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Large-area 87Rb Bose-Einstein condensate in a clipped-Gaussian optical dipole trap
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We demonstrate a production of large-area 87Rb Bose-Einstein condensates (BECs) using a non-Gaussian
optical dipole trap (ODT). The ODT is formed by focusing a symmetrically truncated Gaussian laser beam, and
it is shown that the beam clipping causes the trap geometry to be elongated and flattened along the beam axis
direction. In the clipped-Gaussian ODT, an elongated, highly oblate BEC of 87Rb is generated with a length and
width of approximately 470 and 130 μm, respectively, where the condensate healing length is estimated to be
ξ ≈ 0.25 μm at the trap center. The ODT is characterized to have a quartic trapping potential along the beam
axis and the atom density of the condensate is uniform within 10% over 1000ξ in the central region. Finally, we
discuss the prospect of conducting vortex shedding experiments using the elongated condensate.
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I. INTRODUCTION

An optical dipole trap (ODT) is a popular trapping method
for cold neutral atoms [1], and is typically created by focus-
ing a far-off-resonant Gaussian laser beam. In contrast to a
magnetic trap, an ODT can confine atoms regardless of their
spin states, thus allowing the study of spin dynamics with the
trapped samples [2]. In addition, its trapping geometry can be
tailored to some extent, e.g., by engineering the laser beam
profile [3,4], using multiple laser beams [5,6], and, particu-
larly, their spatial interference to provide lattice potentials [7],
or rapidly scanning a laser beam to generate a time-averaged
potential [8]. By virtue of these merits, diverse ODTs with
many different geometries have been designed and utilized
over the last decades in the cold-atom experiments to vastly
expand their research scope.

In this paper, we present a simple variation of a single-
beam ODT that enables the production of an atomic sample
with a large area. The experimental setup for the ODT, where
a collimated, elliptical laser beam is symmetrically truncated
by a horizontal slit and focused through a cylindrical lens, is
illustrated in Fig. 1. When a truncated Gaussian laser beam
is focused, the focal region is elongated, and furthermore
the beam waist becomes uniform over the long focal region
[9]. The flattened laser beam has been successfully used in
bioimaging as an optical sheet to selectively excite a slice re-
gion of a sample [10]. In this work, we employ a non-Gaussian
laser beam as the ODT and demonstrate the generation of
large-area, highly oblate Bose-Einstein condensates (BECs)
of 87Rb. In an optimal clipping condition, we obtain a con-
densate whose width and length are approximately 130 and
470 μm, respectively (Fig. 1 inset). The condensate thickness
is ≈11ξ , where ξ ≈ 0.25 μm is the condensate healing length
at the trap center. We observe that the ODT confinement along
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the beam axis is well described by a quartic potential and that
the atom density is uniform within 10% over the half of the
condensate in the central region.

The large-area, highly oblate BEC is expected to be bene-
ficial to study the critical vortex shedding dynamics [11–14]
and related turbulence phenomena in a superfluid [15–19].
In classical fluid dynamics, the wake behind a moving ob-
stacle is characterized by the Strouhal number, which is a
dimensionless quantity defined as St = fvD/v, with fv being
the vortex shedding frequency, D the characteristic diameter
of the obstacle, and v its moving speed. It is well known
that St ≈ 0.2 over a large range of the Reynolds number,
50 < Re < 105 [20], which is the main characteristic of the
vortex shedding dynamics in the classical fluid. Intriguingly, a
similar universal behavior of St was predicted for a superfluid
in a numerical study [21], and recently, tentative experimental
evidence was reported [22]. An elongated and flattened BEC
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FIG. 1. Clipped-Gaussian optical dipole trap (ODT). An ellipti-
cal laser beam is symmetrically truncated by a horizontal slit and
focused through a cylindrical lens to form an ODT. 2w and D denote
the initial beam diameter and the opening width of the slit, respec-
tively. The inset is an image of a 87Rb Bose-Einstein condensate
(BEC) trapped in the ODT. The sample is highly oblate, and the
image is taken along its thickness direction.
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provides a long moving distance for an obstacle, allowing
better measurements of the vortex shedding frequency. We
emphasize that the beam clipping method can be easily im-
plemented in experiments, providing a simple and practical
way to elongate a trapped sample.

The remainder of this paper is organized as follows. In
Sec. II, we investigate the ODT elongation and flattening
effect due to the laser beam clipping by directly measuring the
beam intensity distribution of the focused laser beam and by
performing numerical simulations. In Sec. III, we present our
experimental results of generating a large-area Bose-Einstein
condensate and the characterization of the trapping potential.
Finally, a summary is provided in Sec. IV, together with an
outlook on the vortex shedding experiment with a large-area
sample.

