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Quantum boomerang effect: Beyond the standard Anderson model
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It was recently shown that wavepackets with a skewed momentum distribution exhibit a boomeranglike
dynamics in the Anderson model due to Anderson localization: after an initial ballistic motion, they make
a U-turn and eventually come back to their starting point. In this paper, we study the robustness of the
quantum boomerang effect in various kinds of disordered and dynamical systems: tight-binding models with
pseudorandom potentials, systems with band random Hamiltonians, and the kicked rotor. Our results show
that the boomerang effect persists in models with pseudorandom potentials. It is also present in the kicked
rotor, although in this case with a specific dependency on the initial state. On the other hand, we find that
random hopping processes inhibit any drift motion of the wavepacket and, consequently, the boomerang effect.
In particular, if the random nearest-neighbor hopping amplitudes have zero average, the wavepacket remains in
its initial position.
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I. INTRODUCTION

Anderson localization plays a key role in the physics of
disordered systems and inhomogeneous materials. In general
terms, any wave propagating in a random medium experiences
multiple scattering and localization occurs as a consequence
of the destructive interference between the scattered partial
waves. The interference mechanism underlying localization
explains why the phenomenon affects not only quantum parti-
cles [1] but any kind of wave propagating in a random medium
[2], including atomic [3,4], acoustic [5], and electromagnetic
waves [6,7].

The quantum “boomerang effect” constitutes a recent de-
velopment in the field of Anderson localization [8]. The
authors of Ref. [8] studied the dynamics of wavepackets in the
Anderson model. They considered a wavepacket with momen-
tum distribution peaked around a nonzero mean momentum
and found that, after an initial ballistic drift, the wavepacket
moves back to its initial position and eventually gets localized
there.

The purpose of this paper is to verify whether the
boomerang effect is an exclusive feature of the Anderson
model or, on the contrary, exists also in related physical
systems. More specifically, we numerically investigate three
classes of models: (i) Anderson-like models with pseudo-
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random potentials, (ii) tight-binding models with random
hopping amplitudes that connect the first b nearest neighbors,
and (iii) the quantum kicked rotor, a paradigm of quantum
chaos known to exhibit Anderson localization in momentum
space. Models of the first class have the same Schrödinger
equation as the Anderson model, but the site energies are
pseudorandom, rather than strictly random, variables. Hamil-
tonians of the second group are described by band random
matrices (BRMs) and constitute a natural generalization of the
tridiagonal Anderson model with purely diagonal disorder. As
for the kicked rotor, finally, it can be formally mapped onto a
tight-binding model with a band Hamiltonian and pseudoran-
dom site energies. These three kinds of models are selected to
shed light on the role played by three specific features of the
Anderson model, namely, the truly random nature of the site
energies, the deterministic character of hopping amplitudes,
and their short (actually, nearest-neighbor) range. Models of
the first and the third class are investigated to demonstrate that
the quantum boomerang effect survives when the potential is
pseudorandom. The band random matrices and kicked-rotor
models also allow us to explore the role of hopping processes
having a random character or extending beyond nearest neigh-
bors. While the long-range but deterministic hopping terms in
the kicked rotor do not suppress the boomerang dynamics of
the wavepacket, we find that random hopping amplitudes in
tight-binding models destroy it.

In detail, our first system is a tridiagonal “Anderson model”
with pseudorandom site energies, originally proposed in [9].
By varying a single parameter of this model, one can change
the spatial correlations of the site energies and drastically alter
the transport properties of the system, which can cross over
from metal to insulator, with an intermediate regime in which
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the system is not spatially homogeneous on average [10,11].
Our numerical simulations show that the boomerang effect
takes place in the insulating regime and even persists in the in-
termediate regime, though its properties are not universal and
depend on specific parameters of the pseudorandom disorder.

