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Anisotropic thermalization of dilute dipolar gases
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We study collisional rethermalization in ultracold dipolar thermal gases, made intricate by their anisotropic
differential cross sections. Theoretical methods are provided to derive the number of collisions per rethermaliza-
tion [Monroe et al., Phys. Rev. Lett. 70, 414 (1993)], which, for dipolar gases, is highly dependent on the dipole
alignment axis. These methods are formulated to be easily applied in experimental contexts, even reducing to
analytic expressions if the route to thermal equilibrium is governed by short-time dynamics. In the analytic case,
collisional rethermalization is fully characterized by the dipole magnitude and orientation, scattering length, and
thermalization geometry. These models compare favorably to Monte Carlo simulations and are shown to model
well a recent experimental result on the rethermalization of polar molecular samples.
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I. INTRODUCTION

A fundamental property of a gas brought out of thermal
equilibrium and then left alone is that it will return to equi-
librium. For a classical gas, equilibration occurs at a rate set
by collisions among the constituents of the gas. It follows that
if the collision cross sections are anisotropic, so too might be
the relaxation rate.

Ultracold gases whose constituent atoms or molecules pos-
sess either magnetic or electric dipole moments are ideal
environments to study this anisotropy. In a cold enough gas,
the polarization of its constituents can be maintained after
collision; thus, the intrinsic anisotropy of collision cross sec-
tions, defined by the polarization axis, persists throughout the
thermalization. In the controlled environment of the trap, the
gas can be brought out of thermal equilibrium along a given
axis (for instance, by parametric heating or a trap frequency
quench), while the resulting temperature evolution can be read
out along any other desired axis by, for example, imaging an
expanded gas after turning the trap off.

Experiments of this kind have been used in the past to
determine scattering cross sections of ultracold atoms [1–5].
Generally, the relaxation rate is proportional to the total col-
lision rate. The dimensionless ratio of these rates, dubbed
the “number of collisions per rethermalization” and here de-
noted N , gives information on the nature of the cross section
itself, including its anisotropy. For s-wave collisions, this
ratio has been determined to be Ns = 2.5 [6–8] and is, in
practice, an experiment-independent quantity. The same value
of Ns has been alternatively determined by spectroscopic
methods (Ref. [9], where Ns is referred to as “collisional
softness”). For p-wave scattering of identical fermions, the
number of collisions per rethermalization has been measured
to be Np = 4.1 [10]. For dipolar scatterers, however, the elas-
tic scattering cross section is highly anisotropic, giving N
its own anisotropy. Numerical simulations have verified this
anisotropy in rethermalization of ultracold Er atoms [11] and
were used to extract the scattering length of bosonic Dy [12].

In this paper we present theoretical methods to compute
N via the method of averages. These are relevant for di-
lute gases that are ultracold but not quantum degenerate, so
their thermalization dynamics is governed by the Boltzmann
equation. For a broad range of experimental conditions, the
various functional forms of N are, in fact, analytic functions
of scattering length, dipole length, and dipole orientation un-
der suitable approximations. These formulas not only bring
out explicitly the strong effects of anisotropy but also should
be useful in designing and interpreting experiments where
ultracold atoms and molecules are brought out of thermal
equilibrium. Of note are the prospects to accelerate evapora-
tive cooling with dipolar scattering [13,14], especially through
the saddle-point method [15] where evaporation occurs only
along a chosen axis.

We describe our theoretical formulation of the system in
Sec. II, then proceed to its use for characterizing rethermaliza-
tion in Sec. III. Specifics that arise when treating systems of
either bosons or fermions are addressed in Sec. IV and Sec. V,
respectively, along with examples which illustrate the appeals
and shortcomings of our models. Conclusions are drawn in
Sec. VI.

II. FORMULATION

We consider a single-species gas of N ultracold, but non-
degenerate, dipoles. The gas is harmonically confined in the
trapping potential

U (q) = 1
2 m

(
ω2

x x2 + ω2
y y2 + ω2

z z2), (1)

where m is the particle mass and ωx,y,z are the trapping fre-
quencies associated with each spatial dimension. The gas is
taken to be sufficiently dilute and far above the critical temper-
ature for bosons (T > Tc) or Fermi temperature for fermions
(T > TF ), such that Bose-enhancement and Pauli-blocking
effects can be neglected. Furthermore, we limit our study to
rarefied gases in which mean-field effects due to long-range
dipolar interactions can be ignored.
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In such a parameter regime, scattering length scales are
completely defined by the s-wave scattering length a (for
bosons) and magnetic (electric) dipole moment μ (d), ex-
pressed as a dipole length ad = Cddm/(8π h̄2) (where Cdd =
μ0μ