II. CLIPPED-GAUSSIAN OPTICAL DIPOLE TRAP

We first investigate the effect of laser beam clipping using
a separate optics setup that emulates the ODT in our BEC
experiment. In the setup, we use a 780-nm, elliptical Gaussian
laser beam with horizontal and vertical 1/e2 diameters of 2
and 4 mm, respectively. As depicted in Fig. 1, the laser beam
is symmetrically truncated by a horizontal slit and focused
through a cylindrical lens with a focal length f = 100 mm.
We measure the intensity profile of the focused laser beam
as a function of the axial position y near the focal spot, from
which we map the three-dimensional (3D) intensity distribu-
tion I (x, y, z), that is proportional to the trapping potential for
atoms. The intensity profile along the x direction was observed
to maintain its original Gaussian form, and in the following,
we consider only the two-dimensional (2D) intensity distribu-
tion I (y, z).

Figure 2(a) displays the intensity distributions I (y, z) mea-
sured for various clipping conditions. Here, the intensity is
normalized by its peak value I0 at the focus and the clipping
condition is parametrized with γ = D/2w, the ratio of the slit
width D to the 1/e2 diameter 2w of the incident laser beam.
It is clearly shown that the focal region is elongated along
the beam propagation direction as γ decreases, i.e., the laser
beam becomes more clipped. For γ = 0.5, the high-intensity
region, where I/I0 > 0.9, is stretched over 6 mm along the
y axis, which is approximately four times longer than that
without clipping. The focus position is slightly shifted towards
the focusing lens with decreasing γ [9], which is attributed to
the spherical aberration of the focusing lens.

In Fig. 2(b), we plot the 1/e2 radius of the focused beam
as a function of the axial position y. When the laser beam is
significantly truncated for γ < 1, the beam radius noticeably
increases, and furthermore it exhibits a peculiar y dependence
such that there appears a central region with a quasiconstant
beam radius. This means that the resultant ODT would be not
only elongated but also flattened at its center by the laser beam
clipping.

We also investigate the clipped-Gaussian ODT by numer-
ically calculating the propagation of the clipped and focused
laser beam. In scalar diffraction theory, the electric field of the
laser beam, Uf (z, d ), after propagating by a distance d from

FIG. 2. Evolution of an ODT for the laser beam clipping. (a) In-
tensity distribution I (y, z) of the focused laser beam for various
clipping conditions, measured in a separate optics setup (see text for
details). I0 denotes the peak value at the focus and γ = D/2w is the
relative opening width of the slit. (b) 1/e2 radius of the focused laser
beam as a function of the axial position y. (c) Numerical simulation
results of I (y, z) and (d) the 1/e2 radius for the experimental condi-
tions in (a) and (b). (e) Trapping frequency ratio ωz/ωy as a function
of γ . ωy(z) is the trapping frequency of the ODT in the y(z) direction
at its center region of I/I0 > 0.8. The inset shows ωz/ω

′
z vs γ , where

ω′
z is the trapping frequency in the unclipped case for the same peak

intensity I0.

the lens, is given by

Uf (z, d ) = 1√
λd

∫
t (z′)θs(z

′)Ui(z
′)e− iπ

λd (z−z′ )2
dz′, (1)

in the form of the Rayleigh-Sommerfeld diffraction in-
tegral using a paraxial approximation, where Ui(z) =
U0 exp(− z2

w2 ) is the electric field of the incident Gaus-
sian beam, θs(z) = θ (z + D

2 )θ ( D
2 − z), with θ (z) being the
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Heaviside step function representing the truncation by the
slit, and t (z) = exp( iπ

λ f z2) is the transmission function of the
lens for wavelength λ. Here, we neglect the propagation from
the slit to the lens. Based on this equation, we numerically
calculate the intensity distribution Isim(y, z) = |Uf (z, d = f +
y)|2 for our experimental condition [Fig. 2(c)] and determine
the evolution of the 1/e2 radius of the focused laser beam
[Fig. 2(d)]. We find the numerical results to be in good quan-
titative agreement with the experimental data.