To evaluate the effect of off-diagonal disorder, we further
consider BRMs of the form proposed in [12], namely, ma-
trices with zero-average random elements in a central band
made up of 2b + 1 diagonals and vanishing elements Hi j = 0
for |i − j| > b. For this class of matrices we find that the
boomerang effect disappears: the wavepacket spreads before
eventually getting localized, but its center of mass does not
move. We also consider a variant of the previous model, in
which the random elements of the first subdiagonals have a
nonzero average. This corresponds to a Hamiltonian including
a nonzero Laplacian term in addition to the BRM component.
We find that the Laplacian term is essential for the existence of
the quantum boomerang effect, which survives as long as the
deterministic contribution to nearest-neighbor hopping dom-
inates over the off-diagonal random terms. When the width
of the band or the random hopping amplitudes are increased,
the off-diagonal disorder takes over and the boomerang effect
vanishes.

Our last benchmark system, the kicked rotor, can be
mapped onto the Anderson model with pseudorandom site
energies and nonrandom but long-range hopping, with the
effective band width being determined by the strength of
the kick potential [13,14]. In such a model, localization oc-
curs in momentum space, as confirmed by experiments with
cold atoms [15,16]. Our numerical analysis shows that the
the kicked rotor also exhibits the quantum boomerang effect.
Nevertheless, we find that the boomerang dynamics signifi-
cantly depends on the choice of the initial state, a phenomenon
without parallel in the Anderson model.

The paper is organized as follows. In Sec. II we summarize
the main results obtained in [8] for the boomerang effect in
the standard one-dimensional Anderson model. The Anderson
model with pseudorandom site energies is then analyzed in
Sec. III. Section IV is devoted to band random matrices, while
we discuss the boomerang effect in the kicked-rotor model in
Sec. V. Section VI concludes the paper.

II. THE BOOMERANG EFFECT IN
THE ANDERSON MODEL

The standard one-dimensional (1D) Anderson model is
defined by the Hamiltonian

H =
∞∑

n=−∞
[−J (|n〉〈n + 1| + |n〉〈n − 1|) + |n〉εn〈n|]. (1)

In Eq. (1), J is the hopping amplitude. The site energies εn are
independent, identically distributed random variables with a
box distribution:

p(ε) =
{

1/2W for − W � ε � W,

0 otherwise. (2)

Note that the average value of the energies vanishes, εn = 0,
while the variance of the disorder is

σ 2
ε = ε2

n = W 2

3
,

σε being the disorder strength. In the previous expressions,
as in the rest of this paper, we use a vinculum to denote the
ensemble average of a random variable, i.e.,

x =
∫

xp(x)dx.

In Ref. [8], the authors considered the time evolution in the
Anderson model, (1), of a Gaussian wavepacket,

ψ (xn, t = 0) = N exp

[
− x2

n

2σ 2
x (0)

+ ik0xn

]
, (3)

where xn = nd , d is the lattice spacing, and N is a normal-
ization constant [with N � d/

√
πσ 2

x (0) for σx(0) � d]. The
wavepacket, (3), has a momentum distribution which is also a
Gaussian, centered around k0 and of width σp(0) ∼ h̄/σx(0).
To guarantee that the dynamics in disorder is governed by a
well-defined energy, E � −2J cos(k0d ), Prat and coworkers
[8] considered wavepackets with a narrow momentum distri-
bution corresponding to relatively large values of σx(0). Let us
stress that the choice, (3), of a Gaussian wave function is here
a matter of practical convenience. In fact, the time evolution
of the first moment of the density distribution, which reveals
the boomerang effect discussed in this article, is independent
of the initial wavepacket shape [8].

In [8], it was found that the quantum evolution of the
wavepacket resembles that of a boomerang: after initially
moving away from the origin, the center of mass of the
wavepacket performs a U-turn and eventually returns to
its initial position. While its center of mass moves in this
boomeranglike fashion, the wavepacket spatially spreads in
an asymmetric fashion, with the symmetry being eventually
restored at long times when the dynamics is completely halted
by Anderson localization. In Ref. [8] it was also shown
that the drift and spreading of the wavepacket are connected
through the dynamical relationship

d

dt
〈x2(t )〉 = 2v0〈x(t )〉, (4)

where v0 is the mean wavepacket velocity, given by

v0 = 2Jd

h̄
sin(k0d ). (5)

