (r‖, t ) − Q2

CSφS (r‖, t ) = 0, (73)

where

QCS ≡ ωpS

a
(74)

is a Compton wave number for surface plasmons, and ∇‖ =
( ∂
∂x ,

∂
∂y , 0) in Cartesian coordinates. With a surface-plasmon

“rest mass”

MS = h̄ωpS

a2
, (75)

one readily obtains the “relativistic” energy-momentum rela-
tion

h̄ω = +[(ah̄q‖)2 + (MSa2)2]1/2. (76)

The plasmon self-field energy now is E0S = MSa2 = h̄ωpS .
In a formally 3D covariant notation where

{∂μ} =
(

1

a

∂

∂t
,∇‖

)
[≡ ∂‖,μ], (77)

etc., the surface-plasmon wave equation is written as(
∂μ∂μ + Q2

CS

)
φS (r‖, t ) = 0. (78)

In the specular reflection mode, Eq. (70) implies that

Jz(z → 0+; q‖, ω) = 0,
d

dz
J‖(z → 0+; q‖, ω) = 0. (79)

The results in Eq. (79) follow from the spatially nonlocal
constitutive equation between field and current density; see,
e.g., Refs. [16,22,25]. In turn this means that the spatial part
of the contravariant surface current density

Jμ = i(φ∗
S∂μφS − φS∂

μφ∗), μ = 0−2 (80)

lies in the z = 0 plan. The wave equation in Eq. (73) implies
that the equation of continuity ∂μJμ = 0 is satisfied in the
surface-plasmon case. The charge of the surface plasmon is
QS = nSe(< 0), where nS is the surface electron density. To
obtain nS a model for the surface region is needed. Basically, a
complicated integral equation study aiming at a self-consistent
determination of the microscopic electromagnetic field in the
selvedge region is needed. Only approximate solutions can
be obtained, and in many applications simpler models have
been employed (see Ref. [30], and references therein). At
low frequencies density functional theory can be used to get
the charge and potential distributions in the selvedge region
[31–33].

E. Second-quantized theory

1. Free surface plasmons

Starting from the surface-plasmon Lagrangian density
(μ = 0−2)

LpS = (∂μφS )(∂μφ∗
S ) − Q2

CSφSφ
∗
S , (81)

one may repeat all the steps carried out in Sec. III B, and
if one leaves out the anti-surface-plasmon part, the surface
plasmon’s energy and momentum operators take the following
form in plane-wave (q‖) mode quantization:

ĤpS =
∑

q‖

{
h̄
[
(aq‖)2 + ω2

pS

]1/2
(

N̂S (q‖) + 1

2

)}
, (82)

P̂pS =
∑

q‖

h̄q‖N̂S (q‖), (83)

where

N̂S (q‖) = â†(q‖)â(q‖) (84)

is the surface-plasmon number operator. The surface anni-
hilation and creation operators satisfy boson commutation
relations, that is,

[â(q‖,n), â†(q‖,m)] = δnm, (85)

all other commutators being zero.

2. Surface-plasmon interaction with electromagnetic gauge fields

In the minimal coupling scheme the charge of the surface
plasmon QS enters the plasmon Lagrangian (LpS) formalism.
With the substitution

∂μ ⇒ ∂μ − iQS

h̄
Aμ, μ = 0−2 (86)

the Lagrangian including the interaction with the potential
field is

LpS + LIS =
(

∂μφS + iQS

h̄
AμφS

)(
∂μφ∗

S − iQS

h̄
Aμφ∗

S

)

− Q2
CSφSφ

∗
S . (87)

From the Euler-Lagrange equation

∂μ

[
∂ (LpS + LIS )

∂ (∂μφ∗
S )

]
− ∂ (LpS + LIS )

∂φ∗
S

= 0, (88)

the inhomogeneous surface-plasmon Klein-Gordon equation
is obtained:(

∂μ∂μ + Q2
CS

)
φS = iQS

h̄
[∂μ(AμφS ) + Aμ(∂μφS )]

−
(QS

h̄

)2

AμAμφS = 0. (89)

A number of specific cases can be derived from Eq. (89).
For instance, for coupling to a constant scalar potential (�),
one ends up with a dispersion relation of the form given by
Eq. (59), with the replacement Q → QS , q → q‖, and ωp →
ωpS . Hence, with the abbreviation

x = aQS�

h̄ωpS
, (90)
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FIG. 2. The surface-plasmon dispersion relation in Eq. (91) plot-
ted for three different values of x = aQS�/(h̄ωpS ). The blue region
is the domain of single-particle excitations (see the Appendix for a
brief summary). The surface plasmons are strongly damped when
single-particle excitations occur. The dotted lines have slope a/ωp

and 0.

one has

ω

ωpS
=

[(
aq‖
ωpS

)
+ 1 + x2

]1/2

. (91)

A plot of the dispersion relations in Eq. (91) for different x
values is shown in Fig. 2.