The elongation due to the laser beam clipping is further
characterized by measuring the trapping frequency ratio α =
ωz/ωy of the clipped-Gaussian ODT as a function of γ , where
ωy(z) is the trapping frequency of the ODT in the y(z) direction
at its center. The value of α is determined from a fit of an
inverted 2D quadratic function of Ifit(y, z) = I0[1 − 1

2κ2(y2 +
α2z2)] to the measured I (y, z) for the high-intensity region
of I/I0 > 0.8, and the results are displayed in Fig. 2(e). For
γ = 0.5, α increases up to ≈400. To put this value in per-
spective, we compare it to the trapping frequency ratio of a

normal Gaussian ODT, which is given by α =
√

2πw0
λ

=
√

2 f
w

,

where w0 = λ
π

f
w

is the 1/e2 beam radius at the focus. In order
to obtain such a high value of α ≈ 400 in our optics setup
without clipping, the beam radius w0 needs to be larger than
70 μm, which can be achieved by, e.g., reducing the incident
beam diameter to 2w < 0.7 mm. We note that it is practically
much easier to clip the laser beam than it is to reduce the beam
diameter, particularly without affecting the focal position. In
the limit of γ � 1, the clipped input beam can be regarded as
a flattop square beam with width D and we find α ∼ 8 f

D from
numerical simulations.

III. GENERATION OF LARGE-AREA BECs

A. BEC production

A schematic view of our apparatus for generating 87Rb
BECs is presented in Fig. 3. The apparatus consists of two
vacuum parts: a glass cell to generate a cold atomic beam and
a main ultrahigh vacuum chamber to produce the BEC. In the
glass cell, we form a 2D magneto-optical trap (MOT) and gen-
erate an atomic beam by pushing atoms using a red-detuned
laser beam to the main chamber. Atoms move through a differ-
ential pumping tube, which is 10 cm long with a 4 mm inner
diameter, and are loaded into a 3D MOT in the main chamber.
After full loading, we transfer the atoms into a magnetic
quadrupole trap, which is aided by MOT compression and mo-
lasses cooling. We then apply rf-induced evaporative cooling
to the trapped sample and transfer it into an ODT, avoiding the
atom loss due to the Majorana spin flip in the magnetic trap
at low temperature [23]. At the transfer, the number of atoms
in the magnetic trap is ≈4.2 × 108, and their temperature is
≈17 μK. The sample is further cooled by lowering the trap
depth of the ODT and we obtain a quasipure BEC contain-
ing ≈2.2 × 106 atoms in the |F = 1, mF = −1〉 state (Fig. 3
inset). The ODT is created by focusing a 1064-nm, elliptical
Gaussian beam with 2w = 22 mm (Fig. 1) and the focal length
of the cylindrical lens is 100 mm. The trapping frequencies
of the final ODT are ωx,y,z ≈ 2π × (6.9, 5.1, 225) Hz and the
condensate is highly oblate with Thomas-Fermi (TF) radii of
Rx,y,z ≈ (65, 87, 2.0) μm.

FIG. 3. Schematic view of the experimental apparatus for pro-
ducing a 87Rb BEC. An atomic beam is generated from a 2D
magneto-optical trap (MOT) with a pushing laser beam in a glass cell
(not shown). Atoms are loaded into a 3D MOT in an ultrahigh vac-
uum chamber, which is connected to the glass cell via a differential
pumping tube (DPT), and subsequently cooled down via evaporation
after being transferred into a magnetic trap and then in an ODT. The
images in the bottom were acquired after a time of flight, showing the
Bose-Einstein condensation in the atomic cloud. The optical density
(OD) profiles along the central dashed lines are displayed below,
where the red dashed lines are Gaussian curves fit to the outer thermal
wings.

B. Elongation by clipping

Installing an adjustable horizontal slit before the final
focusing lens, we investigate the beam clipping effect by
measuring the atom density distribution of the condensate in
the ODT for various γ . Because of the power loss caused
by the clipping as well as the volume change of the ODT, it
was necessary to adjust the power control of the ODT laser
beam during evaporation for each γ to maximize the BEC
sample. In the tuning process, it was observed that the con-
densate tends to drift along the beam axis, which is because
the axial confinement is weakened by the laser beam clipping
and the beam alignment is not perfectly orthogonal to the
gravity direction, and that the drifting also depends on the slit
position with respect to the beam center. When the condensate
is axially moved, it exhibits an unbalanced density profile,
indicating the anharmonicity of the axial trapping potential.
To compensate the axial drift, we apply a magnetic field
gradient (∼a few mG/cm) along the y direction to balance the
axial density distribution of the condensate. The final power
of the ODT laser beam is adjusted to maintain the trapping
frequency ωx constant within 10%.

