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We theoretically investigate the thermodynamic stability of a normal-state Bose-Fermi mixture, with a tunable
Bose-Fermi pairing interaction −UBF < 0 associated with a heteronuclear Feshbach resonance, as well as a weak
repulsive Bose-Bose interaction UBB � 0. Including strong heteropairing fluctuations associated with the former
interaction within the self-consistent T -matrix approximation, as well as the latter within the mean-field level,
we calculate the compressibility matrix, to assess the stability of this system against density fluctuations. In
the weak- and the intermediate-coupling regimes with respect to −UBF, we show that an effective attractive
interaction between bosons mediated by density fluctuations in the Fermi component makes the system unstable
below a certain temperature Tclp (leading to density collapse). When UBB = 0, Tclp is always higher than
the Bose-Einstein condensation (BEC) temperature Tc. When UBB > 0, the density collapse is suppressed,
and the BEC transition becomes possible. It is also suppressed by the formation of tightly bound Bose-Fermi
molecules when the heteropairing interaction −UBF is strong; however, since the system may be viewed as
a molecular Fermi gas in this case, the BEC transition does not also occur. Since quantum gases involving
Bose atoms are known to be sensitive to interparticle correlations, our results would be useful for the study of
many-body properties of a Bose-Fermi mixture in a stable manner, without facing the unwanted density collapse.
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I. INTRODUCTION

Recently, Bose-Fermi mixtures have attracted much at-
tention in cold-atom physics [1–7]. Since one can tune the
strength of a Bose-Fermi pairing interaction by adjusting
the threshold energy of a heteronuclear Feshbach resonance
[8], strong-coupling properties of this gas mixture have been
studied [9–13]. In addition, tuning of an effective Bose-Bose
(Fermi-Fermi) interaction mediated by a Fermi (Bose) com-
ponent has also been discussed [14–17]. As an interesting
possibility, a non-s-wave Fermi superfluid induced by such
a boson-mediated pairing interaction has recently been pro-
posed [18–20].

Bose-Fermi mixtures have also been discussed in other
research fields, e.g., 3He-4He mixtures [21–23], as well as
a high-density QCD matter [24] [where the system is re-
garded as a mixture of bound diquarks (bosons) and unpaired
quarks (fermions)]. In condensed matter physics, as a possible
route to reach high-temperature superconductivity, a nanode-
vice consisting of an n-doped semiconductor (electron gas)
immersed in an exciton-polariton Bose-Einstein condensate
(bosons) has theoretically been proposed [25–27]. Since a
Bose-Fermi mixture in cold-atom physics is simple and highly
tunable, this dilute gas system is expected to be a useful quan-
tum simulator [28] for the study of these more complicated
many-body quantum systems.

In considering a Bose-Fermi mixture with a heteronuclear
Feshbach resonance, besides strong-coupling effects caused
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by a Feshbach-induced tunable interaction, thermodynamic
stability is also a crucial issue [16,29–34]. Indeed, the den-
sity collapse of a gas mixture of Bose and Fermi atoms into
the trap center has experimentally been reported [29–32]. To
simply understand this instability, it would be helpful to recall
that a single-component Bose gas with an attractive interac-
tion is unstable [35–39]. In the same manner, a Bose-Fermi
mixture may also become unstable by an effective attractive
Bose-Bose interaction mediated by Fermi atoms [35,40].

In this paper, we theoretically investigate a Bose-Fermi
mixture with a tunable Bose-Fermi pairing interaction asso-
ciated with a heteronuclear Feshbach resonance. To include
strong heteropairing fluctuations caused by the tunable Bose-
Fermi attraction, we extend the self-consistent T -matrix ap-
proximation (SCTMA) developed for two-component Fermi
systems [41–43] to the case where one of the two Fermi
components is replaced by bosons. We briefly note that, in
cold Fermi gas physics, the SCTMA has been used [44] to
study BCS (Bardeen-Cooper-Schrieffer)–BEC (Bose-Einstein
condensation) crossover behavior [45–51] of 40K [52] and 6Li
[53–55] Fermi gases. In this paper, we employ this strong-
coupling theory to evaluate the compressibility matrix of a
Bose-Fermi mixture, to unifiedly examine the thermodynamic
stability against density fluctuations from the weak- to the
strong-coupling regime. In particular, we focus on how an
effective Bose-Bose attractive interaction mediated by density
fluctuations of fermions makes the system unstable and how
this instability is suppressed by strong-coupling effects, as
well as a direct Bose-Bose repulsion.

The stability of a Bose-Fermi mixture has been examined
by many researchers by various methods: References [56–60]
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discuss this problem within the mean-field approximation.
Reference [61] goes beyond the mean-field level to include
many-body effects, although the validity is still restricted to
the weak-coupling regime. The stability across a Feshbach
resonance is examined by a variational method in Ref. [62],
which is, however, unable to treat the strong-coupling regime
(where tightly bound Bose-Fermi molecules dominate over
system properties). Regarding this, we emphasize that the
SCTMA has the advantage that it can cover the weak- to
the strong-coupling regime. Of course, the SCTMA also still
has room for improvement. In this paper, we also assess this
approach for future studies.

In this paper, we assume a uniform gas, for simplic-
ity. We briefly note that the effects of a harmonic trap
have been examined in Refs. [57–59], where the critical
boson number (above which the system becomes unstable)
has been discussed by treating the Bose (Fermi) compo-
nent within the Gross-Pitaevskii equation (Thomas-Fermi
approximation).

This paper is organized as follows: In Sec. II, we explain
our formulation. In Sec. III, we discuss how an effective
Bose-Bose interaction mediated by fermions makes the sys-
tem unstable at various strengths of a Bose-Fermi pairing
interaction. We consider the effects of a direct Bose-Bose
repulsion on this instability in Sec. IV, to clarify the condi-
tion for the realization of BEC without facing the unwanted
density collapse. Throughout this paper, we set h̄ = kB = 1,
and the system volume V is taken to be unity, for
simplicity.