2 for magnetic dipoles and Cdd = d2/ε0 for electric
dipoles, with μ0 and ε0 being the vacuum permeability and
permittivity, respectively). This follows from the anisotropic
differential cross sections of Ref. [16], which are expected to
be valid at collision energies less than the characteristic energy
Ed = Cdd/a3

d , made feasible at ultralow temperatures.
In a harmonic trap at equilibrium, the coordinates qi and

momenta pi are described by Gaussian distributions. When
mildly heated, it is conceivable that the distributions remain
nearly Gaussian [17], whereby the gas dynamics is described
by the mean values 〈q2

i 〉 and 〈p2
i 〉, given by averages over

phase-space distribution f (q, p, t ):

〈· · · 〉 ≡ 1

N

∫∫
d3 pd3q f (q, p, t ) × (· · · ). (2)

The near-equilibrium collective dynamics is well described by
the Enskog equations of change [18,19]:

d
〈
q2

j

〉
dt

− 2

m
〈q j p j〉 = 0, (3a)

d
〈
p2

j

〉
dt

+ 2mω2
j 〈q j p j〉 = C

[
p2

j

]
, (3b)

d〈q j p j〉
dt

− 1

m

〈
p2

j

〉 + mω2
j

〈
q2

j

〉 = 0, (3c)

where j = x, y, z and C is the collision integral derived from
the Boltzmann equation [20]. The collision integral, in turn,
is expressed in terms of f and the differential cross sections,
whereby this integral depends on the polarization axis of the
dipoles. For concreteness, we assume this axis lies in the
x-z plane and its direction is given by Ê = (sin �, 0, cos �),
whereby relaxation rates become functions of �.

III. ANISOTROPIC RELAXATION

Once the gas is brought out of equilibrium and left alone,
it will tend toward equilibrium and finally arrive at a final
temperature as required by the H theorem [20]. Yet the rate
at which equilibrium is achieved may depend on the axis that
is probed in a given experiment.

These rates can be probed in a cross-dimensional rether-
malization experiment. In such experiments, rethermalization
occurs by means of elastic collisions that redistribute thermal
energy throughout the gas at a rate proportional to the mean
total cross section σ̄ [1,7,12,21]. For anisotropic scatterers,
however, not every collision counts the same toward rether-
malization: if the differential cross section favors forward
scattering, it is not useful since the particles would effectively
have the same momenta after collision as before.

Generally, a gas that is heated along the ith coordinate and
whose rethermalization is measured along the jth coordinate
will rethermalize at a rate γi j (�). This rate depends on the
density and temperature of the given experiment, whereby it
is useful to compare the rethermalization rate to a standard
collision rate nσ̄ 〈v〉, where n = (1/N )

∫
n(r)2d3r is the av-

erage number density of the gas, σ is the total elastic cross

section averaged over incident relative momenta, and 〈v〉 =√
16kBT0/(mπ ) is the mean collision velocity. Thus, for relax-

ation considerations, the rethermalization rate is proportional
to the total collision rate,

γi j (�) ≡ nσ̄ 〈v〉
Ni j (�)

, (4)

whose proportionality constant Ni j is known as the number of
collisions per rethermalization.

In a harmonic trap, the position and momentum widths,
quantified by 〈q2

j 〉 and 〈p2
j〉, will experience out-of-phase os-

cillations at the trap frequency en route to rethermalization.
This motivates the definition of a nonequilibrium pseudotem-
perature along each axis:

T j = mω2
j

〈
q j

2
〉

2kB
+

〈
p j

2
〉

2mkB
, (5)

which suppresses such oscillations in time evolution, easing
the extraction of rethermalization rates in theoretical studies.
Comparing this with experimental data should not be difficult
since common imaging techniques such as time-of-flight mea-
surements also have oscillations suppressed by the explicit
removal of a trapping potential.

We now present two theoretical procedures to extract
the rethermalization rates, and thus N , from these out-of-
equilibrium pseudotemperatures. They are (a) explicit, full
solutions to Eqs. (3), from which a time constant is extracted
from fits to T j (t ), and (b) an approximation to these solutions,
extracted from the short-time decay rate behavior, which leads
to analytical expressions for N .

To evaluate the accuracy of these calculations, we utilize
numerical particle simulations to generate pseudotemperature
time traces. They are performed with direct-simulation Monte
Carlo (DSMC) methods similar to that in Ref. [22], which
can themselves be used as a theoretical tool for the study
of such systems [19,23–25]. Briefly, each simulation prepares
the particles’ phase-space coordinates as sampled from Gaus-
sian distributions. Albeit Gaussian, the gas can be initialized
out of equilibrium by having its momentum and position space
widths widened from thermal equilibrium along a chosen axis.
Such techniques have been established to give good agree-
ment with experimental data [11,26].

