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Preparation of the 1/2 Laughlin state with atoms in a rotating trap
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Fractional quantum Hall systems are among the most exciting strongly correlated systems. Accessing them
microscopically via quantum simulations with ultracold atoms would be an important achievement toward a
better understanding of this strongly correlated state of matter. A promising approach is to confine a small
number of bosonic atoms in a quasi-two-dimensional rotating trap, which mimics the magnetic field. For rotation
frequencies close to the in-plane trapping frequency, the ground state is predicted to be a bosonic analog of
the Laughlin state. Here, we study the problem of the adiabatic preparation of the Laughlin state by ramping
the rotation frequency and controlling the ellipticity of the trapping potential. By employing adapted ramping
speeds for rotation frequency and ellipticity, and large trap deformations, we improve the preparation time for
high-fidelity Laughlin states by a factor of 10 in comparison to previous studies. With this improvement of the
adiabatic protocol the Laughlin state can be prepared with current experimental technology.
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I. INTRODUCTION

Ultracold atoms give a unique perspective on strongly
correlated matter [1,2], as they allow one, for example, to
study quantum states with single-atom resolution or to explore
higher-order correlations and entanglement [3,4]. Moreover,
ultracold atoms have several features which make them partic-
ularly well suited for the study of strongly correlated matter.
Their isolation from the environment is excellent and the
microscopic system parameters are highly tunable. This tun-
ability allows for preparing a variety of strongly correlated
states by adiabatically ramping the system parameters starting
from a well-defined state such as a trapped Bose-Einstein
condensate.

Strongly correlated states of particular interest are frac-
tional quantum Hall states, especially because of their
prospects for topological quantum computation [5]. Although
fractional quantum Hall physics was experimentally discov-
ered already four decades ago [6] and has readily been
explained in terms of Laughlin’s trial wave function [7], the
fractional quantum Hall effect continues to be a challeng-
ing subject of research: One of the most striking predictions
about fractional quantum Hall physics is the existence of
quasiparticles with fractional statistics [8,9], so-called anyons.
The existence of these quasiparticles has yet to be confirmed
ultimately, despite the strong efforts and great experimental
progress made towards anyon detection [10–13].

*andradesantosb@gmail.com

A new direction for approaching these challenges is quan-
tum simulators, which prepare fractional quantum Hall states
in highly controlled experimental settings. Many advances
towards such synthetic fractional quantum Hall systems have
been made in both atomic [14–19] and photonic [20–25]
quantum simulators. These advances include the generation
of artificial magnetic fields, which are responsible for the
flat band structure, and detection of their topological proper-
ties, such as chiral edge states [20,21], topological quantum
numbers [16,18,19,23,25], and topological transport [22,24].
Through light-matter coupling, it has also been possible to
create interactions between two photons in a synthetic gauge
field, yielding a Laughlin-type quantum state [26]. Although
atomic systems are interacting in a more natural way, the
evidence of atomic Laughlin states has remained limited until
now [27].

Various difficulties in reaching synthetic Laughlin states
are known: In the strongly correlated regime, the centrifugal
forces leading to the artificial gauge field almost compensate
the trap [28,29] and thus reduce the stability of the system.
Adding steeper potentials to the harmonic trap such as a
confining quartic potential or a weak hard wall confinement
has been found to be very harmful to bosonic Laughlin states
[30,31]. The generation of synthetic gauge fields may heat
the system, especially if periodic driving is involved [32]. In
this context, it is particularly important to note that various
intermediate phases separate the uncorrelated system from
the strongly correlated liquid phase [28,29,33,34]. Thus, the
phase diagram exhibits different regions of small energy gaps
above the ground state. Nevertheless, an adiabatic path to the
Laughlin state has been proposed for a system of bosonic
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cold atoms in a harmonic elliptic trap with a tunable rotation
frequency and tunable ellipticity [35]. Similar considerations
for the adiabatic preparation also apply to fermionic systems
[36]. The adiabatic preparation scheme can also be applied
to systems in rotating ring potentials [37]. Another route to
synthetic Laughlin states is based on “growing” the state via
variable particle numbers [38].