II. FORMULATION

We consider a gas mixture of single-component Bose
atoms and single-component Fermi atoms, described by the
Hamiltonian

H =
∑

p

[
ξF

p f †
p fp + ξB

p b†
pbp

] − UBF

×
∑
p,p′,q

f †
p+ q

2
b†

−p+ q
2
b−p′+ q

2
fp′+ q

2

+ UBB

2

∑
p,p′,q

b†
p+ q

2
b†

−p+ q
2
b−p′+ q

2
bp′+ q

2
. (1)

Here, b†
p ( f †

p ) is the creation operator of a Bose (Fermi) atom
with momentum p. ξα=B,F

p = p2/(2mα ) − μα is the kinetic
energy of the α component, measured from the chemical po-
tential μα (where mα is an atomic mass). In this paper, we only
deal with the mass-balanced (mF = mB ≡ m) and population-
balanced (NB = NF ≡ N) case, for simplicity (where NB and
NF are the numbers of Bose and Fermi atoms, respectively).
−UBF(< 0) is an attractive interaction between Bose and
Fermi atoms, which is assumed to be tunable by adjusting the
threshold energy of a heteronuclear Feshbach resonance. As
usual, we measure the strength of this tunable interaction in
terms of the Bose-Fermi s-wave scattering length aBF, given
by

4πaBF

m
= − UBF

1 − UBF
∑pc

p
m
p2

, (2)

(a)

(b) +

+=

=

=

=

+
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FIG. 1. Self-energy corrections considered in this paper.
(a) Fermi component �F. The particle-particle scattering matrix �BF

describes heteropairing fluctuations associated with the Bose-Fermi
attractive interaction −UBF(<0) (dashed lines). GF and GB represent
the dressed single-particle Fermi and Bose Green’s functions,
respectively. (b) Bose component �B = �BF

B + �BB
B , consisting of

the contribution from heteropairing fluctuations (�BF
B ) and that from

a weak Bose-Bose repulsion UBB(�0) (�BB
B ). For later convenience,

the symmetrized interaction (red squares) is introduced for UBB. In
this paper, we treat −UBF in SCTMA and UBB in the mean-field
level.

where pc is the high-momentum cutoff. In Eq. (1), UBB(�0)
is a (direct) repulsive interaction between Bose atoms, which
has nothing to do with an “effective” Bose-Bose interaction
mediated by Fermi atoms (which appears in later discussion).
We assume that it is weak and constant across a heteronuclear
Feshbach resonance. For later convenience, we introduce an-
other s-wave scattering length, aBB, for UBB, given by, in the
Born approximation [35],

4πaBB

m
= UBB. (3)

Of course, the s-wave interaction does not work between
Fermi atoms due to Pauli’s exclusion principle.

Effects of −UBF and UBB on single-particle properties of
the system can conveniently be incorporated into the self-
energies �α=B,F(p) in the Bose (α = B) and Fermi (α = F)
single-particle thermal Green’s functions,

Gα=B,F(p) = 1

iωα
n − ξα

p − �α (p)
. (4)

Here, we have introduced the abbreviated notation p =
(p, iωα

n ), where ωB
n and ωF

n are the boson and fermion Mat-
subara frequencies, respectively [63].

To include strong heteropairing fluctuations associated
with −UBF, we extend the SCTMA developed in the BCS-
BEC crossover physics of Fermi superfluids [41–44] to the
present case. An advantage of the SCTMA is that it is a
�-derivable approximation [43,64–66], which allows us to
calculate thermodynamic quantities in a consistent manner.
The SCTMA fermion self-energy �F associated with the
heteropairing interaction −UBF is diagrammatically drawn in
Fig. 1(a), which gives

�F(p) = −T
∑

q

�BF(q)GB(q − p). (5)
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Here, the particle-particle scattering matrix,

�BF(q) = −UBF

1 − UBF	BF(q)

= 1
m

4πaBF
+ [

	BF(q) − ∑pc
p

m
p2

] , (6)

physically describes heteropairing fluctuations. In Eq. (6),

	BF(q) = T
∑

k

GF(q − k)GB(k) (7)

is the Bose-Fermi pair-correlation function. The SCTMA bo-
son self-energy �B = �BF

B + �BB
B in Fig. 1(b) involves the

effects of (i) Bose-Fermi attraction −UBF (=�BF
B ) and (ii)

direct Bose-Bose repulsion UBB (=�BB
B ). The former is given

by

�BF
B (p) = T

∑
q

�BF(q)GF(q − p). (8)

For �BB
B , assuming that UBB is weak, we simply treat it within

the mean-field approximation, which gives

�BB
B = 8πaBB

m
N. (9)

We briefly note that the (non-self-consistent) T -matrix ap-
proximation (TMA) [10,11,67] is immediately obtained by
replacing all the dressed Green’s functions Gα in Fig. 1 with
the bare ones,

G0
α (p) = 1

iωα
n − ξα

p
. (10)

As shown later, the TMA is not suitable for our purpose, be-
cause it cannot capture the collapse of a Bose-Fermi mixture.

We determine the BEC phase transition temperature Tc

from the Hugenholtz-Pines theorem [68], which states that the
Bose excitations become gapless at Tc:

μB − �B(p = 0) = 0. (11)

We solve Eq. (11), together with the number equations,

NB = −T
∑

p

GB(p), (12)

NF = T
∑

p

GF(p), (13)

to self-consistently determine Tc and μα (Tc) for given inter-
action strengths. Above Tc, we only deal with the number
equations, (12) and (13), to determine μα (T > Tc).