In Eq. (4), the symbols 〈x(t )〉 and 〈x2(t )〉 stand for the first
two moments of the disorder-averaged density distribution
|ψ (xn, t )|2, i.e.,

〈x(t )〉 =
∑

n

xn|ψ (xn, t )|2,

〈x2(t )〉 =
∑

n

x2
n |ψ (xn, t )|2 = σ 2

x (t ).
(6)

The time evolution of the first two moments, (6), and of both
sides of Eq. (4) (dotted green curves) is shown in Fig. 1.
The numerical data in Fig. 1 were obtained for a disor-
der strength σε = J/

√
3 (corresponding to W = J) and for a

wavepacket of the form of (3) with k0d = 1.4, and σx(0) =
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FIG. 1. From top to bottom: wavepacket width σx =
√

〈x2〉,
wavepacket center of mass 〈x〉, and comparison of both sides of
Eq. (4) as functions of the rescaled time t/τ , with τ = h̄/J , for the
standard Anderson model (dashed green lines) and its pseudorandom
counterpart with γ = 3 (solid violet lines). The dot-dashed red curve
in the middle panel corresponds to the asymptotic expression (8),
while the horizontal black line marks the zero of the vertical axis.
In the lower panel the symbols (squares for the Anderson model
and crosses for the pseudorandom analog) correspond to the term
d〈x2〉/dt , while the solid lines represent the term 2v0〈x〉 (in units of
d2/τ ). The data were obtained by averaging over Nc = 2000 disorder
configurations. The error bars, not shown here, have an amplitude of
∼1 in each panel in the corresponding unit.

10d . The ensemble averages were performed over Nc =
2000 disorder realizations. Each realization corresponds to a
chain of Ns = 2000 sites. The kicked wavepacket, with ini-
tial position 〈x(0)〉 = x1000 = 0, is let to evolve according to
Hamiltonian (1).

To describe the temporal evolution of the center of mass, it
is convenient to introduce the mean scattering time

τ� = v0�,

where v0 is given by Eq. (5) while � is the mean free path,
which in the 1D model, (1), is equal to one-fourth of the
localization length �loc, i.e., � = �loc/4. The latter typically
controls the asymptotic spatial decay of the envelope of the
wave function and is defined as

�loc =
[

lim
N→∞

1

Nd

N∑
n=1

ln

∣∣∣∣ψ (xn+1)

ψ (xn)

∣∣∣∣
]−1

.

For weak disorder, the localization length can be com-
puted analytically [17,18]. For an eigenstate of energy E =
−2J cos(kd ) one has

�−1
loc = 1

d

〈ε2
n〉

8J2 sin2(kd )

[
1 +

∞∑
l=1

〈εnεn+l〉〈
ε2

n

〉 cos (2lkd )

]
. (7)

Note that, when disorder is uncorrelated, the term in brackets
on the right-hand side of Eq. (7) reduces to unity. As long as
the momentum distribution of the wavepacket is sufficiently
narrow, only momenta close to k � k0 contribute to the dy-
namics, so that the time evolution of the quantum boomerang
effect is essentially governed by the single time scale τ� =
�loc(k � k0)/4v0. Under this condition, a simple analytical
expression for the center-of-mass position 〈x(t )〉 was derived
in [8] in the limit of long times t � τ�, namely,

〈x(t )〉 � 64�
(τ�

t

)2
ln

t

4τ�

. (8)

Equation (8) matches well the result obtained with numerical
simulations, as can be seen in the central panel in Fig. 1, in
which the analytical expression, (8), is represented by the dot-
dashed red line.

Let us mention that, independently of the presence or
absence of the boomerang effect, the asymptotic extent of
the wavepacket depends on the initial width of the wave
function relative to the localization length: If σx(0) � �loc,
then σx(∞) ∼ �loc. In the opposite limit σx(0) � �loc, the
wavepacket width does not change significantly with time:
σx(∞) ∼ σx(0).