In the present paper, we revisit the adiabatic preparation
scheme for bosonic Laughlin states in rotating traps [35]. The
idea is to increase the angular momentum L of N atoms in
a rotating trap from the nonrotating state L = 0 to the angu-
lar momentum of the 1/2 Laughlin state, L = N (N − 1), by
ramping the rotation frequency of the trap and simultaneously
breaking rotational symmetry by an anisotropic deformation
of the trap. In Ref. [35], a preparation time of 6450 trapping
periods was reported, in which the Laughlin state of four
atoms was reached with a fidelity of 0.97. This implies that
even for a trapping frequency as large as (2π ) × 30 kHz, the
preparation time exceeds 200 ms. However, we show that
such an adiabatic preparation can be dramatically improved.
Specifically, our numerics reach a four-atom Laughlin state
with a fidelity of 0.99 within 605 trapping periods, or 20 ms
for a frequency of (2π ) × 30 kHz. This result significantly im-
proves the prospects of preparing atomic Laughlin states using
an adiabatic scheme. The main ingredients that distinguish our
scheme from earlier work are as follows.

1. Larger anisotropies of the trap: During the preparation
the atoms acquire large values of angular momentum, ex-
ceeding the Laughlin value, long before reaching the strongly
correlated regime. Thus, the accumulation of angular momen-
tum occurs in regimes which are characterized by relatively
large energy gaps, and in the final stage of the protocol, the
Laughlin state is approached by reducing the angular momen-
tum of the system.

2. Varying ramp speeds: Relatively large energy gaps al-
low for quick ramps at an early stage of the preparation
scheme, shortening the total evolution time.

Our work is organized as follows: In Sec. II, we describe
the system and its behavior at different rotation frequencies. In
Sec. III we present how rotation frequency and trap anisotropy
can be tuned to reach the Laughlin state with a high fidelity.
In Sec. IV we comment on the robustness of the proposed
protocol. Conclusions of this result are drawn in Sec. V.

II. THEORETICAL MODEL

We consider a microscopic model of N bosonic atoms
confined to two dimensions and trapped in a harmonic po-
tential. These microtraps can be realized either via a tightly
focused optical tweezer or via an optical lattice as a decoupled
array of individual microtraps as in Ref. [27]. Tight harmonic
confinement along the third dimension (z direction) freezes all
excitations along that direction, and each microtrap becomes
effectively two-dimensional. We denote the harmonic oscilla-
tor frequency ωz, and the associated length scale is given by
λz = (h̄/Mωz )1/2, with M the mass of the atoms. The bosonic
atoms interact via contact interaction, which we parametrize
with the dimensionless coupling constant g. In the considered
experimental setups the dimensionless coupling is given by
g = √

8π (aS/λz ), with aS being the three-dimensional scat-

tering length. The artificial gauge field is created by rotation
around the z direction with frequency �. For a review of
artificial gauge fields with atoms in a rotating trap, we sug-
gest Refs. [39] and [40]. The total Hamiltonian H = H0 + HI

describing N atoms consists of the noninteracting part

H0 =
N∑

j=1

[ p 2
j

2M
+ 1

2
Mω2r 2

j − �Lz, j

]
(1)

and the interacting part

HI = h̄2g

M

N∑
j=1

∑
k> j

δ(r j − rk ), (2)

where r j = x jex + y jey is the position operator in the xy
plane, and Lz, j is the angular momentum operator in the z
direction of the jth atom. Moreover, ω is the frequency of
the harmonic trapping in the xy plane. The single-particle
Hamiltonian can be written as

H0 =
N∑

j=1

[ |p j − M� × r j |2
2M

+ 1

2
M(ω2 − �2)r 2

j

]
, (3)

where we have introduced the rotation vector � = �ẑ along
the z axis. Equation (3) describes noninteracting particles with
charge q in a magnetic field qB = 2M�.

