
PHYSICAL REVIEW A 103, 063318 (2021)

Dynamical generation of solitons in one-dimensional Fermi superfluids with and
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We theoretically generalize a systematic language to describe the phase-imprinting technique to investigate
the dynamical generation of solitons in a one-dimensional Raman-type spin-orbit-coupled Fermi superfluid.
We check our method with the simulation of time-dependent Bogoliubov–de Gennes equations and find that our
method not only can generate stable dark and even gray solitons in a conventional Fermi superfluid by controlling
the transferred phase jump but also is feasible to create a stable dark soliton in both BCS and topological states
of a spin-orbit-coupled Fermi superfluid. We also discuss the physical implication of our method.
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I. INTRODUCTION

As an interesting nonlinear phenomenon, a soliton is a
possible eigenstate of a many-body system. It originates from
the competition between the dispersion and interaction of
underlying systems and displays as a local and topological
defect in the system [1,2]. Solitons have also become the focus
of research in ultracold atoms owing to their close relation to
the dynamics of the system [2]. Their different form creates
a large family, from the common gray and dark solitons in
repulsive Bose-Einstein condensates (BECs) to the bright soli-
ton in attractive BECs and gap soliton in optical lattices and
also vector solitons, such as the bright-dark soliton in two-
component BECs [3,4]. In fermionic superfluids, the soliton
and its related dynamical behaviors have also attracted much
research interest and have been widely investigated [5–10].
After the realization of Raman-type spin-orbit-coupled (SOC)
Fermi gases [11,12], an exotic Majorana soliton joined this
big family when the system comes into the topological state
and displays a quite different dynamical behavior [13–15].

Experimentally, solitons usually can be produced by a
phase-imprinting technique or quench dynamics [16,17] in
BECs. In 2013, a “heavy soliton” in Fermi gases was observed
and oscillated in a harmonic trap with a frequency surpris-
ingly larger than theoretical prediction [18]. Later, people
realized that the reason is the generated soliton decays into
by-products, like vortex rings [19] and solitonic vortices [20],
in the following experimental process. Since then, how to find
a proper experimental strategy to generate a stable soliton in
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a Fermi superfluid has become a very interesting question and
has attracted much research attention.

In 2014, Sacha and Delande first proposed a single-
component operation of the phase-imprinting technique,
which suggests that one should shine a phase laser beam on
half of the gases and input a π phase jump to only one spin
component of the two-component Fermi superfluid in order to
generate a stable soliton [21]. This suggestion is surprising
and quite interesting and opens the way to understand the
dynamical generation of solitons. More important, it points
out that the dynamical generation of a stable soliton should
satisfy the parity symmetry of the soliton eigenstate, and the
phase-imprinting technique is essentially a way to tune the
parity of the wave function. Solitons can widely exist in many
different kinds of systems, for example, the SOC Fermi su-
perfluid [13,14] and dipolar gases [22]. Naturally, it will also
be interesting to investigate whether this single-component
operation can work in other Fermi superfluids or not and
to check the possibility to have a universal and systematic
language of phase-imprinting techniques which can work in
various Fermi superfluids.

In this paper, we will try to generalize the method of the
phase-imprinting technique considering the parity symmetry
of both ground and soliton states; we first study the dynamical
generation of a gray soliton in a conventional Fermi superfluid
following the relation between the soliton’s velocity and its
phase jump [8,10], then analyze and understand the opera-
tion utilized in the soliton experiment [18] and explain the
influence of the soliton’s collision [9], and finally study the dy-
namical generation of solitons in a SOC Fermi superfluid and
discuss the physical meaning and experimental requirements
of this operation. All simulations will be carried out with a
time-dependent Bogoliubov–de Gennes (BdG) equation.

The rest of this paper is organized as follows. In the next
section, we will introduce the model and Hamiltonian in both
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a conventional Fermi superfluid and a SOC Fermi super-
fluid and present the detailed process of the phase-imprinting
method which meets the requirement of parity symmetry. In
Sec. III, we investigate the time-dependent simulation of a sta-
tionary dark soliton and also a gray soliton in a conventional
Fermi superfluid. Then we introduce the soliton’s dynamical
generation in all possible matter states of a Raman-type SOC
Fermi superfluid in Sec. IV and demonstrate the correspond-
ing physical implication of the phase-imprinting technique in
Sec. V. Finally, our conclusions are given in Sec. VI.