V. EXCITATION BY EXTERNAL SOURCE:
SCREENED PROPAGATOR FORMALISM

A. Jellium screened propagator

Having established the quantum theory of surface plas-
mons at a flat jellium-vacuum interface we address the
question of how these plasmons are coupled to a prescribed
electromagnetic field originating in an external current density
distribution (source) J0(r; ω). Under the assumption that the
source is located outside the jellium half-space the electric
field in points (r) in the vacuum half-space outside the source
domain (V0) can be written in the compact form

E(r; ω) = −iμ0ω

∫
V0

G(r, r′; ω) · J0(r′; ω)d3r′ (92)

in the space-frequency domain. The central quantity
in Eq. (92) is the tensorial electromagnetic propagator
G(r, r′; ω) [16,34]. This consists of two parts

G(r, r′; ω) = G0(r − r′; ω) + I(r, r′; ω), (93)

where G0(r − r′; ω) describes the direct field propagation be-
tween source (r′) and observation (r) points. As indicated, this
part only depends on the difference r − r′ (vacuum is homo-
geneous) and I(r, r′; ω) accounts for the indirect propagation
from r′ to r via reflection from the jellium surface as shown
schematically in Fig. 3.

The propagator G(r, r′; ω) is constructed in such a manner
that Eq. (92) also can describe “external” sources located

FIG. 3. A charged particle moving with a constant velocity V
parallel to the vacuum-jellium interface can excite transverse (T )
and longitudinal (L) surface plasmons via p-polarized field reflection
from the surface. The field from the source plane z′ reaches the
plane of observation z through direct (propagator: G0) and indirect
(propagator: I) channels. The I channel contains information on the
T - and L-surface plasmons.

inside the jellium, provided the dynamics of these (to a
good approximation) develop independently of the plasma
screening or can be described in a simple relaxation time ap-
proach. Examples may be a fast going charged particle (∼ion,
electron, ...) or a (laser-driven) impurity atom (∼oscillating
electric dipole). External sources inside the jellium can couple
(strongly) to bulk plasmons.

In Eq. (92) we have considered the electromagnetic field
as a classical quantity. However, it is possible to extend the
formalism to a quantum mechanical (first-quantized) photon
theory based on, e.g., the Riemann-Silberstein-Oppenheimer-
Bialynicki energy wave function [35,36] driven by an external
source [37]. The first-quantized theory can be extended to
second quantization (low-energy QED). In a related problem,
viz., the scattering from a Bethe hole in a thin jellium screen,
first- and second-quantized theories have been established in
recent years (see [38,39] and references therein). In these
studies the (quantized) plasmon response was not considered
explicitly.

It is known [16,34] that the indirect propagator has a Weyl-
type expansion of the general form

I(r, r′; ω) = (2π )−2
∫ ∞

−∞
S−1 · I(z + z′; q‖, ω) · S

× exp[iq‖ · (r‖ − r′
‖)]d2q‖, (94)

where S is the rotation matrix (for rotations around the q‖,z
axis) which takes (q‖,x, q‖,z, 0) into (q‖, 0, 0).

B. p-polarized reflection

If the source is a pointlike atom radiating as an electric
dipole, or a charged particle propagating along the surface,
it is necessary to take into account the rotation of I(z +
z′; q‖, ω), integrating S−1 · I(z + z′; q‖, ω) · S over the entire
q‖ plane. This integration gives contributions from both the
propagating and evanescent parts of the wave-vector (q‖)
spectrum. A particularly interesting situation occurs if the
external particle (say electron) propagates along the surface.
Then, it is possible to excite a coherent combination of surfrid-
ing transverse and longitudinal collective modes. If the phase
velocity (on a given direction) exceeds the phase velocity of
the surface eigenmodes in this direction surface shock waves
may be generated [40]. These are a combination of Cherenkov
and Landau shock waves.
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Limiting ourselves to incoming p-polarized monochro-
matic plane waves emitted (approximately) by an appropriate
external source, the p-polarized amplitude reflection coeffi-
cient turns out to be given by [34]

rp(q‖, ω) = q0
⊥ − (

ω
c

)2
M(q‖, ω)

q0
⊥ + (

ω
c

)2
M(q‖, ω)