The single-particle eigenstates of H0 are the Fock-Darwin
states (cf. Ref. [28]), which are organized in different Landau
levels, separated by a “cyclotron” energy h̄(ω + �). Different
states within a Landau level are distinguished by an angular
momentum quantum number m, which contributes the term
mh̄(ω − �) to the single-particle energy. Assuming that ω +
� � ω − � and that the cyclotron energy also sufficiently
exceeds the interaction energy of the system, the effective
Hilbert space can be reduced to the lowest Landau level. The
Fock-Darwin wave functions of the lowest Landau level are
given by

φm(x, y) = 1

λm+1
√

πm!
(x + iy)me−(x2+y2 )/2λ2

, (4)

where λ =
√

h̄
Mω

is the harmonic oscillator length scale.
We use these eigenstates as a computational basis. The

second-quantized operator a†
m (am) creates (annihilates) a par-

ticle described by φm(x, y). Expressing energies in units of
h̄ω, frequencies in units of ω, and angular momentum in units
of h̄, in second quantization the Hamiltonian can be written as

H = H0 + HI = N + [1 − �]L + U, (5)

where N = ∑
m a†

mam is the number operator, L =∑
m ma†

mam is the total angular momentum operator (in
units of h̄), and U = HI/(h̄ω) is the interaction operator

U =
∑

m,n,p,q

Um,n,p,q a†
ma†

napaq, (6)

where the matrix element is given by

Um,n,p,q = g

π

δm+n,p+q√
m!n!p!q!

(m + n)!

2m+n+1
. (7)

All terms in the Hamiltonian commute with L, and hence the
angular momentum is a conserved quantity at this point.
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We are interested in preparing the ground state of a bosonic
fractional quantum Hall system at Landau filling fraction
ν = 1/2, i.e., the lowest Landau level shall be half-filled.
For particles which interact with short-range interactions this
phase is exactly described by the 1/2-Laughlin wave function

ψL(z1, . . . , zN ) =
N∏

i< j

(zi − z j )
2

N∏
k=1

e−|zk |2/2. (8)

Here, we have used complex numbers z j to represent the
position of the jth particle, z j = (x j + iy j )/λ. This symmetric
wave function is 0 whenever two particles are at the same
position, and thus, it is a zero-energy eigenstate of the contact
potential HI .

The 1/2 Laughlin state has total angular momentum L =
N (N − 1) (in units of h̄), as can be inferred from the degree
of the polynomial part of Eq. (8). On the other hand, the total
angular momentum of the ground state of H is the result of
a competition between H0 and HI : The single-particle part
H0 yields an energy which is proportional to L, while larger
values L allow the particles to avoid each other, reducing the
amount of interaction energy. In particular, there are no zero-
energy eigenstates of HI for L < N (N − 1). We can control
this competition of H0 and HI by the rotation frequency in
H0, which in the following is therefore chosen to be time
dependent, i.e., �(t ). Throughout the paper, we express �(t )
in units of ω.

This competition is illustrated in Fig. 1, where we have
plotted the energy of the ground state and first excited state
in Fig. 1(a) and the total angular momentum of the ground
state in Fig. 1(b) as a function of the rotation frequency �. At
discrete values of �, the energy gap above the ground state
vanishes, and the ground-state angular momentum changes
abruptly. In the system of four particles, we obtain ground
states at 〈L〉 = 0, 4, 8, and 12. It is the goal of our adiabatic
protocol to bring a rotating system from the condensate phase
(L = 0) to the Laughlin state [L = N (N − 1)] by a ramp of
the rotation frequency. In this work, we consider the experi-
mentally relevant case of N = 4 atoms, implying an angular
momentum of L = 12 for the Laughlin state. We fix the in-
teraction parameter to g = 1, noting that in practice g can be
tuned via Feshbach resonances and/or confinement-induced
resonances.

The transitions in Fig. 1 are true level crossings, as allowed
by the rotational symmetry of the system. Thus, in order to
adiabatically connect the different ground states, we have to
turn these true crossings into avoided crossings. This can
be achieved by removing the rotational symmetry, e.g., by
introducing an anisotropic potential to the Hamiltonian

V (t ) = A(t )Mω2
∑

i

(
x2

i − y2
i

)
(9)

or, in terms of creation and annihilation operators and in units
of h̄ω,

V (t ) = A(t )

2

∞∑
m=2

[√
m(m − 1)a†

mam−2 + H.c.
]
. (10)

With this, the new Hamiltonian for the system is

H (t ) = N + [1 − �(t )]L + U + V (t ). (11)
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FIG. 1. (a) Energy of the ground state and first excited state in
an isotropic system of four atoms (with g = 1) as a function of the
rotation frequency. True level crossings happen at � = 0.841, 0.947,
and 0.974. (b) Average angular momentum of the ground state as a
function of the rotation frequency. The Laughlin state is the ground
state after the third crossing, when L = N (N − 1) = 12.