III. PSEUDORANDOM POTENTIALS

In this section, we analyze the boomerang effect in a vari-
ant of the Anderson model, (1), in which the random site
energies are replaced by pseudorandom variables. Models of
this kind appear naturally in the study of dynamical systems
like the kicked rotor [19] and, for this reason, were stud-
ied in [9–11]. Our purpose here is to establish whether the
boomerang effect survives when the site energies are pseudo-
random variables given by

εn = W cos φn, (9)
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with

φn = π
√

5nγ , (10)

with n > 1. Note that the sequence (9)–(10) has correlations
at any spatial distance and therefore it is totally different from
any random sequence with short-range correlations [8,20].
Site energies of the form of (9) have vanishing average εn = 0,
φn modulo 2π being uniformly distributed in the interval
[0, 2π ), and variance equal to ε2

n = W2/2. Here and in the
rest of this section, we use the overbar (. . . ) to denote the
average taken over a sequence of variables, i.e.,

xn = lim
N→∞

1

N

N∑
n=1

xn.

Extensive studies of the model, (1), with site energies, (9),
have shown that the extended or localized character of the
eigenstates depends crucially on the parameter γ in Eq. (10)
[9–11]. Specifically, all states are localized if γ � 2, while
there are extended states if 0 < γ < 1. The case γ = 1 cor-
responds to the Aubry-André model where a mobility edge is
expected as a function of W/J [21,22]. For the intermediate
range 1 < γ < 2 the potential has a slowly varying period
for large values of the site index n. In this regime the state
at the band center is delocalized, while the other states are
localized but with a longer localization length than for the
corresponding random model.

With the aim to compare the Anderson model with its
pseudorandom analog, we set W = W

√
2/3 in order to have

the same disorder strength for the two models. In the weak-
disorder limit this implies, in particular, the same value of the
mean free path. For our numerical calculations, we considered
finite chains of Ns = 2000 sites. For each chain, we let the
initial wavepacket, (3), evolve in time. We finally averaged
over Nc = 2000 different chains, obtained with a shift of the
site energies, (9). More specifically, we took site energies for
the ith chain of the form

ε(i)
n = W cos φ(i)

n

with

φ(i)
n = π

√
5[n + 10(i − 1)]γ . (11)

We show in Fig. 1 the numerical results obtained with this
model for γ = 3 (solid violet curves). We observe that the
width of the wavepacket and its center of mass evolve in time
exactly in the same way regardless of whether the site energies
are random or pseudorandom variables. This is fully consis-
tent with the conclusion reached in previous studies [9,13] that
for γ � 2 the eigenstates of the model, (1), localize in the
same way when the truly random site energies are replaced by
the variables, (9).

When γ = 1.4, on the other hand, we are in the inter-
mediate region 1 < γ < 2 and the random lattice has long
stretches of strongly correlated site energies while the eigen-
states are localized only over large spatial scales. We find
that, for γ = 1.4, the results can vary significantly from chain
to chain, depending on the value of the shift parameter i in
Eq. (11). This is illustrated by the plots in Fig. 2, where
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FIG. 2. From top to bottom: wavepacket width σx , wavepacket
center of mass 〈x〉, and comparison of both sides of Eq. (4) as
functions of the rescaled time t/τ , with τ = h̄/J for pseudorandom
energies with γ = 1.4 and i0 = 0 (light-salmon solid line), i0 =
20 000 (dashed blue line), and i0 = 30 000 (dot-dashed violet line).
In the bottom panel the symbols (circles for the case i0 = 0, crosses
for i0 = 20 000, and squares for i0 = 30 000) refer to d〈x2〉/dt ,
while the solid lines represent 2v0〈x〉. The data are averaged over
Nc = 2000 configurations. The error bars, not shown here, have an
amplitude of ∼1 in each panel in the corresponding unit.
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we show the data obtained for γ = 1.4 by averaging over
three groups of Nc = 2000 configurations. These configura-
tions were obtained by letting the index i vary in the range
[i0, i0 + Nc], with i0 = 0 for the first group of configurations,
i0 = 20 000 for the second one, and i0 = 30 000 for the last
ensemble. Comparing the results to those for a truly random
lattice, we observe that the wavepacket spreads more rapidly
and its center of mass explores a larger part of the lattice
(compare with Fig. 1). Figure 2 also emphasizes that spatial
homogeneity on average is broken in the regime 1 < γ < 2:
Varying the shift i0 changes the dynamics of both the variance
and the center of mass of the wavepacket. An increase in i0,
however, does not have an univocal impact on the dynamics,
as it can either enhance or reduce the delocalization of the
wave function. Nevertheless, our results show that localization
persists and the boomerang effect is still present. Furthermore,
as shown in the lower panel in Fig. 2, we also find that formula
(4) works within the numerical errors (not shown in Fig. 2).