A. Anisotropic relaxation: 1/e decay rate

An operational definition of the rethermalization time τ is
the 1/e decay time (i.e., the time taken for the pseudotem-
perature to reach 1/e ≈ 0.368 of the extent from its initial to
its final values). It can be extracted with an exponential fit to
data one would get from cross-dimensional rethermalization
experiments.

In the close-to-equilibrium scenarios envisioned here, the
collision integrals required in the Enskog equations are linear
functions of the observables and can be solved analyti-
cally [22,27]. To this end, we consolidate the Enskog variables
into a nine-dimensional vector

ξ(t ) = [
m2ω2

z 〈z2〉, 〈
p2

z

〉
, mωz〈zpz〉,

m2ω2
y 〈y2〉, 〈

p2
y

〉
, mωy〈ypy〉,

m2ω2
x 〈x2〉, 〈

p2
x

〉
, mωx〈xpx〉

]T
. (6)
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The linearized Enskog equations can then be written in the succinct form

ξ̇(t ) = �(�)ξ(t ), (7)

where the overdot denotes a time derivative and � is a state-relation matrix with units of frequency:

�(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2ωz 0 0 0 0 0 0
0 	22(�) −2ωz 0 	25(�) 0 0 	28(�) 0

−ωz ωz 0 0 0 0 0 0 0
0 0 0 0 0 2ωy 0 0 0
0 	52(�) 0 0 	55(�) −2ωy 0 	58(�) 0
0 0 0 −ωy ωy 0 0 0 0
0 0 0 0 0 0 0 0 2ωx

0 	82(�) 0 0 	85(�) 0 0 	88(�) −2ωx

0 0 0 0 0 0 −ωx ωx 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

with 	i j (�) being the collision-integral-associated terms that
can be read off from Eqs. (13a)–(13c) of Ref. [22] for bosons
or Eqs. (B1a)–(B1c) of the present paper for fermions. These
	i j terms are responsible for coupling the axes, allowing for
cross-dimensional rethermalization.

This first-order linear system of differential equations can
be solved via matrix exponentiation. First, diagonalize � as

� = X�X−1, (9)

where X has eigenvectors of 	 as columns and � is a diagonal
matrix of nine complex eigenvalues, 
k = �k + iωk . The real
parts of each 
k constitute decay rates, while imaginary parts
constitute oscillation frequencies. The resulting solution for ξ

is then written as

ξ(t ) = exp (�t )ξ(0) = X exp (�t )X−1ξ(0). (10)

The initial value ξ (0) represents the specific way in which the
gas is brought out of equilibrium, assuming, nevertheless, that
it describes an approximately Gaussian distribution. Thus, for
example, a gas that has equilibrium temperature T0 in the x and
y directions but has temperature Tz raised in the z direction at
time t = 0 would be described by the initial condition

ξ(0) = mkBT0[r, r, 0, 1, 1, 0, 1, 1, 0]T , (11)

where r denotes the excitation ratio Tz/T0.
Pseudotemperatures defined in Eq. (5) can be extracted by

left multiplication with the row vectors

Rz = [1, 1, 0, 0, 0, 0, 0, 0, 0]/(2mkB), (12a)

Ry = [0, 0, 0, 1, 1, 0, 0, 0, 0]/(2mkB), (12b)

Rx = [0, 0, 0, 0, 0, 0, 1, 1, 0]/(2mkB) (12c)

to ξ, giving Tz, Ty, and Tx, respectively. The time evolution
of the pseudotemperatures defined in this way can be directly
compared to that of experimental data. In such a case, the
analytic time trace can be fit to a decaying exponential,

Tfit(t ) = Teq + [T j (0) − Teq] exp(−t/τi j ), (13)

in the same way the data are. Here Teq is the equilibration
temperature as calculated in Appendix A. The number of
collisions per rethermalization is then computed by taking the
reciprocal γi j = 1/τi j and plugging that into Eq. (4).

Alternatively, one can find the 1/e decay time by directly
determining the root τi j from the relation

T j (τi j ) − Teq

T j (0) − Teq
= R j exp(�τi j )ξi − Teq

R jξi − Teq
= 1

e
, (14)

based on the pseudotemperature curves from explicit time
evolution of the Enskog equations R jξ(t ). Above, ξi is the ini-
tial state ξ(0), with excitation along axis i. Such solutions can
be obtained directly from Eq. (14) through numerical solvers
(e.g., the Newton-Raphson method). This latter procedure is
how we determine lifetimes from the full Enskog solutions in
what follows.