These expressions for V (t ) implicitly define an
“anisotropy” parameter A(t ), which together with the rotation
frequency �(t ) shall be controllable as a function of time.
Our goal is to fix the temporal behavior of these parameters
such that the system evolves into the Laughlin state. We
note that the anisotropy in V (t ) is due to an increase in the
trapping frequency along the x direction and a decrease in the
trapping frequency along the y direction. Concretely, the
trapping frequency along the y direction is proportional to√

1 − 2A, which sets the centrifugal limit to � �
√

1 − 2A.
For larger rotation frequencies, the state preparation is
expected to become more delicate since atoms can be
expelled from the trap. We avoid this region in our protocol.

The anisotropy also introduces additional complexity from
the computational point of view: Since the new Hamiltonian
does not conserve the total angular momentum, we must
truncate the Hilbert space at some L = Lmax. The choice of
Lmax depends on the protocol. More precisely, in order to have
good convergence of our simulations we must assure that, at
all times, the sectors of large L (i.e., close to, equal to, and
above Lmax) contribute a negligible part to the many-body
wave function. In Fig. 2, we plot the energy gap above the
ground state as a function of the anisotropy parameter A and
rotation frequency � for different choices of Lmax. This com-
parison illustrates that truncation at fairly small values, such as
Lmax = 12 in Fig. 2(c), is possible only for small values of A or
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FIG. 2. Energy gap as a function of the rotation frequency and
anisotropy parameter for different angular momentum truncations:
(a) Lmax = 40, (b) Lmax = 26, and (c) Lmax = 12 All plots share the
same color scale as (a); the energy gap 
E is given in units of h̄ω.

�. On the other hand, in Figs. 2(a) and 2(b), the energy gaps
for Lmax = 26 and Lmax = 40 agree very well in the whole
parameter region, suggesting that good convergence of the
numerics has been reached. For our simulation of the adia-
batic state preparation, presented in the next section, we have
chosen Lmax = 40. This truncation provides good convergence
in the protocol we propose for the Laughlin state preparation.

III. ADIABATIC STATE PREPARATION

In this section, we study a specific protocol for A(t ) and
�(t ) which adiabatically moves the system from the con-
densate (L = 0) into the Laughlin state (L = 12). In order to
ensure adiabaticity, regions with small energy gaps should be
avoided, while the velocity of parameter changes should be
adjusted to the size of the energy gap. At the same time, in
order to facilitate the implementation of the protocol, we want
to keep the parameter speed constant along extended pieces of
the path.

With these considerations in mind, we have considered the
protocol as illustrated by the red line in Fig. 3(a): First, the
anisotropy is ramped up to a relatively large value (A = 0.08)
at a slow rotation (� = 0.8). Next, the rotation frequency is
increased almost up to the centrifugal limit (represented by
the black line in Fig. 3). Finally, we simultaneously decrease
A and increase � along the centrifugal limit, until isotropy is
restored and the Laughlin state is reached. From the contour
plot of the energy gap, it is obvious that this path avoids
regions of small gaps.

Furthermore, we allocate different amounts of time for the
evolution along different segments of the path. To this end,
we have marked different points Pi = (�i, Ai ) along the path,

TABLE I. Coordinates (�i, Ai ) of the points Pi along the protocol
in Fig. 3(a) and the dimensionless time τi at which the given configu-
ration is reached within the protocol. The difference 
τi = τi − τi−1

measures the amount of time spent to evolve between adjacent points.