In Fig. 4, we display the in situ images of the trapped
condensates for various γ . It is clearly observed that the
condensate is elongated along the beam axis as the beam is
clipped. The aspect ratio Ry/Rx of the sample in the xy plane
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FIG. 4. Elongation of the BEC in the clipped-Gaussian ODT. In
situ images of BECs for various γ are displayed. The axial extent of
the condensate increases along the ODT beam axis with decreasing
γ . The aspect ratio Ry/Rx is increased to approximately 4 for γ =
0.64. Trapping frequency along the x direction, ωx , was maintained
within 10% for all γ .

is measured by determining the TF radius Rx(y) in the x(y)
direction from the intercept of a linear fit to the outer regions
of the in situ density profile. The aspect ratio is increased
almost to 4 for γ = 0.64 with the radius values of Rx0,y0 =
[63(1), 232(5)] μm, which is a nearly threefold increase com-
pared to that for the unclipped ODT. We note that the atom
number of the condensate is also increased by a factor of 5 to
≈1.16 × 107. When the ODT laser beam is further clipped
for lower γ < 0.64, on the other hand, the axial extent of
the condensate is markedly decreased together with its atom
number reducing. It might be attributed to the low transfer
efficiency of atoms to the ODT due to insufficient power of
the clipped laser beam or some uncontrolled diffraction effects
of the deep clipping, which are not clearly understood at the
moment. In our experiment, the maximum power of the ODT
beam is about 3 W, which is fully applied at the atom transfer
from the magnetic trap. The power loss due to the clipping is
16% at γ = 0.64 and is increased to 25% for γ = 0.55.

C. Trap characterization

We characterize the trapping potential of the clipped-
Gaussian ODT at our optimal clipping with γ = 0.64. The
trapping potential is modeled as

V (x, y, z) = 1
2 mω2

x x2 + Va(y) + 1
2 mω2

z (y)z2, (2)

where m is the atomic mass. In this model, the ODT mod-
ifications due to the laser beam clipping are described with
a separable potential Va(y) along the beam axis and the y
dependence of ωz. Here, ωx is assumed to be independent of
the axial position y, which is supported by our observation that
the condensate undergoes long-lived dipole oscillations in the
x direction without significantly distorting its boundary shape,
giving ωx = 2π × 7.4(1) Hz.

The axial trapping potential Va(y) is determined from the
relation of the chemical potential μ to the Thomas-Fermi
boundary position of the condensate, μ = V (Rx(y), y, 0) =
1
2 mω2

x R2
x (0), which gives

Va(y) = 1
2 mω2

x

[
R2

x (0) − R2
x (y)

]
, (3)

FIG. 5. Anharmonic trapping potential. (a) The axial trapping
potential Va(y) of the ODT for γ = 0.64 was determined from Eq. (3)
by measuring the Thomas-Fermi radius Rx (y) of the condensate at
the axial position y. The inset shows the measurement results of
R2

x (y), where different markers denote samples with different atom
numbers. μ0 is the chemical potential of the condensate for the max-
imum atom number. The gray line indicates a power-law function
of Va0(y) = A|y − y0|β with β = 3.9, fit to all the data of Va(y), and
the solid lines in the inset are the corresponding curves for the R2

x

data. Each data point is the mean of 15 measurements of the same
experiment. (b) Damped dipole oscillations. The axial center-of-
mass position YCOM of the oscillating condensate as a function of
time. Each point is the mean of three measurements and its error bar
represents their standard deviation. The gray solid line is a damped
sinusoidal curve fit to the data. In the upper left, in situ images of
the oscillating condensate are displayed for different times. The right
inset shows the oscillation data for the unclipped case.

where Rx(y) is the Thomas-Fermi radius in the x direction at
the axial position y. In Fig. 5(a), the axial trapping potential
Va(y) constructed using Eq. (3) is displayed, where Rx(y) is
measured from in situ images of the trapped condensates with
various atom numbers [Fig. 5(a) inset]. Fitting a power-law
function of Va0(y) = A|y − y0|β to the measurement results,
we find that the trapping potential is quantitatively well de-
scribed with β = 3.9 ± 0.1. The fitting yields y0 ≈ 2 μm �
Ry0, meaning that the density distribution of the condensate is
symmetric with respect to its center-of-mass position which is
located at y = 0.

The anharmonicity of the axial trapping potential is
demonstrated using the dipole oscillations of the condensate.
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FIG. 6. Axial position dependence of the trapping frequency ωz.
(a) In situ images of BECs after ODT power modulations for 100
ms with variable frequency fm. Local density depletion occurs in
the condensate due to parametric heating for fm = 2(ωz/2π ) at the
density dip position. (b) The density dip position ydip was determined
from a Gaussian fit to the axial density profile obtained by integrating
the image along the x axis. The solid line indicates a linear fit to the
data.