B. Anisotropic relaxation: Short-time approximation

The return to equilibrium, in general, is a multiexponential
function of time, owing to the multiple decay rates set by
the eigenvalues of 	. In general, effective relaxation rates are
best determined by fitting the exact time evolution. However,
in many cases a single rate may be dominant, in which case
the rate can be determined from the short-time behavior of
the decay. This circumstance permits a derivation of analytic
expressions for N . We refer to this scheme as the “short-time
approximation.” To formulate this approximation, we define
the phase-space averaged quantity

〈χ j〉 ≡ kB(T j − Teq), (15)

which quantifies the system’s deviation from its equilibration
temperature Teq. From Eqs. (3), the relaxation of 〈χ j〉 would
then follow the differential equation

d〈χ j〉
dt

= C[χ j] = C
[
p2

j

]
2m

. (16)

We now assert that for small deviations from equilibrium and
at short times, this can be approximated with a decay rate γ ,
as C[χ j] ≈ −γ 〈χ j〉, which results in the relation

γ = − 1

[T j (t ) − Teq]

dT j (t )

dt

∣∣∣∣
t=0

. (17)

Using this γ and the standard collision rate nσ̄ 〈v〉, we
can extract the value of Ni j via the relation in Eq. (4). As
before, we consider an excitation of axis i, following which
the rethermalization rate is measured along axis j. This is
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FIG. 1. Rethermalizaton curves of the pseudotemperatures (a) Tx , (b) Ty, and (c) Tz, with excitation along z, as generated by DSMC
simulations (solid blue lines) and solutions to the Enskog equations (dashed red lines). The insets plot the absolute relative error between the
DSMC and Enskog solutions to T j , showing errors on the order of or below 10−2. Simulation parameters are those given in Table I, with the
scattering length set to a = 39.8a0 and � = 90◦.

modeled by taking axis i to have an initial out-of-equilibrium
pseudotemperature

Ti = T0 + δi

kB
, (18)

where δi is a perturbance to the energy, while the initial
temperatures along the two other axes are simply T0. By con-
struction of Eq. (17), δi stands as an auxiliary variable which
cancels out in the derivation.

IV. RETHERMALIZATION IN DIPOLAR BOSE GASES

In ultracold, but thermal, dipolar Bose gases, analytic ex-
pressions for the collision integrals were derived in Ref. [22]
within the Enskog formalism. This completes the framework
of Eq. (7) to efficiently extract rethermalization information of
the gas with the techniques just discussed. To ground further
discussions, we consider a cross-dimensional rethermalization
experiment akin to Erbium experiments by the Ferlaino group
in Ref. [28], using parameters listed in Table I and a = 39.8a0.

We assess the validity of the resulting full Enskog solutions
by first comparing them to results of DSMC simulations. Such
a comparison of the pseudotemperature time traces is shown
in Fig. 1. For this example, we chose an initial temperature
excitation along the z axis by a factor Tz(0) = 1.5T0. This
allows us to observe the collective rethermalization behavior
above the Monte Carlo stochastic noise. The DSMC result is
shown by blue solid curves, while the result from the full En-
skog solution shown by red dashed curves, where the dipolar

TABLE I. Parameter values utilized in the Monte Carlo simu-
lation for bosonic 166Er. Da = 1.661 × 10−27 kg stands for dalton
(atomic mass units), a0 = 5.292 × 10−11 m is the Bohr radius, and
μB = 9.274 × 10−24 J/T is the Bohr magneton.

Parameter Symbol Value Units

Number of particles N 100 000
Atomic mass number A 166 Da
Magnetic moment μ 7 μB

Dipole length ad 99 a0

Initial gas temperature T0 300 nK
Axial trapping frequency ωz 2π × 30 Hz
Radial trapping frequency ω⊥ 2π × 300 Hz

axis is tilted at an angle � = 90◦. Insets showing the absolute
relative error

|ε j | =
∣∣∣∣∣
T (DSMC)

j − T (Enskog)
j

T (DSMC)
j

∣∣∣∣∣ (19)

have also been included, which we plot with the log base
10 taken. For all three pseudotemperatures the agreement of
the two methods is excellent, maintaining a relative error of
∼10−2 or less, justifying the use of the Enskog equations for
extracting N . As an added measure of surety, we also compare
N obtained from the full Enskog solution of Eq. (14) to fits
to the DSMC data (with the error region obtained through
fits to repeated Monte Carlo trials) at � = 0◦–90◦. These,
too, show agreement, as seen in Fig. 2. On top of this, our
theoretical result reverts to N = Ns = 2.5 in the absence of
dipoles, μ = 0. Thus, solutions obtained from the Enskog
equations provide a simple alternative to the full mathematical
machinery of the DSMC method in modeling relaxation.

We next consider the alternative method proposed to com-
pute the number of collisions per rethermalization from the
Enskog equations by using the short-time approximation

FIG. 2. The number of collisions per rethermalization N B
zy as a

function of � = 0◦–90◦, obtained from the theory [Eq. (14); solid
black curve] and fits to Ty from DSMC simulations using Eq. (13)
(dashed gray curve) with error bars (gray shaded region). These
results are found with the parameters in Table I, and a = 39.8a0.
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(Sec. III B). This method, while far simpler, is not always as
accurate, as we will see.