�i Ai τi 
τi

P1 0.8 0 0 —
P2 0.8 0.08 48 48
P3 0.88 0.08 80 32
P4 0.912 0.08 160 80
P5 0.977 0.014 366 206
P6 0.985 0 605 239

which shall be reached at given times ti. Between adjacent
points, the parameters A(t ) and �(t ) are changed linearly in
time. Thus, the protocol is fully determined by Pi and ti, as
listed in Table I. In this table, we have parametrized time t
by dimensionless values τ = ω t

2π
, which measure time in units

of the trapping period. An illustration of the protocol defined
in Table I is provided in Fig. 3(b). With the chosen timing,
our protocol is significantly slowed down in the regions of
small gap (between P3 and P4 and between P5 and P6), while
it quickly passes the other regions. This can also be seen in
Fig. 3(c), which plots the energy gap as a function of τ .

A measure of the adiabatic nature of the evolution is the
fidelity F (τ ) as a function of the time, defined as the squared
overlap between the evolved state at time τ and the instanta-
neous ground state of the Hamiltonian H (τ ). At the end of
the protocol, this quantity becomes the fidelity with which the
Laughlin state is reached, i.e., a measure for the quality of the
protocol. Fixing the total evolution time at T = 605 (in units
of 2π/ω), our protocol reaches the Laughlin state with fidelity
F (T ) = 0.99, and during the evolution, the “instantaneous”
fidelity F (τ ) always remains above F > 0.98. These numbers
indicate that the protocol operates with a good approximation
in an adiabatic regime.

The chosen evolution time, T = 605, corresponds to 20,
60, and 200 ms for trapping frequencies of ω = (2π ) × 30,
ω = (2π ) × 10, and ω = (2π ) × 3 kHz, respectively. The to-
tal time for the Laughlin state preparation appears to be in an
experimentally accessible regime. However, the frequencies
only correspond to the in-plane trap, whereas the trapping
frequency along z must be chosen much larger than ω, which
sets experimental limitations.

Naturally, the angular momentum reached at the end of
the protocol is very close to the desired value, L = 12.02.
However, it is noteworthy that this value is not reached by
a monotonous increase in L. In Fig. 3(d), we see that signifi-
cantly larger values of 〈L〉 > 20 are reached when the system
is closest to the centrifugal limit, i.e., between P4 and P5. Only
in the very end, between P5 and P6, our protocol converges to
the correct value of 12. Therefore, although in P5 the rotation
frequency � already has the correct value for the Laughlin
state, � > 0.974 as in Fig. 1, one still has to decrease the
ellipticity to obtain the correct angular momentum, 〈L〉 = 12.

Despite the high angular momentum values reached in the
protocol presented here the Hilbert space sectors with L > 34
are barely populated: For the instantaneous ground state along
the red line in Fig. 3(a), the weights of the many-body wave
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FIG. 3. Characteristic of adiabatic Laughlin state preparation. (a) Path in the parameter space for truncation Lmax = 40. The black line
is defined by � = √

1 − 2A, which bounds the region where the preparation becomes more delicate. (b) Energy gap along the protocol.
(c) Rotation frequency and anisotropy parameter as a function of the time. (d) Average angular momentum as a function of the time. The
precise coordinates of the points and time marks are listed in Table I; in (b), (c), and (d) we omit the label of intermediate points for better
visualization.

function [41] in the L = 36, 38, and 40 sectors are at most
c2

36 = 0.012, c2
38 = 0.005, and c2

40 = 0.001. The small values
of the weights of the instantaneous ground states together with
the assumption of quasiadiabatic preparation assure conver-
gence of numerical simulations along this path for truncation
at Lmax = 40. Angular momentum truncation could be made at
smaller values if our path was restricted to a lower anisotropy
region. However, it is obvious from the contour plot of the
energy gap (see Fig. 2) that smaller anisotropy values would
also decrease the size of the smallest gaps along the path.
Therefore, the protocol would lose fidelity very rapidly if we
wanted to keep the same total time of T = 605 trapping pe-
riods. A systematic study of the chosen maximum anisotropy
value is presented in the next section, in which we analyze the
robustness of our results. In the Appendix, we compare our
results to the previous study in Ref. [35].