Figure 2 shows the SCTMA solutions of μF(T � Tc) and
μB(T � Tc), when UBB = 0. As previously obtained within
a modified TMA scheme [12], Tc vanishes at (kFaBF)−1 �
0.9 [QCP (quantum critical point) in this figure], and the
BEC phase transition no longer occurs for stronger Bose-
Fermi interactions. We briefly note that, because we treat UBB

within the mean-field approximation [see Eq. (9)], μα=F,B

with UBB > 0 are immediately obtained from the results in
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FIG. 2. Calculated chemical potentials μα in the SCTMA in
the normal state of a Bose-Fermi mixture, above the BEC phase
transition temperature Tc. We set UBB = 0. (a1, a2) μF(T ). (b1, b2)
μB(T ). The strength of a Bose-Fermi interaction is measured in
terms of the inverse scattering length a−1

BF in Eq. (2), normalized by
the Fermi momentum kF = (6π 2N )1/3. εF = k2

F/(2m) and TF (=εF )
are the Fermi energy and the Fermi temperature, respectively. QCP
denotes the quantum critical point at which Tc vanishes. Due to
numerical difficulty, calculations in the strong-coupling region are
restricted to T � 0.1TF. We briefly note that the inclusion of nonzero
UBB only causes a constant shift of μB within the present mean-field
approximation.

Fig. 2 as {
μF(UBB > 0) = μF(UBB = 0),
μB(UBB > 0) = μB(UBB = 0) + �BB

B .
(14)

Using the SCTMA solutions, we evaluate the compressibil-
ity matrix κ̂ = {καβ} (α, β = F, B) [69] to assess the stability
of a Bose-Fermi mixture against density fluctuations. The
matrix elements καβ are given by

καβ = ∂Nα

∂μβ

. (15)

(a)

(b)

(c)
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FIG. 3. (a) Diagrammatic representation of compressibility ma-
trix κ̂ . �̂ is given in Eq. (18). T̂ (p, p′) is the 2×2 matrix four-point
vertex, which obeys the Bethe-Salpeter equation in (b). (c) Irre-
ducible four-point vertex T̂ 0 appearing in (b). The particle-particle
scattering matrix �BF is given in Fig. 1(a). Solid lines labeled “F”
(“B”) are the dressed Fermi (Bose) Green’s functions in Eq. (4).
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In this paper, we numerically evaluate Eq. (15). The system is
stable if and only if κ̂ is positive definite, that is, the following
conditions are satisfied:

{
κBB > 0 (or κFF > 0),
det[κ̂] > 0.

(16)

For the derivation of this stability condition, see
Appendix A.

We evaluate interaction corrections to the compressibility
matrix κ̂ , so as to be consistent with the self-energy correc-
tions �α=F,B in Fig. 1. This condition is immediately satisfied,
when we substitute the number equations, (12) and (13), into

Eq. (15). The result is

κ̂ =
(

κFF κFB

κBF κBB

)

= T
∑

p

�̂(p) − T 2
∑
p,p′

�̂(p)T̂ (p, p′)�̂(p′), (17)

which is diagrammatically described as Fig. 3(a). Here,

�̂(p) =
(−G2

F(p) 0
0 G2

B(p)

)
, (18)

and the 2×2 matrix four-point vertex T̂ (p, p′) obeys the
Bethe-Salpeter equation [70], which is shown diagrammati-
cally in Fig. 3(b). The expression of this equation is given by

T̂ (p, p′) = T̂ 0(p, p′) − T
∑

q

T̂ 0(p, q)�̂(q)T̂ (q, p′), (19)

where the irreducible part T̂ 0 has the form [see also Fig. 3(c)]

T̂0(p, p′) =
(

0 0
0 8πaBB

m

)
+

(
0 �BF(p + p′)

�BF(p + p′) 0

)

− T
∑

q

�2
BF(q)

(−GB(q − p)GB(q − p′) GB(q − p)GF(q − p′)
GF(q − p)GB(q − p′) −GF(q − p)GF(q − p′)

)
. (20)

We briefly note that the second and third terms in Eq. (20)
give, respectively, Maki-Thompson (MT)–type [71–73] and
Aslamazov-Larkin (AL)–type [73,74] fluctuation corrections
to κ̂ .

In the noninteracting case (UBF = UBB = 0), the first term
in Eq. (17) is reduced to the compressibility matrix in a mix-
ture of ideal Fermi gas and ideal Bose gas, given by

κ̂0 ≡
(

κ0
FF 0
0 κ0

BB

)
=

∑
p

(
�0

FF(ξF
p ) 0

0 �0
BB(ξB

p )

)
. (21)

Here,

�0
αα (ξα

p ) = ∂ fα (ξα
p )

∂μα

, (22)

where fF(ξF
p ) and fB(ξB

p ) are the Fermi and Bose distribution
functions, respectively. As expected, Eq. (21) satisfies both the
stability conditions in Eq. (16).

III. STABILITY OF A BOSE-FERMI MIXTURE
WHEN UBB = 0

A. Weak-coupling side: Simultaneous density collapse of Bose
and Fermi components

In this section, we set UBB = 0. Figures 4(a)–4(c) show the
compressibilities καβ (α, β = F, B) in this case, as functions
of the temperature and the strength (kFaBF)−1 of the Bose-
Fermi pairing interaction. All the compressibility components
καβ are found to monotonically increase with decreasing tem-
perature, to diverge at the same collapse temperature Tclp.
For clarity, the interaction dependence of Tclp is separately
shown in Fig. 4(d). This simultaneous instability of the Bose

and Fermi components is consistent with the density collapse
observed in 87Rb - 40K mixtures [29–32].