II. MODEL AND HAMILTONIAN

A. One-dimensional conventional BCS Fermi superfluid

Let us first review a one-dimensional (1D) conventional
Fermi superfluid, which can be considered a special case of
the 1D Raman SOC Fermi superfluid at the limit of zero
Zeeman magnetic field. We consider a uniform spin-balanced
two-component Fermi superfluid with an s-wave contact in-
teraction at zero temperature, T = 0.

In the frame of the mean-field theory, all eigenstates of the
system are described by the stationary BdG equations,

HBdG�η = Eη�η. (1)

Here the BdG Hamiltonian reads

HBdG =
[
Hs �

�∗ −Hs

]
, (2)

where Hs = −∂2
x /2m − μ is a free-particle Hamiltonian with

atomic mass m and chemical potential μ. �η = [uη, vη]T

is the quasiparticle wave function with the corresponding
eigenenergy Eη. Here and in the following, we always set
h̄ = 1 for simplicity. All eigenstates of BdG equations should
be self-consistently solved with the order parameter equation

� = −g1D

∑
η

uηv
∗
η f (Eη ) (3)

and the density equation

n = 2
∑

η

[|uη|2 f (Eη ) + |vη|2 f (−Eη )], (4)

where f (x) = 1/(ex/kBT + 1) is the Fermi-Dirac distribution
function at temperature T . The effective coupling strength
g1D < 0 can be described with a dimensionless interaction
strength parameter γ = −mg1D/n0, where n0 is the bulk den-
sity of the uniform system, and can often be used to define the
noninteracting Fermi vector kF = πn0/2 and Fermi energy
εF = k2

F /2m. The typical value of the interaction strength
is γ ∼ 3–5 in a realistic experiment [23–25]. We have tried
different γ and the main conclusion is not changed. So in the
following discussion we always take γ = π .

Generally, the ground state of the system is a homogeneous
state with an even-parity symmetry of the order parameter
�(x), namely, �(−x) = �(x). A soliton is an excited eigen-
state with an odd-parity symmetry of the order parameter,
namely, �(−x) = −�(x). The ground and soliton eigenstates
have their own parity operators,

PG =
[

1 0
0 1

]
Px, PS =

[
1 0
0 −1

]
Px, (5)

where Px is the usual parity operator, i.e., Px�(x) ≡ �(−x).
PG and PS both commute with their corresponding HBdG,
namely, [PG/S, HBdG] = 0, which means that the parities of
these two states are conserved. One should notice that HBdG

of these two eigenstates are not the same because of the parity
difference of their �(x). PG requires both quasiparticle wave
functions uη and vη to be an even-parity function, while PS

requires the parity of uη to be different from that of vη.

B. One-dimensional Raman-type SOC Fermi superfluid

For a 1D Raman-type SOC Fermi superfluid, the system
can be described by the model Hamiltonian H = H0 + Hint ,
where

H0 =
∫

dx

[∑
σ

Ψ σ †HsΨ σ − h(Ψ †
↑ ei2kRxΨ↓ + H.c.)

]
(6)

is the single-particle Hamiltonian in the presence of a SOC
effect and

Hint = g1D

∫
dxΨ †

↑ (x)Ψ †
↓ (x)Ψ↓(x)Ψ↑(x) (7)

is the s-wave contact interaction Hamiltonian between two
spin components. In the two-photon Raman SOC process, h
is the effective Zeeman magnetic field of the Raman beams,
and kR is the recoil momentum carried by lasers.

It is useful to remove the spatial dependence of the Raman
coupling term by taking the following local gauge transforma-
tion:

Ψ↑(x) = e+ikRxψ̃↑(x),

Ψ↓(x) = e−ikRxψ̃↓(x); (8)

here this unitary transformation keeps the physics of the spin
index. The SOC effect in the Hamiltonian H0 can be regarded
as an equal-weight combination of Rashba and Dresselhaus
spin-orbit couplings after the other unitary transformation

ψ̃↑(x) = 1√
2

[ψ↑(x) − iψ↓(x)],

ψ̃↓(x) = 1√
2

[ψ↑(x) + iψ↓(x)]. (9)

After the second transformation, we must emphasize that the
spin indices on the right side of Eq. (9) do not denote original
spin up or down. The corresponding single-particle Hamilto-
nian reads

H0 =
∫

dx[ψ†
↑(x), ψ†

↓(x)]H0

[
ψ↑(x)
ψ↓(x)

]
, (10)

with

H0 = Hs − hσz + λk̂xσy. (11)

Here a constant energy shift ER = k2
R/2m is absorbed by

the chemical potential μ, and k̂x = −i∂x is the momentum
operator. λ ≡ kR/m is the SOC constant. σx,z are Pauli’s ma-
trices. The form of the interaction Hamiltonian is invariant
after the above two unitary transformations, namely, Hint =
g1D

∫
dxψ†

↑(x)ψ†
↓(x)ψ↓(x)ψ↑(x).