IV. BAND RANDOM MATRICES

Both the Anderson model considered in Sec. II and its
pseudorandom counterpart discussed in Sec. III are tight-
binding models with nearest-neighbor bonds. In the study of
quantum chaos and localization, considerable attention has
been given to a generalization of the Anderson model, in
which the Hamiltonian is a band random matrix rather than a
tridiagonal matrix with purely diagonal disorder. BRMs were
originally introduced by Wigner [23,24], but their application
to problems of quantum chaos and localization began in the
late 1980s and early 1990s [12,25–29]. BRMs constitute a
synthesis of two natural generalizations of the 1D Anderson
model, (1): On the one hand, they can be used to describe
1D models with hopping processes linking each site with its
first b neighbors; on the other hand, they can be mapped onto
quasi-1D models [12].

Because of the importance of BRMs in the physics of
quantum chaos and disordered systems, it appears natural to
ask whether the boomerang effect survives when the hopping
amplitudes are random variables. We would like to stress that
it is difficult to predict a priori whether the modification of
the quantum dynamics entailed by the hopping processes will
preserve or hinder the boomerang effect. On the one hand,
BRMs represent “local” Hamiltonians (remote sites are not
directly connected as is the case for full random matrices),
and they share many features with the standard Anderson
model, such as the localization of all eigenstates (for finite
BRMs of size N × N , this is true as long as b � √

N). On
the other hand, BRMs can be mapped onto quasi-1D models,
whose transmission properties are more complex than those of
strictly 1D chains due to the presence of several transmission
channels.

To clarify whether the boomerang effect survives in BRM
models, we first considered BRMs of the form

Hi j = δi jεi + (1 − δi j )hi j, (12)

where the {εi} variables have the same uniform distribution,
(2), as the site energies in the Anderson model, (1), while the
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FIG. 3. Evolution of the wavepacket width σx (top panel) and of
the center of mass 〈x(t )〉 (bottom panel) as functions of the rescaled
time tW/h̄, for the BRM model, (12), for b = 1, b = 2, and b = 3.

matrix elements hi j = h ji vanish outside a band of width b,

hi j = 0 if |i − j| > b. (13)

Inside the band, the hopping amplitudes hi j are independent,
identically distributed random variables with a box distribu-
tion:

p(hi j ) =
{

1/2Wb if − Wb � hi j � Wb,

0 otherwise .
(14)

This implies, in particular, that the mean hopping amplitudes
are 0, hi j = 0, a property that will turn out to be crucial
in the following. In our numerical simulations, we set σ 2

ε =
W 2/3 for the random site energies {εi} and a weaker disorder
Wb = 0.1W and σ 2

b = 10−2σ 2
ε for the hopping amplitudes hi j .

With these parameters, we study the temporal evolution of the
initial wavepacket, (3), with the Hamiltonian, (12), for band
widths b = 1, 2, 3.

Our numerical results for the center of mass of the
wavepacket are displayed in the lower panel in Fig. 3. They
show that, even for the modest values of b considered, the
center of mass does not evolve in time. Increasing the value
of b does not change this conclusion. As confirmed below,
this behavior is essentially due to the fact that the random
amplitudes hi j with distribution (14) have a vanishing average,
hi j = 0. This inhibits any drift of the center of mass and, in
particular, prevents the boomerang effect to occur.

The absence of drift, however, does not imply that the
quantum particle is not scattered: in fact, the hopping pro-
cesses cause the particle to diffuse around its initial position
with a corresponding spread of its wave function. This is
demonstrated by the analysis of the second moment of the
density distribution, shown in the upper panel in Fig. 3. As in
the Anderson model, we find that the wavepacket first spreads
ballistically and then gets localized at long times. Increasing b
produces a larger spread of the wavepacket, as can be expected
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considering that the localization length of the eigenvectors of
BRMs roughly scales as �loc ∝ b2 [12,27,29].