To clearly show this singular behavior of καβ at Tclp, as an
example, we extract the results at unitarity in Fig. 5(a): One
of the stability conditions κBB > 0 in Eq. (16) is found not to
be satisfied below Tclp, indicating the occurrence of density

FIG. 4. (a)–(c) Calculated compressibilities καβ in a Bose-Fermi
mixture, when UBB = 0. (a) κBB. (b) κFF. (c) κBF (= κFB). All these
compressibilities diverge at the same collapse temperature Tclp,
shown as the dashed line in the temperature-interaction plane. In the
shaded region between Tclp and the BEC phase transition temperature
Tc (dotted line), the compressibilities are negative, although we do
not explicitly show καβ there. For clarity, we show Tclp and Tc as
functions of the Bose-Fermi interaction strength [(kFaBF )−1] in (d).
T MF

clp is obtained from the condition that the denominator of Eq. (27)
vanishes.
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FIG. 5. Compressibilities καβ in the unitary limit [(kFaBF)−1= 0].
(a) N1/3

B aBB = 0 (UBB = 0). (b) N1/3
B aBB = 0.05. (c) N1/3

B aBB = 0.1.
Insets: det[κ̂]. We note that Tc is unaffected by UBB within the present
mean-field approximation.

collapse [35,56–62]. Above Tclp, the stability conditions in
Eq. (16) are all satisfied, so that the system is thermody-
namically stable there. The same results are also obtained
when (kFaBF)−1 �= 0, although we do not explicitly show the
results here. We also find from Fig. 4(d) that, with decreasing
temperature, the system always collapses before reaching the
BEC phase transition, at least when UBB = 0.

To grasp the background physics of this phenomenon at
Tclp, it is convenient to consider the weak-coupling regime
[(kFaBF)−1 <∼ − 1]. In this regime, since heteropairing fluctu-
ations are weak, one may safely approximate the Bose-Fermi
scattering matrix �BF(q) to the constant weak attractive inter-
action,

�̃BF ≡ 4πaBF

m
(aBF < 0). (23)

The self-energies in Eqs. (5) and (8) are then reduced to the
mean-field ones,

�MF
α = �̃BFN−α, (24)

where −α means the opposite component to α = F, B. (Note
that we are setting UBB = 0 here, so that �B = �BF

B + �BB
B =

�BF
B .)

Using Eqs. (4), (13), (15), and (24), we obtain the Bose
compressibility κBB as

κBB = ∂NB

∂μB
= T

∑
p

G2
B(p)

[
1 − ∂�MF

B

∂μB

]

= κ̃0
BB

[
1 − �̃BFκFB

]
. (25)

Here, κ̃0
BB is given by κ0

BB in Eq. (21) with the kinetic energy
ξB

p replaced by ξ̃B
p ≡ ξB

p + �MF
BB . The off-diagonal compress-

ibility κFB = ∂NF/∂μB in Eq. (25) is calculated in the same
manner,

κFB = −κ̃0
FF�̃BFκBB, (26)

where κ̃0
FF is obtained from κ0

FF in Eq. (21) by replacing ξF
p

with ξ̃F
p ≡ ξF

p + �MF
FF . Substituting Eq. (26) into Eq. (25), we

reach

κBB = κ̃0
BB

1 − �̃2
BFκ̃

0
FFκ̃

0
BB

. (27)

The Fermi compressibility κFF can also be evaluated in the
same manner, giving

κFF = κ̃0
FF + (

�̃BFκ̃
0
FF

)
κBB

(
�̃BFκ̃

0
FF

)
. (28)

In the weak-coupling regime, κ̃0
FF approaches a constant

value [� ρF(0) > 0, where ρF(0) is the Fermi single-particle
density of states at the Fermi level] far below the Fermi tem-
perature TF. On the other hand, because κ̃0

BB has the same form
as the compressibility in an ideal Bose gas, it diverges at the
BEC phase transition temperature Tc. Thus, κBB in Eq. (27)
always diverges at the temperature (≡ T MF

clp > Tc) at which the
denominator of this equation vanishes. We see in Eq. (28) that
this singularity is immediately brought to the Fermi compress-
ibility through the “Bose-Fermi coupling” �̃BF, leading to the
simultaneous density collapse.

We note that Eq. (27) has the same form as the compress-
ibility in a Bose gas with the attractive interaction,

V eff
BB ≡ −�̃2

BFκ̃
0
FF, (29)

in the random phase approximation (RPA). Recalling that a
Bose gas is unstable against an attractive interaction [35],
the present simultaneous collapse phenomenon is found also
to come from this attractive interaction V eff

BB . The fact that
Eq. (29) involves the Fermi compressibility κ̃0

FF means that it
is medicated by density fluctuations in the Fermi component.

We compare T MF
clp with Tclp in Fig. 4(d). Although the above

discussion is based on the simple approximation in Eq. (23),
the calculated T MF

clp agrees well with the SCTMA result in the
weak-coupling regime [(kFaBF)−1 <∼ − 1].

We emphasize that, in obtaining the above results about
the simultaneous density collapse, the fact that the SCTMA
uses the dressed Green’s functions Gα=F,B is crucial. Indeed,
as shown in Fig. 6, this phenomenon cannot be explained in
the TMA, where all the dressed Green’s functions in Fig. 1
are replaced by the bare ones G0

α [10,11,67]: The Fermi com-
pressibility κTMA

FF in the TMA does not diverge down to the
BEC phase transition temperature. In addition, the required
symmetry property,

κBF = ∂NB

∂μF
= − ∂2�

∂μF∂μB
= ∂NF

∂μB
= κFB, (30)

is broken in TMA, as shown in Fig. 6.
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FIG. 6. Calculated TMA compressibilities κTMA
αβ in the unitary

limit. T TMA
c is the BEC transition temperature in the TMA.