In the frame of mean-field theory, we define an order
parameter �(x) = −g1D〈ψ↓(x)ψ↑(x)〉. Then the interaction
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Hamiltonian is decoupled as

Hint 
 −
∫

dx[�ψ
†
↑ψ

†
↓ + H.c. + |�|2/g1D]. (12)

By taking the Bogoliubov transformation to the field opera-
tor ψσ (x) = ∑

η[uση(x)cη + v∗
ση(x)c†

η], we can transform the
Hamiltonian into a noninteracting quasiparticle BdG Hamil-
tonian with quasiparticle operators cη and c†

η, which satisfies
Eq. (1), but here

HBdG ≡

⎡⎢⎢⎣
Hs − h −iλk̂x 0 −�

iλk̂x Hs + h � 0
0 �∗ −Hs + h iλk̂x

−�∗ 0 −iλk̂x −Hs − h

⎤⎥⎥⎦,

(13)

and �η = [u↑η, u↓η, v↑η, v↓η]T is the quasiparticle wave func-
tion with eigenenergy Eη. This BdG equation should also be
self-consistently solved with the order parameter equation

� = −g1D

2

∑
η

[u↑ηv
∗
↓η f (Eη ) + u↓ηv

∗
↑η f (−Eη )] (14)

and the density equation

n = 1

2

∑
ση

[|uση|2 f (Eη ) + |vση|2 f (−Eη )]. (15)

Similarly, the order parameter exhibits an even-parity sym-
metry with �(−x) = �(x) in the ground state of this SOC
system, while it has an odd-parity symmetry with �(−x) =
−�(x) in the soliton state. The parity operators of these two
states respectively read

PG =

⎡⎢⎣1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤⎥⎦Px,

PS =

⎡⎢⎣1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎦Px, (16)

which both commute with their own HBdG to conserve their
parity property. In the ground state, PG suggests that the
quasiparticle wave functions u↑η and v↓η should be even-
parity, while u↓η and v↑η are odd-parity, or the reverse since,
mathematically, −PG is also a possible candidate ground-state
parity operator. These requirements make �(x) an even func-
tion. In the soliton state, PS requires u↑η and v↑η to be even
functions, while u↓η and v↓η are odd functions or vice versa.
These requirements make �(x) an odd function.

In our numerical simulation, we use the interaction strength
γ = π and recoil momentum kR = 0.75kF . When increasing
h across a critical value hc 
 εF (see Fig. 1), an interesting
phase transition happens from a trivial BCS superfluid to a
topologically nontrivial superfluid, and the critical transition
point locates at the position where the values of the two lowest
quasiparticle eigenenergies E1 and E2 in a soliton state just
touch zero.

FIG. 1. The two lowest eigenenergies E1 and E2 of quasiparti-
cles of a soliton state in a Raman-type SOC Fermi superfluid. The
interaction strength γ = π , with recoil momentum kR = 0.75kF . The
critical Zeeman field from the BCS superfluid to the topological one
is around hc 
 εF , across which E1 and E2 touch zero and the system
experiences a phase transition from a BCS superfluid to a topological
superfluid.

C. Phase-imprinting strategy

Experimentally, solitons can be produced by a phase-
imprinting technique which can transform the system from
the ground state G into the soliton state S (or the reverse).
In this process, a far-detuning laser beam is shined on the
system for a short time dt to transfer a certain phase jump
δφ to a chosen regime, i.e., the left part of the system in
our discussion. Then a soliton will be generated on the edge
between the left and right regimes [17,18]. Mathematically,
this process is defined by

FG ≡ S, (17)

where F is a phase-imprinting operator. Although it is a local
operator, it can globally change the parity property of the
system. Playing the role of the unitary transformation matrix,
F can make the parity of HBdG change as

F †HBdG[�]F = HBdG[� → �e−iI (x)], (18)

in which a local function I (x) ≡ �(−x)δφ is defined to trans-
fer a constant phase jump δφ to the chosen part of the system.
�(x) is the Heaviside step function. The matrix form of F can
be derived by the connection of the parity operator of both the
ground and soliton states,

PG = PSF. (19)

So once we know the parity operator PG/S in both the ground
and soliton states, we will immediately know the specific
expression of the phase-imprinting operator F .