For clarity of presentation, we define an effective isotropic
scattering length [22] and length scale:

a2
eff ≡ 2

(
a2 − 4

3
aad + 4

9
a2

d

)
, (20a)

�2 ≡ 4

(
a2 + 4

45
a2

d

)
, (20b)

respectively. Moreover, the results are usefully presented in
terms of the dimensionless length quantities ãeff = aeff/a and
ãd = ad/a, scaled in units of the scattering length.

The resulting analytical expressions for Ni j possess in-
tricate denominators, whereby it is useful to write the
expressions in the form

N B
i j (�) ≡ (�/a)2

�B
i j

. (21)

This permits the functional forms:

�B
xx(�) = ã2

eff

(
4

5

)
+ ãd

(
16

35

)
[5 − cos(2�)]

+ ã2
d

(
1

105

)
[cos(4�) + 4 cos(2�) − 61], (22a)

�B
yx(�) = ã2

eff

(
4

5

)
+ ãd

(
32

35

)
[2 − cos(2�)]

+ ã2
d

(
8

105

)
[cos(2�) − 7], (22b)

�B
zx(�) = ã2

eff

(
4

5

)
+ ãd

(
96

35

)
+ ã2

d

(
2

105

)
[cos(4�) − 33],

(22c)

�B
yy(�) = ã2

eff

(
4

5

)
+ ãd

(
64

35

)
− ã2

d

(
56

105

)
, (22d)

�B
zy(�) = ã2

eff

(
4

5

)
+ ãd

(
32

35

)
[2 + cos(2�)]

− ã2
d

(
8

105

)
[cos(2�) + 7], (22e)

�B
zz(�) = ã2

eff

(
4

5

)
+ ãd

(
16

35

)
[5 + cos(2�)]

+ ã2
d

(
1

105

)
[cos(4�) − 4 cos(2�) − 61]. (22f)

Several configurations are omitted due to the symme-
tries �B

yx(�) = �B
xy(�), �B

zy(�) = �B
yz(�), and �B

zx(�) =
�B

xz(�). They arise because � is defined in the x, z plane,
resulting in a π/2 periodicity about the y axis. A detailed
derivation of these expressions is provided in Appendix A.
These formulas once again obtain N = 2.5 with pure s-wave
scattering.

A striking result is that these expressions do not depend
on the three-dimensional trap shape. They are thus robust to
arbitrary trap geometries in the perturbative limit, provided
the trap remains harmonic. For bosons, the effective variables
of interest are then the dipole alignment angle � and reduced

FIG. 3. The number of collisions per rethermalization, N B
zy vs

� = 0◦–180◦, as computed using the short-time approximation
(solid black curve) and the full Enskog solution (dashed gray curve).
These results are found with the parameters in Table I, and a =
39.8a0.

dipole length ãd . The latter can be varied in an experiment
by either changing the dipole moment (e.g., by varying the
strength of the electric field applied to polar molecules) or
changing the scattering length via the multitude of Fano-
Feshbach resonances in the lanthanide series.

The analytic expressions in Eqs. (22) are comparatively
concise, making them appealing for application to experi-
ments. They do, however, come with caveats which arise when
the assumption of a single decay rate ceases to hold (i.e.,
clear nonexponential behavior is present). This can be seen,
for instance, by comparing the short-time result to the number
of collisions per rethermalization in the example considered
above. This comparison is made in Fig. 3. There the dashed
curve is the full Enskog result, reproducing the solid curve
in Fig. 2, while the solid line is the short-time approximation
from Eq. (22e). Figure 3 shows that the short-time approxi-
mation expression works well at small angles, while it greatly
overestimates Nzy near � = 90◦. The Enskog solution was
already shown in Fig. 1, so it is clear that the fault stems from
taking the short-time limit.

The issue with the short-time approximation can be seen
in more detailed time traces in Fig. 4 for four different angles
�. In each case, the Enskog curve (solid blue curve) shows an
initial S-shaped curvature; thus, a fit to short times yields an
incorrect slope and the wrong exponential decay, as shown by
the red dashed curves.