To explain the reason for these TMA results, we again
approximate �BF(q) to �̃BF in Eq. (23). We then find that the
key is that the particle number N−α in Eq. (24) [which equals∑

p f−α (ξ−α
p + �MF

−α ) in the SCTMA] is replaced by N0
−α =∑

p f−α (ξ−α
p ) in the TMA, because the bare Green’s functions

are used in the latter theory. Noting that ∂N0
α/∂μ−α = 0, we

immediately obtain κBB = κ̃0
BB and κFF = κ̃0

FF. That is, al-
though the Bose compressibility κBB still diverges at the BEC
phase transition (because κ̃0

BB → ∞), it does not affect the
Fermi compressibility κFF in the TMA case. In addition, when
N0

−α is used for N−α in Eq. (24), we also obtain the breakdown
of the symmetry property κBF �= κFB as

κBF = κ̃0
BB�̃BFκ

0
FF, (31)

κFB = κ0
BB�̃BFκ̃

0
FF �= κBF. (32)

However, the present SCTMA approach also has room for
improvement, e.g., with respect to Pauli’s exclusion principle:
To explain this, we again use the approximation in Eq. (23) to
rewrite the last term in Eq. (28) (≡�κFF) into the form of the
first-order perturbation in terms of the effective Fermi-Fermi
interaction,

Heff = 1

2

∑
p,p′,q

V eff
FF (q) f †

p+q f †
p′−q fp′ fp, (33)

as

�κFF = −
∑
p,p′

�0
FF

(
ξ̃F

p

)
V eff

FF (0)�0
FF

(
ξ̃F

p′
)
. (34)

Here, �0
FF is given in Eq. (22), and

V eff
FF (q) = −�̃

2
BFκ̃

0
BB(q)

1 − �̃2
BFκ̃

0
FF(q)κ̃0

BB(q)
, (35)

where

κ̃αα (q) =
∑

k

fα
(
ξ̃ α

k+q

) − fα
(
ξ̃ α

k

)
ξ̃ α

k+q − ξ̃ α
k

. (36)

Noting that Eq. (34) is diagrammatically described as
Fig. 7(a), it involves the unphysical case with p′ = p, which
corresponds to the scattering of two Fermi atoms in the same
quantum state. This serious problem is removed by taking into

FIG. 7. (a) Diagrammatic representation of the last term in
Eq. (28) (=�κFF) using the effective Fermi-Fermi interaction V eff

FF (q)
(wavy line) in Eq. (35). The solid line is the Fermi single-particle
Green’s function GF with the self-energy �MF

F in Eq. (24). (b) An-
other correction to κFF. It recovers Pauli’s exclusion principle when
Ṽ eff

FF (p − p′) = V eff
FF (p − p′).

account the other correction to κFF given in Fig. 7(b). This
modifies Eq. (34) as

�κFF = −
∑
p,p′

�0
FF

(
ξ̃F

p

)[
V eff

FF (0) − Ṽ eff
FF (p − p′)

]
�0

FF

(
ξ̃F

p′
)
.

(37)
The unwanted contribution at p′ = p (which contradicts
Pauli’s exclusion principle) is now canceled out by the ad-
ditional term when Ṽ eff

FF (p − p′) = V eff
FF (p − p′).

Regarding this problem, the SCTMA Fermi compressibil-
ity κFF involves the contribution being similar to Fig. 7(b),
which is obtained from the (11)-component of the irre-
ducible four-point vertex T̂ 0 shown in Fig. 3(c). However,
it is still insufficient to fully recover Pauli’s exclusion prin-
ciple. [This situation corresponds to Ṽ eff

FF (p − p′) �= V eff
FF (p −

p′) in the above approximate discussion.] Because the si-
multaneous density collapse is caused by the divergence of
V eff

FF (0) ∝ κBB, this incomplete cancellation at p′ = p means
that the diverging contribution to κF(T = Tclp) around p′ = p
is overestimated to some extent in the SCTMA. Thus, to
quantitatively discuss the density collapse in a Bose-Fermi
mixture, we need to improve the SCTMA, which remains our
future problem. We briefly note that a similar problem has also
been discussed in condensed matter physics (see Ref. [75]).

B. Strong-coupling side: Composite Fermi-molecular gas

We see in Fig. 4(d) that the collapse temperature Tclp in-
creases with increasing Bose-Fermi interaction strength on
the weak-coupling side (kFaBF)−1 <∼0. Because the mean-field
result T MF

clp also exhibits the same tendency in this regime,
this behavior is considered to originate from the increase in
the strength of the fermion-mediated Bose-Bose attractive
interaction, as a result of the enhancement of heteropairing
fluctuations described by �BF(q) [see V eff

BB in Eq. (29)].
However, Tclp gradually deviates from T MF

clp , as one passes
through the unitary limit, to eventually vanish at (kFaBF)−1 �
1.1, as shown in Fig. 4(d). This is due to the weakening of the
bosonic character of the system, as a result of the formation
of two-body composite molecular fermions on the strong-
coupling side [(kFaBF)−1 >∼0]. Indeed, estimating the number
NCF of (quasi-)stable molecular fermions using the method
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FIG. 8. The number NCF of (quasi-)stable Fermi molecules at Tclp.

discussed in Ref. [76], we find in Fig. 8 that Tclp vanishes
when the system becomes dominated by Fermi molecules
(NCF � N). (We outline how to estimate NCF in Appendix B.)
For the same reason, Tc also vanishes around the same interac-
tion strength [see Fig. 4(d)]. Thus, when (kFaBF)−1 >∼1.1, the
system may be viewed as a molecular Fermi gas, rather than
an atomic Bose-Fermi mixture.