The oscillations are induced by adiabatically turning on an
additional magnetic field gradient to move the condensate
by 0.5Ry0 from the trap center, and suddenly switching it
off. The condensate shape changes during the oscillations;
the atoms agglomerate periodically, as shown in the im-
ages in Fig. 5(b). The oscillations decay rapidly, contrary to
the long-lived oscillations in the unclipped ODT [Fig. 5(b)
inset].

The trapping frequency ωz along the tight confining di-
rection is measured via parametric heating by sinusoidally
modulating the ODT beam power. The modulations are ap-
plied for 100 ms and their amplitude is set to be 5% of the
final ODT beam power. As we scan the modulation frequency
fm, we observe that a density dip appears in the sample and
its axial position changes with varying fm [Fig. 6(a)]. The
density dip formation results from local heating by the trap
modulations for the resonance of 2π fm = 2ωz at the dip posi-
tion. From the relation of fm and the dip position, we find that
ωz exhibits a small linear dependence on the axial position
[Fig. 6(b)]. A linear function fit to the measurement results
gives ωz(y) = ωz0(1 − By) with ωz0 = 2π × 171(1) Hz, B =
5.4(3) × 10−4 μm−1.

Putting together all the trap characterization results, we
describe the trapping potential V (x, y, z) as

V (x, y, z) = 1
2 m

[
ω2

x x2 + ω2
z0(1 − By)2z2

] + A|y|β, (4)

with β = 3.9 and A = μ0/Rβ

y0, where μ0 = 1
2 mω2

x R2
x0 is the

chemical potential of the condensate for the maximum atom
number in our experiment. For μ0 = kB × 45.7 nK, the atom
number N0 of the condensate is calculated by numerically
integrating the atom density n(r) = [μ0 − V (r)]/U0 over the

sample region, where U0 = 4π h̄2as
m , with as being the s-wave

scattering length, yielding N0 ≈ 1.1 × 107, consistent with the
measured value. The condensate healing length is estimated to
be ξ = h̄/

√
2mμ0 ≈ 0.25 μm at the trap center, and in units

of ξ , the length and width of the condensate are expressed as
2Ry0/ξ ≈ 1880 and 2Rx0/ξ ≈ 513, respectively.

IV. SUMMARY AND OUTLOOK

We described the clipped-Gaussian ODT which is formed
by focusing a symmetrically truncated Gaussian beam, and
presented it as a simple and practical method for enlarging
the spatial extent of a trapped atomic sample. We generated
large-area Bose-Einstein condensates in the ODT and showed
that the trapping potential along the beam axis direction is
well described to be quartic so that the atom density is uni-
form within 10% over the half of the condensate along the
elongated direction.

The large-area BEC would be beneficial to many experi-
ments, among which our immediate interest is investigating
the vortex shedding dynamics. Vortex shedding or wake gen-
eration behind a moving obstacle has been widely studied in
classical fluids, and its extension to a superfluid was recently
performed with atomic BEC systems using a focused laser
beam as an optical obstacle [13,14,22,24]. In experiments
with penetrable obstacles [24], a periodic shedding of vortex
dipoles was observed and the linear relationship between the
shedding frequency fv and the obstacle velocity v was demon-
strated as fv = a(v − vc), with vc being the critical velocity
for vortex shedding [11,12]. For impenetrable obstacles, the
observation of von Kármán vortex streets was reported [22].
Moreover, it seemed that the number of vortex clusters Nc

shed for a fixed travel distance L tends to be saturated with
increasing the obstacle velocity, which intriguingly suggests
a constant Strouhal number as St = fvD/v ≈ (Nc/2L)D such
as observed in classical fluids. Assuming constant St, it might
be speculated that the proportionality constant a of fv for a
penetrable obstacle is understood as a = St/Deff, with Deff

being the effective diameter of the obstacle. The elongated
BEC prepared in the clipped-Gaussian ODT provides an im-
proved setting for the vortex shedding experiments, allowing
a longer travel distance with smaller atom density variations.
In the previous experiment of Ref. [22], the maximum stirring
distance was about 300ξ , resulting in Nc � 4, preventing pre-
cise determination of the shedding frequency. In our sample,
the travel distance can be stretched to L > 1000ξ and a linear
extrapolation predicts Nc > 10 for high v. We expect that
the improvement will facilitate a quantitative study of the
vortex shedding dynamics in a BEC, providing an interesting
opportunity to explore its possible universality which would
establish the superfluid Reynolds number [21,25,26].
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