, (95)

where q0
⊥ = [(ω/c)2 − q2

‖]1/2, in a configuration where the
polarization unit vector of the incoming field is ei =
(q0

⊥, 0,−q‖)c/ω. The quantity M(q‖, ω) is given by

M(q‖, ω) = 2i

π

∫ ∞

0

[
q2

⊥
NT (q)

+ q2
‖

NL(q)

]
cos(q⊥0+)

q2
dq⊥

(96)

in the notation limz→0+
∫

F (q⊥, z)dq⊥ ≡ ∫
F (q⊥, 0+)dq⊥.

The information on the half-space jellium excitations is con-
tained in

NT (q) =
(ω

c

)2
εT (q, ω) − q2 (97)

and

NL(q) =
(ω

c

)2
εL(q, ω). (98)

It thus appears that rp(q‖, ω) can be expressed in a form
where integrals of the transverse [εT (q, ω)] and longitudinal
[εL(q, ω)] bulk dielectric response functions appear as central
quantities. The reason that it is bulk epsilons which appear
is our use of the “simple” specular electron reflection model.
As it stands, rp(q‖, ω) depends on single-particle as well as
collective transverse and longitudinal excitations.

It is important to note that rp(q‖, ω) basically always
depends on both the transverse and longitudinal electrody-
namics of the jellium [cf. the expression for M(q‖, ω)]. Being
interested in this work in the role of the collective eigen-
modes as they may manifest themselves in rp(q‖, ω), the
integral in M(q‖, ω) is carried out as a contour integral in a
complex q⊥ plane. The (two) pole contributions associated
to NT ([q2

‖ + q2
⊥]1/2, ω) and NL([q2

‖ + q2
⊥]1/2, ω) relate to the

transverse surface plasmariton (also called polariton) and the
surface-plasmon eigenmodes of the jellium.

C. Coupling to surface plasmons: Ritchie dispersion relation

A detailed discussion of the p-polarized reflection co-
efficient in Eq. (95) is beyond the scope of this paper. If
retardation effects are neglected (c → ∞) the plasmariton
contribution to rp(q‖, ω) vanishes, and one obtains

rp(q‖, ω) =
ε(ω) − 1 − iq‖κL

⊥
κ2

L
ε(ω)

[
1 − ε−1

L (q‖, ω)
]

ε(ω) + 1 + iq‖κL
⊥

κ2
L

ε(ω)
[
1 − ε−1

L (q‖, ω)
] , (99)

where ε(ω) = 1 − (ωp/ω)2 is the common expression for
εT (q → 0, ω) = εL(q → 0, ω) in the long-wavelength limit.
Furthermore,

κ2
L = 1

a2

(
ω2 − ω2

p

)
, (100)

κL
⊥ = + i

a

[
ω2

p + (aq‖)2 − ω2
]1/2

, (101)

and

ε−1
L (q‖, ω) − 1 = ω2

p

ω2 − (aq‖)2 − ω2
p

. (102)

At this point, the reader may notice that a quantity

ω2 − (aq‖)2 − ω2
p = [

ω2 − (aq‖)2 − ω2
pS

] − ω2
pS (103)

appears in Eqs. (101) and (102). The surface-plasmon disper-
sion relation [Eq. (71)] appears in Eq. (103), setting [. . .] = 0.

Self-sustaining solutions are obtained for rp(q‖, ω) → ∞,
as it is clear from Eqs. (92) and (93). Setting the denominator
of Eq. (99) to zero

ε(ω) + 1 + iq‖κL
⊥

κ2
L

ε(ω)
[
1 − ε−1

L (q‖, ω)
] = 0, (104)

one obtains, utilizing Eqs. (100)–(102), and remembering the
inequality in Eq. (69), the dispersion relation

aqR
‖ = ω

[
1 −

(ωpS

ω

)2]
. (105)

The result in Eq. (105) is the Ritchie (superscript R on
q‖) condition for longitudinal surface waves [17,18]. Three
important comments should be made to Eq. (105): (i) As
a self-sustaining solution the Ritchie dispersion relation is
not observable, (ii) the Ritchie condition deviates from the
surface-plasmon dispersion relation needed for the quantum
theory (71), and (iii) the surface quantum condition in Eq. (71)
is neither directly excited experimentally. The difference be-
tween aqR

‖ and aq‖ depends on frequency. Thus, with εS (ω) =
1 − (ωpS/ω)2, one has

(aqR
‖ )2 = (aq‖)2 + εS (ω)ω2

pS. (106)

Near the surface-plasmon frequency the Ritchie and quantum
dispersion relation approach each other.