Figure 9 shows the compressibilities καβ when
(kFaBF)−1 = 2 > 1.1 (where Tclp vanishes). In this strong-
coupling case, we see in inset (a) that all the compressibility
components are almost the same; however, as shown in inset
(b), det[κ̂] is still positive, at least within our numerical
accuracy. Together with καα > 0, the system in this regime
is concluded to be stable against density fluctuations. To
examine how the tightly bound Bose-Fermi molecules
contribute to the compressibility in Fig. 9, we recall that,
deep inside the strong-coupling regime [(kFaBF)−1 
 1],
the particle-particle scattering matrix �BF(q) in Eq. (6) is
reduced to the molecular Green’s function as [11,41] [see also
Fig. 10(a)]

�BF(q) � ZCFGCF(q), (38)

FIG. 9. Calculated SCTMA Bose compressibility κBB as a
function of the temperature, when (kFaBF )−1 = 2 (strong-coupling
regime). κCF and κ0

CF are given in Eqs. (43) and (44), respectively.
κCF+ shows the result in the case where the last term in Fig. 10(b) is
added to V eff

CF . Inset (a): κFF and κFB(=κBF ) as functions of the tem-
perature. Inset (b): det[κ̂].

FIG. 10. (a) Relation between the SCTMA particle-particle scat-
tering matrix �BF(q) and the molecular Green’s function GCF in
Eq. (39), deep inside the strong-coupling regime. The renormal-
ization factor ZCF is given below Eq. (38). (b) Diagrammatic
representation of κCF appearing in Eq. (41). The double wavy line
denotes GCF(q) in (a). (c) Effective intermolecular interaction V eff

CF

(filled square) mediated by unpaired atoms. While the first three
terms, V eff

CF1, V eff
CF2, and V eff

CF3, are involved in the SCTMA, the last one,
V eff

CF4, is not.

where ZCF = 8π/(m2aBF) and

GCF(q) = 1

iωF
n − ξCF

q
. (39)

In Eq. (39), ξCF
q = q2/(4m) − μCF is the molecular kinetic

energy, measured from the molecular chemical potential,

μCF = μF + μB + Eb. (40)

Here, Eb = 1/(ma2
BF) is the binding energy of a two-body

Bose-Fermi bound state. In this regime [(kFaBF)−1 
 1], the
compressibility matrix κ̂ in Eq. (17) is parametrized as

κ̂ = κCF

(
1 1
1 1

)
, (41)

where κCF is diagrammatically given in Fig. 10(b). Equation
(41) is consistent with inset (a) in Fig. 9, showing that all
the compressibilities καβ take almost the same value. We
briefly note that a similar “molecular mapping” has also been
discussed in the BEC regime of a two-component Fermi gas
(where composite molecules are bosons) [76,77].

In Fig. 10(b), V eff
CF is an effective intermolecular interaction

mediated by virtually dissociated Fermi and Bose atoms, as
shown in Fig. 10(c). Similar diagrams have also been dis-
cussed as the origin of an effective interaction between Cooper
pairs in the BEC regime of a two-component Fermi gas
[41,76–79]. In this paper, to analytically sum up the diagrams
in Fig. 10(b), we approximate V eff

CF (q, q′, θq,q′ , iωF
n , iωF

n′ ) in
this figure as

〈
V eff

CF

〉 = 1

2

∫
d cos(θq,q′ )V eff

CF

(
kCF

F , kCF
F , θq,q′ , 0, 0

)
. (42)

In Eq. (42), assuming that the region near the (molecular)
Fermi surface is important [80], we fix q and q′ the values at
the Fermi surface kCF

F = √
4mμCF [81] and take the angular

average with respect to the relative angle θq,q′ between q and
q′ over the Fermi surface. For Matsubara frequencies, we take
the analytic continuation iωF

n , iωF
n′ → ω + iδ and set ω = 0.
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These approximations enable us to sum up the diagrams in
Fig. 10(b), which gives the RPA-type expression

κCF = κ0
CF

1 + 〈
V eff

CF

〉
κ0

CF

, (43)

where

κ0
CF =

∑
q

∂ fF
(
ξCF

q

)
∂μCF

(44)

is the compressibility in a free molecular Fermi gas. Evalua-
tion of the averaged interaction 〈V eff

CF j〉 gives [82]

〈
V eff

CF

〉 =
3∑

j=1

〈
V eff

CF j

〉 � −4π × (0.84aBF)

2m
(<0). (45)

Figure 9 shows that κCF in Eq. (43) with the averaged inter-
action strength 〈V eff

CF j〉 in Eq. (45) well describes the SCTMA
result for κBB.

However, because the second term in Fig. 10(b) has the
same diagrammatic structure as �κFF in Fig. 7(a), if the
s-wave component unphysically remains in V eff

CF , it directly
affects κCF. Indeed, while the s-wave components of V eff

CF1 and
V eff

CF2 canceled each other out as

V eff
CF1|s wave = −V eff

CF2|s wave = 4πaBF

2m
, (46)

there is no “counter” term to remove the s-wave component of
V eff

CF3 in the SCTMA. In this sense, Pauli’s exclusion principle
is unphysically broken in κCF.

To overcome this problem, we need to go beyond the
SCTMA, to include the fourth term V eff

CF4 in Fig. 10(c) [which
plays the same role as Ṽ eff

FF in Fig. 7(b)]. Then Eq. (45) is
replaced by, at T = 0,

〈
V eff

CF

〉 =
4∑

j=1

〈
V eff

CF j

〉 � −4π (kCF
F aBF)2 × (0.5aBF)

2m
(<0).

(47)

This much weaker interaction than Eq. (45) comes from non-
s-wave components. When this improved version is used, the
compressibility becomes very close to that in the noninter-
acting case (κ0

CF), as shown in Fig. 9. Thus, although the
SCTMA can describe the stabilization of the system in the
strong-coupling regime due to the formation of Bose-Fermi
bound molecules, it again overestimates the magnitude of the
molecular compressibility, because of the insufficient treat-
ment of intermolecular interaction.