IV. ROBUSTNESS OF THE PROTOCOL

The previous section has considered a particular protocol
[�(t ), A(t )] for fixed system parameters, demonstrating that a
fast preparation of the Laughlin state is possible. The present
section studies the robustness of that protocol against varia-
tions either of the protocol itself or of the system parameters.
Specifically, we investigate how using different values for
the interaction parameter g can change the final state fidelity,

the intermediate fidelity, and the average angular momentum.
Moreover, we simulate protocols with different durations, or
different allocations of the the time while fixing the total
duration, as well as protocols with different paths (reducing
the maximum trap deformation A).

A. Protocol with a constant ramp speed

In order to quantify the role of adjusted ramp speeds, we
present here an alternative protocol with a constant ramp
speed for comparison. The path through parameter space is
the same as before, but the timing is chosen as illustrated in
Fig. 4. This choice is such that the time between two points,

τi = τi − τi−1, is proportional to the geometric distance be-
tween the points τi ∝ [(Ai − Ai−1)2 + (�i − �i−1)2]1/2, thus
the protocol corresponds to homogeneous ramp speeds. With
this choice, more than half of the preparation time is spent
for the evolution through relatively strongly gapped regions,
i.e., from P1 to P3, whereas in our protocol with adjusted ramp
speeds defined in Table I the P1-to-P3 evolution takes less than
15% of the total protocol duration.

Whereas the protocol with an adjusted ramp speed had
reached the Laughlin state with fidelity F (T ) = 0.99, the new
protocol with a homogeneous ramp speed achieves a fidelity
of F (T ) = 0.94. During the evolution, the “instantaneous”
fidelity F (τ ) now drops to values below F < 0.92, indicating
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FIG. 4. Gap along the red line in Fig. 3(a) with a homogeneous
time distribution. In this case the time spent to go from Pi to Pi+1 is
a fraction of the total time T = 605 proportional to the geometric
distance between these points. The total time is still T and the
parameters are changed linearly in time on each segment.

that nonnegligible excitations are produced which before had
been avoided by adjusting the ramp speed.

B. Shorter preparation times

In Table II, we show how the final state fidelity responds
to a decrease in the total duration of the protocol. We have
simulated the same path in parameter space, but with the time
spent at each segment multiplied by a factor α between 0.1
and 1. Notably, the final state fidelity remains on similar high
levels if the duration is shortened by up to a factor α = 0.8
and, curiously, even takes a slightly higher value than for
α = 1. The fidelity drops when we decrease the total time by
half, but even in this case, it still remains above 0.9.

C. Paths with less deformation

In our main result (Fig. 3) the maximum trap deformation
achieved was Amax = 0.08. In Fig. 5, we present the effect of
decreasing this maximum trap deformation. Among the values
we have chosen, the final state fidelity drops below F = 0.9
only for Amax = 0.04 and Amax = 0.02, those protocols that
do not achieve 〈L〉 > 12 at the intermediate times. There is a
strong decrease in the final state fidelity because in these cases

TABLE II. Final state fidelity for different protocol durations. All
protocols are with respect to the same path in parameter space, and
the duration is given in units of the original total time of T = 605
trapping periods.

Duration (T) Fidelity

0.1 0.532
0.5 0.901
0.8 0.99
0.9 0.983
0.95 0.968
1 0.985
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FIG. 5. Results obtained from simulations of paths with less
deformation. (a) Maximum trap deformation (Amax) and final state
fidelity. (b) Average angular momentum as a function of the time for
different values of Amax.

the paths in parameter space cross a region of narrow energy
gap.

D. Varying the interaction parameter

We have also analyzed the robustness of the protocol to-
wards different interaction strengths g. After simulating the
protocol in Table I for several values of g, we obtained the
final state fidelities given in Fig. 6(a). Although the protocol
has not been adjusted to the modified energy gap landscape
one still observes a high final state fidelity even when g is
20% weaker than the value g = 1 used in the previous section.
This calculation demonstrates that the preparation scheme still
works even if system parameters are slightly miscalibrated.