Finally, a time-dependent version of the BdG equations

HBdG�η(t ) = i∂t�η(t ) (20)

can be used to check the dynamical process of this phase-
imprinting operation. It should be self-consistently solved
with Eqs. (14) and (15). Next, we will give the expression of
F in both cases without and with the SOC effect.
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III. PRODUCING SOLITONS IN A CONVENTIONAL
FERMI SUPERFLUID

We first discuss the case of a conventional Fermi superfluid
without a SOC effect. With Eq. (19), it is easy to find that the
phase-imprinting operator F reads

F =
[

1 0
0 −1

]
→

[
1 0
0 eiI (x)

]
, (21)

where 1 in the above matrix means keeping the parity of the
quasiparticle wave function uη, while −1 indicates that the
phase-imprinting operation should be carried out to change
the parity of vη: function eiI (x) shows the results that a phase
jump δφ is transferred to the quasiparticle wave function vη.
Specifically, δφ = π makes eiI (x) = −�(−x), which is just
the case in which we generate a dark soliton from the ground
state. This eiI (x) will vary the parity of vη from an even parity
to an odd one. The phase-imprinting operator F will transform
the quasiparticle wave functions following

uη(x, t + dt ) = uη(x, t ),

vη(x, t + dt ) = eiI (x)vη(x, t ). (22)

Obviously, −F is also a possible candidate phase-imprinting
strategy, and it can produce the same results if we do a trans-
formation to uη but not to vη. The only difference between
these two operations is that the sign of the phase jump should
be different in order to generate the same soliton. This can be
easily understood from the expression of the order parameter
equation.

Next, a time-dependent simulation is used to check this
dynamical operation. Numerically, we take a box with length
kF L = 80 to hold the system. The lowest 120 standing-wave
bases are used to expand all quasiparticle wave functions, with
an energy cutoff Ec = 25εF . We have checked that a set of
harsher calculation parameters will not qualitatively change
our conclusions.

We first prepare a ground state and always carry out the
phase-imprinting operation at time tεF = 1. As shown in
Fig. 2, a stable dark soliton is clearly detected when trans-
ferring a phase jump δφ = π . In the middle of the system
where the soliton locates, the amplitude of the order parameter
is zero, the corresponding phase changes sign, and the phase
jump is fixed at π all the time. The generation of a soliton
is accompanied by the transportation of sound wave ripples,
which are induced by the density valley and Friedel oscilla-
tion. Besides a stationary soliton, it is known that the phase
jump δφ can be used to control the speed of a soliton [8,10];
a soliton can move by decreasing its phase jump δφ. The
faster the speed is, the smaller δφ is away from π . Following
the same phase-imprinting strategy, we can input the phase
jump δφ < π to the system by properly reducing the time
duration of the phase-imprinting process. For example, when
δφ = 0.9π , a gray soliton is generated successfully in Fig. 3.
The direction of the gray soliton is controlled by the sign of
the phase jump δφ, or the relative phase difference between
the left and right parts of the system. This gray soliton moves
towards left or right once we change the sign of the phase
jump, namely, δφ = −0.9π . Once the phase jump crosses
a critical value and hinders the existence of a stable gray

FIG. 2. The density n(x, t ), amplitude |�(x, t )|, and phase
φ(x, t ) of order parameter evolution of a 1D conventional BCS Fermi
superfluid. A stable soliton is shown in the middle by inputting a
δφ = π phase jump only to the left half of the quasiparticle wave
function vη. The system is transformed from a ground state into a
soliton state at time tεF = 1.

soliton, an unstable solitonlike product will be created and
immediately decay into sound waves.