D. Charged-particle excitation of surface plasmons

The long-range Coulomb field attached to a moving
charged-point particle (e.g., an electron) can in an effective
manner excite surface plasmons [1,3,4,15]. In the perhaps
simplest case, from a theoretical point of view, the particle is
assumed to propagate parallel to the surface with constant ve-
locity V (see Fig. 3). A microscopic classical electrodynamic
theory for this case has been given in Ref. [40]. Below we
connect this theory to the quantum theory presented in this
paper.

The nonretarded p-polarized amplitude reflection coeffi-
cient related to surface plasmons excited in a q‖ direction
making an angle α (0 � α < 2π ) to V is obtained inserting

ω = q‖ · V = q‖V cos α (107)

in Eq. (97) (cf. the analysis in Ref. [40]). In

rp(q‖, ω) = rp(q‖, q‖V cos α) (108)

one now has two independent parameters q‖ and the product
V cos α. To examine rp in a q‖-V cos α plane, and also the
Ritchie and quantum surface-plasmon dispersion relations, it
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FIG. 4. The Ritchie (qR
‖ ) and quantum (q‖) dispersion relations

shown on normalized form. As explained in the text the gray-toned
domain is that of relevance for the collective surface excitations.
This domain is bounded by the green curves representing Eqs. (110)
(solid) and (113) (dashed-dotted). The shock-wave region is above
the horizontal line V cos α/a = 1. The curves giving the transition to
the single-particle excitation region have been drawn using data for
doped n-InSb [electron density n = 4 × 1018 cm−3, effective mass
m = 0.015m0 (m0: free-electron mass)].

is convenient to introduce the dimensionless quantities

x = aq‖
ωpS

, y = V cos α

a
. (109)

Let us consider first the dispersion relations. Written as
y = y(x) one obtains from Eq. (105) the following normalized
Ritchie dispersion relation for ω = q‖V cos α > 0 (−π/2 <

α < π/2):

y = 1

2
+

[
1

4
+ x−2

]1/2

. (110)

For the quantum dispersion relation [Eq. (71)] one gets

y = [1 + x−2]1/2. (111)

Since the Cherenkov-Landau shock-wave condition
V cos α > a corresponds to y > 1 the Ritchie and the
quantum dispersion relations are located entirely in the
shock-wave domain. The dispersion relations are shown
in Fig. 4. Which parts of the dispersion relations can
be used? To answer this question, we know that the
inequality in Eq. (69) must be satisfied. The border-line
curve [(aq‖)2 + ω2

p − ω2 = 0] thus is given by

y = [1 + 2x−2]1/2. (112)

Furthermore, it is necessary that we are outside the domain of
single-particle excitations. As discussed in the Appendix one
enters this domain at the kinematic condition

h̄ω = h̄2

2m
(q2

‖ + 2kF q‖). (113)
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FIG. 5. The p-polarized amplitude reflection coefficient
rp(q‖, ω) = rp(q‖, ω = q‖V cos α) as a function of the two
independent quantities q‖ and V cos α (normalized to aq‖/ωpS and
V cos α/a). Retardation effects are neglected (c → ∞) in the plot.
The fully drawn curve indicates the line between the rp = Re(rp) and
rp = Im(rp) domains. The Ritchie dispersion relation is indicated as
a dashed curve. The transition to the single-particle excitation region
is given by the dashed-dotted curve, using n-InSb data (see Fig. 4
caption).

By inserting ω = q‖V cos α, Eq. (113) can be rewritten in the
form of a straight line

y = h̄ωpS

2ma2
x + h̄kF

ma
. (114)

With a = √
3/5vF = √

3/5h̄kF /m, and in terms of the Fermi
energy, εF = (m/2)v2

F , the curve giving the border to the
single-particle excitation domain can be written as

y = 5

12

h̄ωpS

εF
x +

(
5

3

)1/2

. (115)

This form is useful because of its “universality.” It depends
alone on the ratio between well-known (experimentally) quan-
tities, viz., the long-wavelength surface-plasmon energy and
the electron Fermi energy. In Fig. 4, the gray-toned area rep-
resents the domain in which the dispersion relations are of
relevance.