However, a steep drop in fidelity to F < 0.3 occurs for
g = 0.6 or g = 0.4, i.e., for a mismatch of 40% or more from
the original value. The abrupt drop in fidelity is explained by
the fact that the energy gap profile changes substantially. In-
deed, this is shown in Fig. 7, where we plot the energy gap for
g = 0.6. The original path in parameter space crosses regions
with a narrow gap region, but by choosing a modified path in
parameter space, we are able to recover a fidelity F = 0.88
in the final state, with F � 0.85 at all times. This result is
strong evidence that the main ideas used to find the protocol
in Fig. 3 are actually quite general and can be applied to
other scenarios, i.e., that accessing substantially higher values
of total angular momentum allows for faster Laughlin state
preparation.
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FIG. 6. Results obtained from simulating paths with different
interaction parameters g. (a) Interaction parameter and final state
fidelity. (b) Average angular momentum as a function of the time
for different values of the interaction parameter.
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FIG. 7. (a) Energy gap profile for g = 0.6 and angular momen-
tum truncation at Lmax = 40. The orange curve is the path simulated
for the Laughlin state preparation with g = 0.6; the total duration of
this protocol is T = 605 trapping periods. The black curve, defined
by � = √

1 − 2A, bounds the region where the preparation becomes
more delicate. For comparison, we indicate in red the path used when
g = 1 in Fig. 3(a). (b) Average angular momentum as a function of
the time along the protocol.

V. CONCLUSIONS

In this work, we have proposed a time-efficient adiabatic
protocol to prepare the ν = 1/2 fractional quantum Hall
ground state of four bosonic atoms. Starting from a conden-
sate in the lowest Landau level, we reach the Laughlin state
within T = 605 trapping periods and with a fidelity of 0.99.

Our total time of T = 605 trapping periods represents an
improvement by a factor of 10 compared to the 6450 trapping
periods in Ref. [35]. For a trapping frequency of (2π ) ×
30 kHz, our protocol would take only 20 ms. However, the
experimental work in Ref. [27] considers a trapping frequency
of only (2π ) × 2 kHz, for which our protocol would take
300 ms. The former value sets a feasible time scale for the
adiabatic preparation of correlated states with cold-atom sys-
tems, which always has to be balanced with intrinsic heating
rates. Consequently, the presented results will be valuable in
guiding experiments with cold atoms aimed at the preparation
of Laughlin states with rotating minitraps.

An important feature of our protocol is the usage of large
anisotropies [42]. This leads to ellipticities which are twice as

large in our protocol as in Ref. [35]. The correct description
in the regime of large deformation is numerically expensive,
but our study shows that strong anisotropy is important for
reaching fast adiabatic ramps. Large rotating quadrupolar de-
formations are experimentally feasible, be it in optical traps
[27], in a time-orbiting potential trap [43], or by a rotating
pair of repulsive optical traps [44].

For an accurate description in the vicinity of the centrifugal
limit, we had to ensure a sufficiently large angular momentum
truncation Lmax: The contour plots of the energy gap (Fig. 2)
depend considerably on this truncation. In particular, by trun-
cating at the low value of Lmax = 12, the Laughlin region
(lower right corner of the contour plot) appears fully separated
from other regions by a valley of a very small energy gap. This
hinders the fast preparation of the Laughlin state. Allowing
for larger angular momentum changes this picture, and the
Laughlin state can then be reached without crossing such a
valley of small gaps, if the anisotropy parameter is chosen
sufficiently large.

In this work, we have assumed an interaction parameter of
g = 1. This is slightly larger than the value g = 0.6 assumed
in Ref. [35] or g = 0.41 in Ref. [27]. Sufficiently strong in-
teractions are important because the many-body gap above
the Laughlin state scales as ∼0.1gh̄ω [45,46]. While many
experiments operate in the weakly interacting regime with
g ≈ 0.1, strong interactions of g ≈ 3 have been realized using
a Feshbach resonance [47]. In principle, it is also possible to
tune g as a function of time. This would provide another knob
in the state preparation scheme—an opportunity which is left
for future work.