This interesting experimental strategy shown in Eq. (22)
was first suggested by Sacha and Delande [21] and was
explained as a single-component phase-imprinting strategy
because only the function vη is changed. Here uη and vη

respectively denote the spin-up and spin-down quasiparticle
wave functions [26]. Physically, this single-component oper-
ation means that only spin-down atoms of Cooper pairs will
be influenced by the phase laser beam, while the spin-up ones
are not. Experimentally, an external potential, whose strength
I should be larger than the typical energy scale of the system to
avoid the influence of other terms in the Hamiltonian, operates
only on the spin-down component with a duration dt shorter
than any typical timescale of the system. By controlling the

FIG. 3. Same physical quantities as in Fig. 2 in the 1D conven-
tional BCS Fermi superfluid. A left-moving gray soliton is generated
at time tεF = 1 in the middle by inputting a phase jump δφ = 0.9π

to only the left half of the quasiparticle wave function vη.
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FIG. 4. Same physical quantities as in Fig. 2 in the 1D conven-
tional BCS Fermi superfluid. Two dark solitons located at kF x =
±10 are generated by inputting a phase jump δφ = π to uη in the
regime kF x < 10 and another phase jump δφ = π to vη in the regime
kF x < −10.

external potential strength and its duration, we can input a
certain phase jump Idt = δφ to the system. To our knowledge,
the experimental realization of the single-component opera-
tion in a Fermi superfluid is still not realized in the Fermi
soliton experiment. Experimentally, this single-component
strategy can potentially be realized by a tune-out wavelength
technique [27,28]. Currently, the green laser beam used by the
Massachusetts Institute of Technology (MIT) group is a dipole
potential which transfers phase variation to both spin compo-
nents [18]. This operation can be understood as two atoms in a
Cooper pair both absorbing this phase jump δφ and varies the
parity properties of both quasiparticle wave functions, uη and
vη. So here we call this operation a two-component operation.

Next, we will introduce the effect of the two-component
operation. We first consider transferring a phase jump δφ = π

to vη at position kF x < −10 and another phase jump δφ = π

to uη at kF x < 10. As shown in Fig. 4, two dark solitons are
successfully detected at kF x = ±10, which are just the posi-
tions where phases of uη and vη jump, respectively. Then we
consider the situation of transferring different phase jumps δφ

to both uη and vη at the same position kF x = 0. For example,
we transfer phase jump δφ = 0.95π to uη and phase jump
δφ = 0.9π to vη. These two values of phase jumps are not
too small and can support a stable gray soliton. The results
are displayed in Fig. 5, where two gray solitons with different
velocities (different slopes) are detected. The left gray soliton
has the same speed as the one in Fig. 3 since the same phase
jump δφ = 0.9π is transferred to vη (the same spin compo-
nent). The velocity of the right gray soliton is smaller than
that of the left one due to its larger amplitude of the phase
jump. The results of both Figs. 4 and 5 indicate that operating
on both spin components (uη and vη) at the same time means
the generation of two solitons. The different moving direc-
tions cause the two gray solitons to not have enough time to
collide with each other. So the effect of this two-component
operation can be understood as the combination effect when
the single-component operations of each spin component are
done separately.

FIG. 5. Same physical quantities as in Fig. 2 in the 1D conven-
tional BCS Fermi superfluid. Two gray solitons with different speeds
are generated by inputting a phase jump δφ = 0.95π to uη and phase
jump δφ = 0.9π to vη at time tεF = 1.

What about the case in which we transfer phase jump
δφ = π to both spin components at the same position, i.e.,
kF x < 0? This operation is similar to what is carried out in the
MIT experiment. As shown in Fig. 6, instead of obtaining two
overlapping stationary dark solitons, we observe two separate
moving gray solitons. The strange dynamical behavior here is
due to the collision of two solitons [9]. The whole dynamical
process can be understood as follows: initially transferring
phase jump δφ = π to both spin components produces two
overlapping stationary solitons with zero velocity, which al-
lows them to have enough time to collide with each other. The
inelastic collision induces solitons to lose energy and obtain a
velocity to avoid sharing the same spatial location and finally
makes solitons evolve into gray solitons. We have checked
that the final velocity of solitons here is influenced by the
interaction strength γ . A bigger interaction strength γ will
generate faster gray solitons.