In Fig. 5 we show the amplitude reflection coefficient rp in
the xy plane. When y < [1 + 2x−2]1/2 rp is real, rp = Re(rp).
In the forbidden region it is imaginary. The reader may notice
that

rp = ε(ω) − 1

ε(ω) + 1
(116)

on the border-line curve. The reason that rp �= 0 here as-
sociates to a deeper level of photon physics. Thus, if one
neglects the L part of the dynamics in Eq. (95), one obtains
the well-known expression [16,34]

rp = q0
⊥ε(ω) − κT

⊥
q0

⊥ε(ω) + κT
⊥

, (117)
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where q0
⊥ = [(ω/c)2 − q2

‖]1/2 and κT
⊥ = [(ω/c)2ε(ω) − q2

‖]1/2

and εT (κT , ω) ≈ ε(ω) (long-wavelength value of the trans-
verse dielectric function). When c → ∞, Eq. (117) is reduced
to Eq. (116). Thus, although retardation is neglected in
Eq. (99), this equation (and the Ritchie dispersion relation)
still contains a trace of the photon. This is so because the trans-
verse photon dynamics has a nonpropagating part associated
to the inability to localize a photon precisely in space-time
[41]. It also appears from Fig. 5 that Re(rp) changes sign near
(but not exactly at) the Ritchie dispersion relation.

VI. OUTLOOK

In a formal sense the first- and second-quantized theories
of the plasmon have much in common with the corresponding
theories for a (massive) photon. In consequence, the important
first-quantized photon theory, based on the Oppenheimer-
Riemann-Silberstein energy wave-function formalism, or on
the transverse gauge photon approach, can be “copied” for
the plasmon starting from the quantum field concept φ(r, t ).
We consider it of great importance to be in possession of
such a first-quantized formulation [below named “plasmon
wave mechanics” (PlWM)] for two reasons: (i) In PlWM one
focuses on the positive-frequency part φ(+)(r, t ) of the Klein-
Gordon field. This part satisfies [as for (massive) photons] a
Schrödinger-type first-order differential equation in time, and
this fact allows one to apply many of the techniques used in
nonrelativistic wave mechanics in studies, e.g., of the scatter-
ing of plasmons from obstacles and holes in free-electron-like
solids. A PlWM understanding of scattering of plasmons and
plasmaritons (see below) appears to be of potential impor-
tance in the quantum technology (plasmonics) [31]. (ii) A
number of difficult problems in plasmon QED, and in plas-
mon technology, can be difficult to handle and solve starting
directly from QED. In such cases, PlWM offers an easier route
to the QED level, in analogy with the procedure followed for
the photon; see, e.g., Ref. [39]. We plan to exemplify point
(ii) by a study of single-plasmon scattering from a mesoscopic
hole in a solid-state plasma.

Much of the field-quantized development in quantum op-
tics and QED can be paralleled with plasmons. We believe
that it will be possible to introduce and analyze the physics
of plasmon states which in the quantum optical sense are
coherent, squeezed, etc., and to deal with interference and
diffraction phenomena on the single- and few-plasmon level.
A theory closely related to the one presented in this work
for L plasmons can be established for T plasmons (plas-
maritons), as we will show in a forthcoming paper. The T
plasmon can be strongly coupled to a photon, and the T -
plasmon-photon first-quantized field upon extension to the
QED level appears as a collection of quasiparticles for which
quantum optical states of different nonclassical forms can be
constructed. Fundamental insight, completely hidden in the
classical electromagnetic theory of plasmaritons, appears in
the QED formulation. Thus, the photon attachment to the
T plasmon turns out to have its roots in the dressing of
the individual jellium electrons by transverse virtual photons.
At long photon wavelength the phenomenon can be studied
starting from the Pauli-Fierz representation of QED [42]. In
a broader framework the attachment relates to our inability

to localize transverse photons in space-time [43]. Both the
L and T plasmons couple to the photon, and this may give
rise to new strongly coupled triplet states (L plasmon + T
plasmon + photon). It is suggested to name this new quasi-
particle a jellion. The microscopic quantum theory of jellions
will be developed in a forthcoming paper. The surface jellion
dispersion relation has three branches. Without knowing the
microscopic physics of the jellion, its classical electrodynamic
three-branch dispersion relation has been identified a number
of years ago [44].