IV. EFFECTS OF BOSE-BOSE REPULSION UBB

ON THE THERMODYNAMIC STABILITY

Because the density collapse discussed in the previous sec-
tion comes from the effective Bose-Bose attractive interaction
mediated by the Fermi component, this singular phenomenon
is expected to be suppressed by the direct Bose-Bose repulsion
UBB = 4πaBB/m > 0. Indeed, Fig. 5 confirms this; that is, the
collapse temperature Tclp decreases with increasing interaction
strength N1/3

BB aBB. In Fig. 5(c), all the compressibilities καβ ,

FIG. 11. Calculated collapse temperature Tclp in the presence of
Bose-Bose repulsion UBB = 4πaBB/m > 0. When Tc < Tclp we plot
Tc with the dashed line.

as well as det[κ̂], are positive everywhere above Tc, indicat-
ing that the system is stabilized by the Bose-Bose repulsion
UBB > 0. Figure 11 shows Tclp and effects of the Bose-Bose
repulsion. One sees in this figure that, when N1/3

B aBB >∼0.11,
one can reach the BEC phase transition without suffering from
the density collapse in the whole coupling regime with respect
to the heteropairing interaction (kFaBF)−1.

The previous discussion using Eq. (23) is also applicable to
the present case, by replacing the mean-field Bose self-energy
in Eq. (24) with

�MF
B = �̃BFNF + 2UBBNB. (48)

Repeating the same discussion as below Eq. (24), one reaches

κ̂ (UBB > 0) = 1

1 + [
2UBB − �̃2

BFκ̃
0
FF

]
κ̃0

BB

×
(

κ̃0
F + 2UBBκ̃0

FFκ̃
0
BB −�̃BFκ̃

0
FFκ̃

0
BB

−�̃BFκ̃
0
FFκ̃

0
BB κ̃0

BB

)
. (49)

Equation (49) indicates that the compressibility matrix no
longer diverges when

2UBB − �̃BFκ̃
0
FF = 8πaBB

m
−

(
4πaBF

m

)2

κ0
FF > 0, (50)

which qualitatively explains the behavior of καβ in Fig. 5.
Comparing the standard RPA expression for the compressibil-
ity with κBB in Eq. (49), one finds that the stability condition in
Eq. (50) is equivalent to the realization of the situation that the
interaction between Bose atoms, 2UBB − �̃BFκ̃

0
FF, is repulsive.

While the stabilization of the Bose component is accompa-
nied by the sign change of the Bose-Bose interaction 2UBB −
�̃BFκ̃

0
FF, the Fermi component becomes stable somehow in

a different manner: The (11)-component of Eq. (49) can be
written as

κFF(UBB > 0) = κ̃0
FF

1 − �̃2
BFκ

RPA
BB κ̃0

FF

, (51)

where

κRPA
BB = κ̃0

B

1 + 2UBBκ̃0
B

. (52)

The RPA-type structure in Eq. (51) shows that the effective
interaction −�̃2

BFκ
RPA
BB between Fermi atoms is always attrac-

tive, irrespective of the magnitude of UBB � 0. Since κ̃0
BB
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FIG. 12. (a) Additional effective interaction V eff
CF5 between Fermi

molecules in the presence of Bose-Bose repulsion UBB. (b) Calcu-
lated SCTMA compressibility κBB in the strong-coupling regime
when (kFaBF )−1 = 2. Solid lines show κCF(UBB > 0) in Eq. (51).
Because the other components καβ are almost the same, we only
show κBB here.

monotonically increases with decreasing temperature to di-
verge at the BEC phase transition, the maximum value of κRPA

BB
in Eq. (52) equals 1/(2UBB). Thus, even when the stability
condition in Eq. (50) is satisfied, the Fermi-Fermi interaction,
−�̃2

BFκ
RPA
BB , is still attractive but is not strong enough to cause

the density collapse of the Fermi component.
In the strong-coupling regime where the system is dom-

inated by tightly bound Bose-Fermi molecules, the direct
Bose-Bose interaction UBB brings about the additional inter-
molecular interaction V eff

CF5 in Fig. 12(a) [83]. Evaluating this
diagram as done in Sec. III B, one finds it repulsive, having
the form

V eff
CF5 = 8πaBB

m
. (53)

Adding this to the averaged interaction 〈V eff
CF 〉 in Eq. (45), we

see in Fig. 12(b) that the resulting κCF in Eq. (43) agrees
well with the SCTMA compressibility in the strong-coupling
regime with UBB > 0. Thus, the system in this regime is again
found to be well described by a weakly interacting molecular
Fermi gas, although the present SCTMA overestimates effects
of the intermolecular interaction on the compressibility ma-
trix.

V. SUMMARY

To summarize, we have discussed the thermodynamic sta-
bility of a Bose-Fermi mixture in the normal state above Tc.
Including strong heteropairing fluctuations associated with a
tunable Bose-Fermi attractive interaction −UBF(< 0) within
the framework of the SCTMA, as well as a weak Bose-Bose
repulsion UBB(> 0) within the mean-field approximation, we

calculated the compressibility matrix κ̂ , consisting of καβ =
∂Nα/∂μβ (α, β = F, B). We then determined the collapse
temperature Tclp, below which the system is unstable against
density fluctuations, from the weak- to the strong-coupling
regime in terms of the Bose-Fermi pairing interaction.