We have deliberately chosen these examples to emphasize
the possible discrepancy between the full Enskog solution,
which is demonstrably quite accurate, and the short-time ap-
proximation, which is still often accurate. To illustrate the
accuracy of the latter, we present in Fig. 5 results for the
same experiment described above but with rethermalization
measured along the x and z axes, rather than the y axis. This is
plotted up to � = 180◦ instead of � = 90◦, showing a much
closer quantitative correspondence between the full Enskog
solution and short-time approximation. As a practical matter,
therefore, we recommend using the analytical formulas (22)

063320-5



REUBEN R. W. WANG AND JOHN L. BOHN PHYSICAL REVIEW A 103, 063320 (2021)

FIG. 4. Rethermalization curves Ty(t ) obtained from the Enskog
equation (solid blue curves) compared to exponential relaxation
curves with decay rates obtained from the analytic formulas in
Eqs. (22) (dashed red curves). The red curves are appropriate at
t = 0 and hence do not model the S-shape character of the Enskog
solutions, which is more pronounced as � is increased, as illustrated
in the subplots: (a) � = 55◦, (b) � = 60◦, (c) � = 65◦ and (d) � =
70◦.

where they adequately describe data but deferring to the more
complete numerical solutions of Eq. (10) when necessary.

The expressions for N point to intriguing possibilities. For
example, it is notable that N B

zx remains consistently below
2.5 (pure s-wave scattering) for all values of �. This opens
the possibility of increased efficiency in evaporative cooling,
where, for instance, atoms can be evaporated along the y axis,
forcing rethermalization to occur primarily in the directions of
preferential scattering. Comprehensive studies of this process
would, however, necessitate a theory which can model the
transition into quantum degeneracy. This could, for instance,
be done using the Uehling-Uhlenbeck equation [29,30] or

FIG. 5. The number of collisions per rethermalization (a) N B
zx

and (b) N B
zz vs � = 0◦–180◦, as computed using the short-time ap-

proximation (solid black curve) and the full Enskog solution (dashed
gray curve). These results are found with the parameters in Table I,
and a = 39.8a0.

TABLE II. Table of parameter values utilized in the Monte Carlo
simulation for fermionic 167Er.

Parameter Symbol Value Units

Number of particles N 80 000
Atomic mass number A 167 Da
Magnetic moment μ 7 μB

Dipole length ad 99 a0

Initial gas temperature T0 456 nK
Axial trapping frequency ωz 2π × 40 Hz
Radial trapping frequency ω⊥ 2π × 400 Hz

c-field techniques [31]. We leave further discussions of such
optimal evaporative cooling schemes to future works.

V. RETHERMALIZATION IN DIPOLAR FERMI GASES

The same analysis can also be performed for ultracold
fermionic dipoles by using the appropriate differential cross
section from Ref. [16] in the collision integrals. We derive
the linearized collision integrals for fermions in Appendix B.
This then allows us to compute τi j , with both the full Enskog
equations and the short-time approximation.

As for bosons, we first show that the full Enskog solution
is robust by comparing it to DSMC simulations. We do so
by once again modeling an experiment where nonexponential
behavior is prominent, namely, that described in Ref. [11] (pa-
rameters listed in Table II) with fermionic 167Er atoms [32].
In this case the initial excitation is set to Tz(0) = 1.5T0. The
resulting rethermalization is shown in the time-dependent
pseudotemperatures in Fig. 6 for � = 45◦.

In this particular example, the relaxation of Tz is nonex-
ponential, as seen in the nonmonotonic behavior shown in
the inset. This is reminiscent of the behavior of an almost-
overdamped oscillator. This behavior is captured by the

FIG. 6. Rethermalizaton curves of the pseudotemperatures Tx

(solid blue curve), Ty (dotted green curve), and Tz (dashed purple
curve), with excitation along z. Simulation parameters are those
given in Table II, with � = 45◦. The inset zooms in on the non-
monotic hump of Tx , comparing the Monte Carlo solution (solid blue
curve) with the Enskog solution (dashed red curve).
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FIG. 7. The number of collisions per rethermalization N F
zx as a

function of � = 0◦–90◦, obtained from the theory [Eq. (14); solid
black curve] and exponential fits to Tx from DSMC simulations using
Eq. (13) (dashed gray curve) with error bars (gray shaded region).

Enskog solutions (red dashed lines), leading again to a rea-
sonable description of the rethermalization. Because of this,
the number of collisions per rethermalization extracted from
the Enskog equations still shows good agreement with that
obtained through exponential fits to Monte Carlo simulations
as presented in Fig. 7.

As for the short-time approximation, the absence of s-wave
scattering in dipolar fermions leaves only a single relevant
length scale, ad . The value of ad is, however, irrelevant to
the value of N , as N represents a ratio resulting in its can-
cellation. The number of collisions per rethermalization for
fermions N F

i j is then a function of only �. The resulting
analytical expressions for N F

i j (�) take the relatively simple
forms

N F
xx(�) = 112

45 − 4 cos(2�) − 17 cos(4�)
, (23a)

N F
yx (�) = 14

3 − cos(2�)
, (23b)

N F
zx (�) = 56

33 − 17 cos(4�)
, (23c)

N F
yy (�) = 14

3
, (23d)

N F
zy (�) = 14

3 + cos(2�)
, (23e)