FIG. 6. Same physical quantities as in Fig. 2 in the 1D conven-
tional BCS Fermi superfluid. A phase jump δφ = π is transferred
to both uη and vη in the regime kF x < 0; the interplay of two dark
solitons makes them lose energy and decay into gray solitons.
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To end this section, let us consider the special case of
transferring a phase jump δφ = −π/2 to uη and another phase
jump δφ = π/2 to vη at kF x < 0. Initially, this operation can
induce an odd-parity symmetry of �(x), which looks like the
requirements of a stable dark soliton. However, based on our
above discussion, it is not difficult to see that this is impossi-
ble. Usually, |δφ| = π/2 means a very small phase jump, in
which solitons have already decayed into sound waves. Also,
the same value but different sign of the phase jump means
the generation of two overlapping solitons whose inelastic
collision will make them lose energy and speed up their de-
cay process. The discussion above indicates that the parity
requirements of uη and vη are a sufficient condition to obtain
a ground state or soliton state, while the parity requirements
of �(x) are just a necessary condition.

IV. PRODUCING SOLITONS IN A SOC
FERMI SUPERFLUID

Now we discuss the dynamical generation of a soliton in a
Raman-type SOC Fermi superfluid at different Zeeman mag-
netic fields h. With the parity operators of both the ground and
soliton states in Eq. (16) and following a derivation similar
to Eq. (19), it is also easy to find that the phase-imprinting
operator F of the SOC Fermi superfluid should take the
expression

F =

⎡⎢⎣1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎦ →

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 eiI (x) 0
0 0 0 eiI (x)

⎤⎥⎥⎦.

(23)

This expression indicates that a soliton can be produced by
transferring a phase jump δφ to quasiparticle wave functions
v↑η and v↓η of the ground state while retaining the parity of the
other quasiparticle wave functions, u↑η and u↓η. Specifically,
phase jump δφ = π makes eiI (x) = −�(−x); then we can
generate a dark soliton from the ground state. The transfor-
mation of quasiparticle wave functions F�η reads

u↑η(x, t + dt ) = u↑η(x, t ),

u↓η(x, t + dt ) = u↓η(x, t ),

v↑η(x, t + dt ) = eiI (x)v↑η(x, t ),

v↓η(x, t + dt ) = eiI (x)v↓η(x, t ). (24)

Next, following this phase-imprinting operation, we will use
time-dependent BdG equations to investigate the dynamical
generation of a soliton in both a BCS superfluid and a topo-
logical superfluid. Numerically, we take a box with length
kF L = 120 to hold the system. The lowest 150 standing-wave
bases are used to expand all quasiparticle wave functions, with
an energy cutoff Ec = 25εF . We have checked that a set of
harsher calculation parameters will not qualitatively change
our conclusions. We use the same physical parameters as in
Fig. 1. Here we just discuss the generation of a dark soliton
with phase jump δφ = π . Before introducing the physical
meaning of Eq. (24), let us check its validity.

We initially prepare a ground state and then shine a phase-
imprinting laser beam on the system at time tεF = 1. In the

FIG. 7. Same physical quantities as in Fig. 2 in the Raman-type
SOC Fermi superfluid in the BCS state (h = 0.3εF ). With the phase-
imprinting operation described by Eq. (24), the system is transformed
from a ground state into a soliton state at time tεF = 1.

BCS superfluid with a Zeeman magnetic field h = 0.3εF , a
dark soliton is successfully created in the middle of Fig. 7.
A density valley and a zero mode of the order parameter are
both clearly detected, with which we find the location of the
soliton. When time goes on, the soliton is stable, and the
amplitude of its order parameter is kept to zero, while the
phase jump is fixed to π all the time. In this process, some
accompanying density stripes are also generated because the
generation of a density valley will push some particles away
from the soliton. Also, our operation does not simulate ex-
actly the Friedel oscillation. This operation brings some extra
energy to the system, which has to be released in the form
of sound waves. Inversely, if we initially prepare a soliton
state and repeat the same operation on the system, as shown in
Fig. 8, we can also destroy a soliton, in the process of which
some accompanying density sound waves are also produced.

FIG. 8. Same physical quantities as in Fig. 2 in the Raman-type
SOC Fermi superfluid in the BCS state (h = 0.3εF ). With the phase-
imprinting operation described by Eq. (24), the system is transformed
from a soliton state into a ground state at time tεF = 1.
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FIG. 9. Same physical quantities as in Fig. 2 in the Raman-type
SOC Fermi superfluid in the topological state (h = 1.1εF ). With
the phase-imprinting operation described by Eq. (24), the system is
transformed from a ground state into a Majorana soliton state at time
tεF = 1.