When UBB = 0, we showed that Tclp is always higher than
the BEC phase transition temperature Tc. All the matrix el-
ements of κ̂ diverge at Tclp and become negative below this
temperature, indicating the simultaneous density collapse of
both the Bose and the Fermi components. As the origin of
this instability, we pointed out an effective Bose-Bose at-
tractive interaction mediated by density fluctuations in the
Fermi component. It makes the Bose component unstable,
and this singularity is immediately brought to the Fermi com-
ponent through a Bose-Fermi coupling associated with the
heteropairing interaction −UBF. We also clarified that this
density collapse does not occur when (kFaBF)−1 >∼1.1. In this
strong-coupling regime, most Bose and Fermi atoms form
tightly bound Fermi molecules, so that the system proper-
ties are close to those of a Fermi gas. Because of this, the
bosonic character of a Bose-Fermi mixture, as well as the
instability associated with the induced Bose-Bose attraction,
is suppressed.

When UBB > 0, the collapse temperature Tclp is suppressed
to eventually disappear when this repulsion is stronger than
the Bose-Bose attraction induced by density fluctuations in the
Fermi component. In this case, with decreasing temperature,
we can reach the BEC phase transition temperature Tc without
suffering from density collapse.

However, it is still unclear whether the BEC phase is stable
down to T = 0 or the density collapse occurs at a temperature
below Tc. Because we have only examined the normal state
in this paper, extension of the present approach to the BEC
phase below Tc is an exciting future challenge. In addition,
as clarified in this paper, the application of the SCTMA to
a Bose-Fermi mixture has room for improvement: In the
weak-coupling (strong-coupling) regime with respect to the
heteropairing interaction, the calculated Fermi atomic (molec-
ular) compressibility in the SCTMA contradicts with Pauli’s
exclusion principle, in the sense that it unphysically involves
the contribution from the double occupancy of fermions in
the same quantum state. Because this deficiency overesti-
mates the Fermi atomic compressibility in the weak-coupling
regime, as well as the Fermi molecular compressibility in the
strong-coupling regime, how to overcome this problem also
remains another future problem. Since the stabilization of a
Bose-Fermi mixture with a heteronuclear Feshbach resonance
is crucial for study of the strong-coupling properties of this
system, as well as for the realization of a stable BEC phase,
our results will contribute to the further development of this
research field.
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APPENDIX A: STABILITY CONDITIONS
FOR A BOSE-FERMI MIXTURE

The thermodynamic stability of the system at fixed Bose
and Fermi atomic numbers and temperature is conveniently
determined from the Helmholtz free-energy functional [60],

F (T, nα (r)) =
∫

dr f̃ (T, nα (r)), (A1)

where f̃ and nα=B,F(r) are the free-energy density and the den-
sity distribution in the α component, respectively. When we
introduce small density fluctuations δnα (r) = nα (r) − Nα/V
to a uniform system (with the initial density Nα/V ) and ex-
pand Eq. (A1) with respect to δnα (r), the first-order terms
are found to vanish due to the particle conservation, δNα =∫

drδnα (r) = 0. Retaining terms up to the second order, we
have

δ2F (T, nα (r)) ≡ F (T, Nα/V + δnα (r)) − F (T, Nα/V )

= 1

2

∫
dr(δnF(r) δnB(r))Ŵ

(
δnF(r)
δnB(r)

)
.

(A2)

Here,

Ŵ (T, Nα/V ) =

⎛
⎜⎜⎜⎝

∂2 f̃

∂n2
F

∂2 f̃

∂nB∂nF

∂2 f̃

∂nF∂nB

∂2 f̃

∂n2
B

⎞
⎟⎟⎟⎠

nα (r)=Nα/V

(A3)

is the Hessian matrix, which determines the thermodynamic
stability of a Bose-Fermi mixture [60–62].

The uniform system is stable if and only if the free en-
ergy F (T, Nα/V ) is minimum (δ2F < 0); that is, Ŵ must
be positive definite. Using thermodynamic identities (μα =
∂F/∂Nα), Eq. (A3) can be written as

Ŵ (T, Nα/V ) =

⎛
⎜⎜⎝

∂μF

∂nF

∂μF

∂nB
∂μB

∂nF

∂μB

∂nB

⎞
⎟⎟⎠

nα (r)=Nα/V

, (A4)

which just equals the inverse of compressibility matrix κ̂ in
Eq. (15). Substituting Ŵ = κ̂−1 into Eq. (A2), we have

δ2F = 1

2

∫
dr

[
κBB

det[κ̂]

[
δnF(r) − κFB

κBB
δnB(r)

]2

+ 1

κBB
δnB(r)2

]
. (A5)

Equation (A5) is always positive when κBB > 0 and det[κ̂] >

0, which give the stability conditions in Eq. (16).
In the same manner, Eq. (A5) is always negative when

κBB < 0 and det[κ̂] > 0. That is, when the compressibility
matrix κ̂ is negative definite, the system is unstable against
density fluctuations [δnF(r), δnB(r)].

APPENDIX B: ESTIMATION OF NCF

As given in Eq. (38), deep inside the strong-coupling
regime [(kFaBF)−1 
 1], the particle-particle scattering ma-
trix �BF(q) in Eq. (6) is reduced to the molecular Green’s
function. Although the simple relation in Eq. (38) is justi-
fied only in the strong-coupling limit where the molecular
dissociation no longer occurs, �BF(q) in the strong-coupling
regime still exhibits a quasipolar structure even away from
the strong-coupling limit. Using this similarity, one can con-
veniently determine the molecular excitation energy ωCF

q with
momentum q from the (quasi-)pole of the analytic continued
particle-particle scattering matrix, within the neglect of the
lifetime of molecule, as

0 = m

4πaBF
+ Re

[
	BF

(
q, iωF

n → ωCF
q + iδ

)] −
∑

p

m

p2
.

(B1)

Here, δ is an infinitesimally small positive number, and we
have neglected the imaginary part of 	BF(q, iωF

n → ωCF
q + iδ).

Then, simply treating the molecule as a free fermion, we
estimate the number NCF of Fermi molecules as

NCF = fF
(
ωCF

q

)
. (B2)
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