N F
zz (�) = 112

45 + 4 cos(2�) − 17 cos(4�)
, (23f)

once again with omissions since N F
yx (�) = N F

xy(�),
N F

zy (�) = N F
yz (�), and N F

zx (�) = N F
xz (�) due to the

experimentally imposed symmetries.
Having N as a single-variable function of � permits a

comprehensive visualization of its behavior with ease. We
provide the plots of N F , derived with both the full Enskog
solutions (dashed gray curves) and short-time approximation
(solid black curves), in Fig. 8. We see that in the case of

fermions, both of these definitions result in very similar values
for the number of collisions per rethermalization. Thus, in
contrast to the boson case, the simple formulas for the short-
time approximation for fermions should always be useful in
describing rethermalization data.

As an example, we show that our theory matches well
data from a rethermalization experiment with KRb molecules
performed at JILA [33]. There, collision energies are on the
order of 200 μK, with electric dipoles at d = 0.08 D. Temper-
atures were extracted by Gaussian fits to the gas cloud from
time-of-flight expansion data. Rethermalization rates were
then obtained by fitting the temperature data, after parametric
excitation along z, to a set of coupled differential equations:

dn

dt
= −KL(Tz + 2Tx )n2 − n

2

1

Tz

dTz

dt
− n

2

1

Tx

dTx

dt
, (24a)

dTz

dt
= n

4
KL(2Tx − Tz )Tz − 2�th

3
(Tz − Tx ) + cz, (24b)

dTx

dt
= n

4
KLTzTx + �th

3
(Tz − Tx ) + cx, (24c)

where KL, �th, and cx and cz are fit parameters corresponding
to a two-body loss rate, rethermalization rate, and background
heating rates, respectively. It is important to point out that the
experiment in Ref. [33] has the z axis swapped with y when
mapped to our theory.

Noticeably, Eq. (24) only models the rethermalization rate
with a single parameter for �th along all axes. To then have a
consistent comparison between theory and experiment, some
form of averaging over the anisotropic γ terms from our
theory must be taken. To do so, we first rewrite Eq. (17) as

dT j

dt
≈ −γi j (T j − Teq ), (25)

which models γ in our theory, and compare this equation to
Eq. (24), but only with elastic processes (setting KL = cx =
cy = 0), which reads

dTz

dt
= −2�th

3
(Tz − Tx ), (26a)

dTx

dt
= �th

3
(Tz − Tx ). (26b)

Matching coefficients, we find that the fit equations re-
quire γzx, γzy, and γzz to all simultaneously be equal to �th,
which is, of course, not the case. Nonetheless, we resolve this
discrepancy by taking the arithmetic mean of the anisotropic
rethermalization rates to get an effective rate

�th = 1
3 (γyx + γyy + γyz ). (27)

Using this equation to compute N F
z , with the overline denot-

ing the averaging described above, we get

N F
z (θ ) = nσelv

�th
= 112

45 + 4 cos(2θ ) − 17 cos(4θ )
. (28)

We plot this result in Fig. 9 with N F
z multiplied by an addi-

tional scaling factor 0.87, to account for the way in which the
experimental density is determined [8]. The resultant theory
is seen to show favorable agreement with experimental data.
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FIG. 8. The number of collisions per rethermalization for fermions N F (�) vs � = 0◦–180◦ for all nine excitation-rethermalization
configurations from the short-time approximation (solid black curves) and full Enskog solution (dashed gray curves).

Notably, the formula describes the anisotropy as is, without
any adjustable parameters. This result illustrates the efficacy
of the theory for ultracold polar molecules, beyond its origi-
nally intended application to magnetic atoms.

An unusual circumstance in Ref. [33] is that the experiment
is performed at a high electric field E = 12.72 kV/cm, where
the intermolecular potential energy surface is distorted into

FIG. 9. The number of collisions per thermalization N F
zx (�). The

solid gray curve shows the theoretical results from Eq. (23), whereas
the black circles with error bars are results from the KRb experiment
at JILA.

a shielding configuration that prevents the molecules from
reacting chemically. An analysis of this surface [34] reveals
that, near this field, the interaction between the two molecules
is nearly equivalent to the usual dipole-dipole interaction, but
with the opposite sign. In this case the differential scatter-
ing cross section, as evaluated in the Born approximation, is
equivalent to that for the ordinary scattering of dipoles, from
which the same formulas as in Eqs. (23) follow.

VI. CONCLUSIONS

En route to equilibrium, dipolar anisotropies manifest in
the thermalization rate variations between axes of trapped
ultracold, but thermal, gases. These anisotropies are quanti-
fied by the so-called number of collision per rethermalization
N as a function of dipole-alignment angle �, which also
serves as a measure of efficiency to which collisions count
toward thermalization. In close-to-equilibrium scenarios, the
linearized Enskog equations allow convenient computation of
N , following two theoretical procedures: (a) the full Enskog
solution and (b) the short-time approximation.