APPENDIX: HYDRODYNAMIC DIELECTRIC FUNCTION:
SINGLE-PARTICLE EXCITATION DOMAIN

In order to place the plasmon dispersion relation in its
proper framework, we summarize the calculation which leads
from the Lindhard dielectric function [Eq. (2)] to the so-called
hydrodynamic expression for εL(q, ω), given in Eq. (3). We
also briefly discuss the manner in which the domain of single-
particle excitations is cut out from the (ω, q) plane [cf. Fig. 2
for the surface-plasmon (ω, q‖) plane].

1. εL(q, ω) to order q2

Let us consider in the Lindhard formula the sum

S(q, ω) ≡ 1

�

∑
k

f0(Ek+q) − f0(Ek )

Ek+q − Ek − h̄ω
, (A1)

and let us notice that the summation over k values can be
turned into an integral over k space in the usual manner, viz.,

1

�

∑
k

(. . . ) ⇒ 2
∫ ∞

−∞
(. . . )

d3k

(2π )3
, (A2)

where the factor of 2 originates in the spin summation. Since
we are interested in the plasmon eigenmodes, the ih̄η term
in the denominator of Eq. (2) is left out (the term relates to
plasmon damping effects). A substitution k → k − q in the
first part of the sum in Eq. (A1) gives

S(q, ω)

= 1

�

∑
k

f0(Ek )

[
1

Ek − Ek−q − h̄ω
− 1

Ek+q − Ek − h̄ω

]
.

(A3)

Since

Ek − Ek−q − h̄ω = h̄2

m
k · q − h̄ω − h̄2q2

2m
, (A4)

Ek+q − Ek − h̄ω = h̄2

m
k · q − h̄ω + h̄2q2

2m
, (A5)

the expression for S(q, ω), given as an integral over k space,
is reduced to

S(q, ω) = h̄2q2

m

∫ ∞

−∞

f0(Ek )(
h̄2

m k · q − h̄ω
)2 − ( h̄2q2

2m

)2

d3k

4π3
. (A6)
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A Taylor expression of the integrand to order q2 gives the
following long-wavelength approximation:

S(q, ω) 
 q2

mω2

∫ ∞

−∞
f0(Ek )

×
[

1 + 2h̄

mω
k · q + 3

(
h̄k · q
mω

)2] d3k

4π3
. (A7)

Using the low-temperature (T → 0) approximation for
f0(Ek ), the integral is easily evaluated in spherical coordi-
nates, noting that the integral part containing k · q vanishes
on symmetry grounds. The result is

S(q, ω) = nq2

mω2

[
1 + 3

5

(
h̄kF q

mω

)2]
, (A8)

where kF is the Fermi wave number, and n = k3
F /(3π2) is the

bulk electron density. Note that S is a function of |q| only.
Insertion of the expression given in Eq. (A8) into the Lindhard
formula [Eq. (2)], the longitudinal dielectric function becomes
to order q2

εL(q, ω) = 1 −
(ωp

ω

)2
[

1 + 3

5
v2

F

( q

ω

)2
]


 1 − ω2
p

ω2 − 3
5v2

F q2
. (A9)

In the last step we have made use of the fact that the term
containing the spatial dispersion is small in comparison to 1.

The expression for εL(q, ω) in Eq. (A9) is the result cited in
Eq. (3), with the abbreviation in Eq. (4).

2. Kinematics of single-particle excitations

The energy and momentum conservation in a process
where a photon of energy h̄ω knocks an electron from state
k to k + q is buried in the condition

h̄ω = h̄2

2m
(k + q)2 − h̄2k2

2m
= h̄2

m

(
q2

2
+ k · q

)
, (A10)

a condition which makes the associated denominator term in
Eq. (A1) [or Eq. (2)] equal to zero: the energy-momentum
conservation is a resonance condition for the integral in
Eq. (A6). A single-particle excitation can occur only if the
electron is transferred from a filled state inside the Fermi
surface to an empty state outside. This criterion gives a
minimum-energy change

h̄ωmin =
{

0, q � 2kF

h̄2

m

( q2

2 − qkF
)
, q > 2kF .

(A11)

The maximum change in energy is obtained when k = kF ‖ q,
that is,

h̄ωmax = h̄2

m

(
q2

2
+ qkF

)
, q � 0. (A12)

The (ω > 0, q > 0) parts of the parabolas in Eqs. (A11) and
(A12) are shown in Fig. 2 in the surface wave case q → q‖,
with scalings ω/ωpS and aq‖/ωpS .
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