At Zeeman magnetic field h = 1.1εF , the system becomes
a topological superfluid. Different from the soliton in a BCS
superfluid, there is no density valley in a Majorana soliton
[13,14]. In fact, a Majorana soliton is very special and can
move while fixing the value of the phase jump to π [15]. The
location of a Majorana soliton can be detected by its zero
amplitude of the order parameter or the transition position
of the phase of the order parameter. In Fig. 9, our phase-
imprinting operation successfully creates a Majorana soliton
in the middle, across which there is a constant phase jump
δφ = π . Furthermore, some other accompanying Majorana
solitons are generated by the Friedel oscillation, transported
towards both the left and right, because the motion of a Majo-
rana soliton does not need to vary the phase jump. However,
a Majorana soliton has a critical speed over which it will
be unstable [15]. This instability is the reason why, as time
goes on, these Majorana solitons will gradually decay into
sound wave ripples. Finally, only the middle Majorana soliton
produced by our phase-imprinting strategy is left. Inversely,
when we start from a Majorana soliton state and repeat the
same phase-imprinting operation on the system, as displayed
in Fig. 10, the middle Majorana soliton can also be destroyed,
while the accompanying Majorana soliton is still generated
and decays into sound waves.

In summary, the phase-imprinting strategy in Eq. (24) can
produce and destroy a soliton successfully in both BCS and
topological superfluids. In fact, reducing the phase jump can
also help to control the speed of the soliton, allowing us to
generate a gray soliton in BCS state. In the topological state,
however, how to control the speed of a Majorana soliton is an
interesting, but unsolved, question which needs more research
attention.

V. PHYSICAL IMPLICATION OF THE OPERATION F

Now we discuss the physical meaning of the phase-
imprinting operation in Eq. (24) and theoretically introduce
a two-step operation to realize this operation. Since the spin
indices of the quasiparticle wave function in Eq. (24) have

FIG. 10. Same physical quantities as in Fig. 2 in the Raman-type
SOC Fermi superfluid in the topological state (h = 1.1εF ). With
the phase-imprinting operation described by Eq. (24), the system is
transformed from a Majorana soliton state into a ground state at time
tεF = 1.

lost their original physics, it is better to explain the principle
of operation with the Hamiltonian and wave function after
only the first local gauge transformation [Eq. (8)], where the
spin indices keep their original physics. We obtain the BdG
Hamiltonian

H̃BdG ≡

⎡⎢⎢⎣
Hs + λk̂x −h 0 −�̃

−h Hs − λk̂x �̃ 0
0 �̃∗ −Hs + λk̂x h

−�̃∗ 0 h −Hs − λk̂x

⎤⎥⎥⎦ (25)

in the mean-field frame after a similar Bogoliubov transforma-
tion ψ̃σ (x) = ∑

η [̃uση(x)cη + ṽ∗
ση(x)c†

η] to ψ̃↑ and ψ̃↓. With
the second unitary transformation in Eq. (9), it is easy to get
the relation of quasiparticle wave functions after only one and
two unitary transformations,⎡⎢⎣ũ↑η

ũ↓η

ṽ↑η

ṽ↓η

⎤⎥⎦ = 1√
2

⎡⎢⎣1 −i 0 0
1 i 0 0
0 0 1 i
0 0 1 −i

⎤⎥⎦
⎡⎢⎣u↑η

u↓η

v↑η

v↓η

⎤⎥⎦, (26)

with which we find the phase-imprinting strategy in Eq. (24)
is mathematically equivalent to

ũ↑η(x, t + dt ) = ũ↑η(x, t ),

ũ↓η(x, t + dt ) = ũ↓η(x, t ),

ṽ↑η(x, t + dt ) = eiI (x)ṽ↑η(x, t ),

ṽ↓η(x, t + dt ) = eiI (x)ṽ↓η(x, t ). (27)

Equations (26) and (27) clearly indicate that the phase-
imprinting operation should be carried out on both quasipar-
ticle wave functions ṽ↑η and ṽ↓η, which means transferring
the phase jump to both spin components. This two-component
operation is different from the single-component operation in
a conventional Fermi superfluid. And this operation makes
H̃BdG exactly meet the requirement in Eq. (18).
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FIG. 11. Same physical quantities as in Fig. 2 in the Raman-
type SOC Fermi superfluid. This dynamical simulation with only
a single-component phase-imprinting strategy F1 fails to produce a
stable soliton in the BCS state (h = 0.3εF ).