We expect that, if experimentally required, the preparation
time can be further reduced. An adiabatic scheme could, for
instance, benefit from exploring even larger anisotropies or
from introducing more points Pi at which ramps are changed.
In this context, optimal control strategies for many-body sys-
tems [48] might be used to find the best path, however, in prac-
tice, this possibility is limited by the fact that simulating sys-
tems with large ellipticities is numerically expensive. Such op-
timization protocols might also leave behind adiabatic paths,
and it would be interesting to investigate whether counter-
diabatic preparation schemes can achieve better results.
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APPENDIX: COMPARISON TO REF. [35]

We dedicate this section to analyzing what makes our work
different from Ref. [35] by Popp, Paredes, and Cirac. First,
we explain how to compare the interaction term used in our
work to the one in [35]. Then we use their model and the same
parameters to reproduce their energy gap plot; unfortunately
the authors do not mention the exact value used for angular
momentum truncation. In any case, we give arguments to con-
vince the reader that the total angular momentum truncation
used by the authors of Ref. [35] was not enough to repre-
sent the states along their protocol. Finally, we provide an
explanation why the lower choice of total angular momentum
truncation prevented their protocol to the Laughlin state from
being faster. More precisely, their protocol is 10 times longer
than ours.

The model used by the authors is given by the Hamiltonian

H =
(

1 − �

ω

)
L + 2πη U + V ′(t ). (A1)

They use the same interaction potential U , but with a different
form of the coupling constant multiplying it. They work with
η = 0.1, which corresponds to g = 0.63 in our model. The
anisotropic potential used in their work is

V ′(t ) ∝ ω2(1 + ε)2x2 + ω2y2, (A2)

where ε is the small anisotropic parameter. In this case, the
anisotropy is due to an increase in the trapping frequency
along the x direction, while no change is made in the trapping
frequency along the y direction. For this reason, there will
be no region that requires more delicate preparation in their
energy gap plots, differently from what we show in Fig. 3.
In terms of Fock space operators, and in units of h̄ω, their
potential is

V ′(t ) = ε

4

∞∑
m=2

[√
m(m − 1)a†

mam−2 + H.c.
]

+ ε

2

∞∑
m=0

(m + 1)a†
mam. (A3)

This is the same as our potential, but with an extra diagonal
term in the second line. We see that the trap deformation of
our work is two times stronger than what they used.
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FIG. 8. Energy gap plots obtained by using the same Hamil-
tonian as in [35] with different values of the angular momentum
truncation. (a) Lmax = 40, (b) Lmax = 12, and (c) Lmax = 14. Com-
paring with the energy gap plot in [35], we believe they used either
Lmax = 12 or Lmax = 14. The black curve is an approximation of the
path proposed in Ref. [35]; time dependence and exact coordinates
of the points were not provided by the authors. An improved path
should avoid the narrow gap region by accessing a large anisotropy,
A > 0.09, and then decrease it only after reaching around � = 0.99.

In Fig. 8, we show our attempts to reproduce their energy
gap plots. Since the authors do not give the value used for
angular momentum truncation, we ran simulations for differ-
ent values of Lmax, and based on the images we believe that
they used either Lmax = 12 or Lmax = 14. When Lmax = 40 is
used, however, the energy gap plot becomes very different,
and it becomes clear that there is actually a path that leads
to the Laughlin state without the need to cross the narrow gap
region. Using Lmax = 12 or Lmax = 14, one is induced to think
that the only possibility of reaching the Laughlin state is by
crossing the narrow gap region, which caused their protocol
to be extremely long. The protocol in Ref. [35] cannot be
considered realistic, as they are missing an important part of
the Hilbert space by truncating the total angular momentum at
such low values.

In Ref. [35], the authors propose protocols for preparing
ground states with angular momentum L = 4 and L = 8. The
suggested protocol prepares the L = 4 ground state in 240
trapping periods and the L = 8 in 360 periods, both with
fidelity F = 0.99. The authors of Ref. [35] indicate the ge-
ometrical shape of the path, but not its parametrization. We
also obtained protocols with high fidelities for the interme-
diate ground states of our model, but without significantly
improved preparation times in comparison to Ref. [35]. The
L = 4 ground state was prepared in 160 trapping periods with
final fidelity F = 0.99, while the L = 8 state was prepared in
320 trapping periods with final fidelity F = 0.95.
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