The latter of these results in surprisingly simple yet ac-
curate (for fermions and many instances of bosons) analytic
expressions that utilize only short-time rethermalization in-
formation. These expressions do, however, have limits to their
use, elucidated through the example rethermalization sim-
ulation in Table I. Conversely, we showed that the former
method, an operational 1/e decay construction of N , more
closely resembles what one would extract from experimental
rethermalization data. This method, however, is more involved
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than its analytic counterpart but is still obtained with much
greater ease than through numerous trials of explicit numeri-
cal particle simulations (e.g., via Monte Carlo methods).

Our prescription is thus to utilize the analytic formulas in
method (b) for systems of ultracold fermions and preliminary
studies of ultracold bosons. Caution should, however, be taken
with bosons, especially if large suppression or enhancement
of rethermalization is predicted. In such cases, we advocate
the use of the full Enskog solution in method (a) to pro-
vide a more accurate representation of what to expect from
experiments.

We also point out that the inherent anisotropy of N
presents the opportunity for engineering enhanced evapora-

tive cooling trajectories. The current models of this work
are, however, inadequate around the transition temperatures
Tc, for bosons, and TF , for fermions. We defer treatments
of such issues and optimal evaporation protocols to a future
publication.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grants No. PHY 1734006 and No.
PHY 1806971. We thank the JILA KRb group for sending us
their experimental data and for engaging discussions.

APPENDIX A: RETHERMALIZATION IN THE SHORT-TIME APPROXIMATION

An explicit derivation of the number of collisions per rethermalization N B(�) for the configuration (i, j) = (x, x) in the
short-time approximation is presented here. This derivation will be instructive for constructing all other Ni j (�) quantities with
a similar procedure. In this particular case, having the excitation along the x axis results in the equilibration temperature

Teq = 2

3
T0 + 1

3

(
T0 + δx

kB

)
= T0 + δx

3kB
, (A1)

which follows from the equipartition theorem. To now measure the rethermalization along the x axis, the initial pseudotempera-
ture deviation is inserted into the collision integral C[p2

x] of Ref. [22], giving

C
[
p2

x

]
(δx ) =

(
8ANa2

eff

15πkB

)
[−2δx] + ad

(
64ANa

105πkB

)
[δx cos(2�) − 5δx] + a2

d

(
4AN

315πkB

)
[61δx − 4δx cos(2�) − δx cos(4�)],

(A2)

where A ≡ m2ω3/T0 and ω is the geometric mean of the trapping frequencies. Dividing this by 2m gives d〈χx〉/dt , which can
be used to derive γ as

γ = − 1

〈χx〉
d〈χx〉

dt
(δx ) = a2

eff

(
4AN

5πmkB

)
+ ad a

(
16AN

35πmkB

)
[5 − cos(2�)] + a2

d

( AN

105πmkB

)
[cos(4�) + 4 cos(2�) − 61].

(A3)

Finally, to get N , we compute the mean collision rate as

nσ 〈v〉 = N

π

A�2

kB
, (A4)

which we divide by γ to give

N B
xx(�) = 4

(
a2 + 4

45 a2
d

)
a2

eff(4/5) + ad a(16/35)[5 − cos(2�)] + a2
d (1/105)[cos(4�) + 4 cos(2�) − 61]

. (A5)

APPENDIX B: FERMIONIC COLLISION INTEGRALS

By using the prescription provided in Appendix A of Ref. [22], we derive the linearized collision integrals for fermions within
the Enskog formalism as

CF
[
p2

x

] =
(

4N

315π

)(
a2

d mω3

kBT0

)[
4
(〈

p2
x

〉 − 〈
p2

y

〉)
cos(2�) + 17

(〈
p2

x

〉 − 〈
p2

z

〉)
cos(4�) − 45

〈
p2

x

〉 + 12
〈
p2

y

〉 + 33
〈
p2

z

〉]
, (B1a)

CF
[
p2

y

] =
(

16N

315π

)(
a2

d mω3

kBT0

)[
3
〈
p2

x

〉 − 6
〈
p2

y

〉 + 3
〈
p2

z

〉 − (〈
p2

x

〉 − 〈
p2

z

〉)
cos(2�)

]
, (B1b)

CF
[
p2

z

] =
(

4N

315π

)(
a2

d mω3

kBT0

)[
4
(〈

p2
y

〉 − 〈
p2

z

〉)
cos(2�) − 17

(〈
p2

x

〉 − 〈
p2

z

〉)
cos(4�) + 33

〈
p2

x

〉 + 12
〈
p2

y

〉 − 45
〈
p2

z

〉]
. (B1c)
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