Physically, the realization of the phase-imprinting opera-
tion F mentioned above requires a two-step operation to tune
the Hamiltonian. Mathematically, we denote this process by
the equation F = F2F1. The first operation, F1, is the same
single-component operation which has been discussed in the
conventional Fermi superfluid, and the second operator, F2, is
related to proper control of the Zeeman magnetic field h. In
the Raman-type SOC Fermi superfluid, the expression of the
single-component operation F1 is

F1 =

⎡⎢⎢⎣
e−iI (x) 0 0 0

0 1 0 0
0 0 eiI (x) 0
0 0 0 1

⎤⎥⎥⎦, (28)

where a phase jump −δφ is transferred to u↑η, while δφ

transfers to v↑η, which can be realized by a common potential
of spin-up atoms. However, this operation itself transforms
H̃BdG as

F †
1 H̃BdGF1

=

⎡⎢⎢⎢⎢⎣
Hs + λk̂x −heiI (x) 0 −�̃eiI (x)

−he−iI (x) Hs − λk̂x �̃eiI (x) 0

0 �̃∗e−iI (x) −Hs + λk̂x he−iI (x)

−�̃∗e−iI (x) 0 heiI (x) −Hs − λk̂x

⎤⎥⎥⎥⎥⎦, (29)

which fails to meet the requirement shown in Eq. (18) with
some phase variations e±iI (x) brought alongside the order pa-
rameter �̃. As shown by the time-dependent simulation in
Figs. 11 and 12, this single-component operation F1 fails to
generate a stable dark soliton in both the BCS superfluid and
topological superfluid when δφ = π . The signal in the BCS
superfluid bends like a snake and presents almost no obvious
signal of a Majorana soliton in the topological superfluid. In

FIG. 12. Same physical quantities as in Fig. 2 in the Raman-
type SOC Fermi superfluid. This dynamical simulation with only
a single-component phase-imprinting strategy F1 fails to produce a
stable soliton in the topological state (h = 1.1εF ).

order to cancel the influence of the Zeeman magnetic field h,
the second operation, F2,

F2 =

⎡⎢⎢⎣
eiI (x) 0 0 0

0 1 0 0
0 0 1 0
0 0 0 eiI (x)

⎤⎥⎥⎦, (30)

is carried out and makes H̃BdG satisfy

F †
2 H̃BdGF2

=

⎡⎢⎢⎣
Hs + λk̂x −he−iI (x) 0 −�̃

−heiI (x) Hs − λk̂x �̃ 0
0 �̃∗ −Hs + λk̂x heiI (x)

−�̃∗ 0 he−iI (x) −Hs − λk̂x

⎤⎥⎥⎦,

(31)

which can help to cancel the phase variation alongside the
order parameter �̃ and its conjugate. Operation F2 can be
realized by utilizing the SOC term in the Hamiltonian to
transfer the phase jump to the effective Zeeman magnetic field
h: during the process of annihilating a spin-down atom and
generating a spin-up one, a phase jump −δφ is transferred
to h; inversely, annihilating a spin-up atom and generating a
spin-down one, a phase jump δφ is transferred to h. In this
process, the Hermiticity of the Hamiltonian is satisfied. As a
special case, one just needs to change the sign of the Zeeman
magnetic field h in the left half during the phase-imprinting
process to produce a stable dark soliton. The effect of these
two operations together is just the phase-imprinting operation
we need to produce a stable soliton in the Raman-type SOC
Fermi superfluid.

VI. CONCLUSIONS

In summary, we theoretically generalized a systematic lan-
guage to describe the phase-imprinting operation based on
parity operators of both ground and soliton states which can
be used to create a stable soliton in a one-dimensional Raman-
type spin-orbit-coupled Fermi superfluid. The physical
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implication of this operation in spin-orbit-coupled a Fermi
superfluid was also discussed. Based on time-dependent sim-
ulation of Bogoliubov–de Gennes equations, we found our
suggestions can produce not only a stable dark or gray soliton
by controlling the phase jump to the system in a conven-
tional Fermi superfluid but also a stable dark soliton in both
a BCS superfluid and a topological superfluid. Although all
simulations were carried out with a mean-field theory whose
prediction is often quantitatively inaccurate in low dimen-
sions, we expect Bogoliubov–de Gennes equations could
provide a qualitatively correct result. All discussions were
limited to one dimension with zero temperature; the same

idea can be generalized to other higher dimensions or different
systems.
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