To confirm the crucial role played in the boomerang ef-
fect by the deterministic component in the nearest-neighbor
hopping amplitudes, we also considered BRMs with an added
“Laplacian” term, i.e.,

Hi j = δi jεi + (1 − δi j )hi j − J (δi, j+1 + δi, j−1). (15)

In Eq. (15), the site energies εi are random variables with the
box distribution, (2). As in the previous case, the hopping am-
plitudes hi j obey Eq. (13), i.e., they vanish outside of a band
of width b, while within the band they are random variables
with distribution (14). For the numerical calculations, we set
the variance of site energies to σ 2

ε = J2/3 (i.e., W = J) and
consider two values of hopping amplitudes: (i) off-diagonal
disorder weaker than the diagonal one, σ 2

b = J2/12 (i.e., Wb =
J/2), and (ii) off-diagonal and diagonal disorder with the same
strength, σ 2

b = σ 2
ε = J2/3 (i.e., W = Wb = J).

Our numerical results for the model, (15), are displayed
in Figs. 4 and 5. They show that the Laplacian term restores
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FIG. 5. Wavepacket width σx (top panel) and center-of-mass
position 〈x〉 of the wavepacket (bottom panel) as functions of the
rescaled time t/τ , with τ = h̄/J for the BRM model, (15). Here the
strengths of the diagonal and off-diagonal disorder are the same,
σ 2

ε = σ 2
b = J2/3. The ensemble average is computed over Nc =

2000 disorder realizations.

the boomerang effect when it is dominant with respect to
the random hopping amplitudes. Increasing the width of the
band nevertheless diminishes the distance covered by the
wavepacket before coming back to its original position and
therefore reduces the boomerang effect, as demonstrated in
the lower panel in Fig. 4. Figure 5 shows what happens when
the off-diagonal disorder is stronger: it quickly dominates
over the Laplacian even for b ∼ 1 and, therefore, effectively
suppresses the boomerang effect.

The study of the second moment of the wavepacket shows
that for BRMs of the form of (15), the spreading of the
wave function in the localized regime does not increase
monotonously with b, as one might naively expect. When
the band width lies in the range b ∼ 1–3, increasing b ac-
tually reduces the asymptotic value of 〈x2(t )〉. For b > 3,
however, numerical data suggest that the spatial extension
of the wavepacket in the localized regime grows with b. To
understand the behavior of 〈x2(t )〉 for small values of b, we
numerically computed the inverse localization length for the
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FIG. 6. Inverse of the rescaled localization length (�loc(1 +
4z2

b )−1 [Eq. (16)] in units of d−1 as a function of the energy. The
numerical data are compared with the rescaled localization length,
σ 2

ε /(8J2 sin2(kd )), as obtained from Eq. (17). Here we set σ 2
ε =

J2/3.

model, (15), using the identity [30,31]

�−1
loc = lim

N→∞
1

Nd
ln

∣∣∣∣GNN (E )

G1N (E )

∣∣∣∣, (16)

where

G(E ) = 1

E − H

is the Green’s function of Hamiltonian (15) with matrix
elements Gi j (E ) = 〈i|G(E )| j〉. Using formula (16), we com-
puted the inverse localization length for b = 1 and b = 2 for
various strengths of the off-diagonal disorder. We set N = 200
and we averaged the result over an ensemble of Nc = 1000
disorder configurations. The numerical data suggest that, as
long as b is small and the off-diagonal disorder is weak, at
a fixed diagonal disorder strength σε, the relative strength of
the off-diagonal disorder with respect to the Laplacian term is
given by the parameter

zb =
√

bσb/σε.

This is corroborated by the data in Fig. 6, which show the
behavior of the inverse localization length as a function of
the energy for four values of b and σb, and by their compar-
ison with the analytical expression of the localization length
obtained in the Born approximation [32] when diagonal and
off-diagonal disorders are uncorrelated (see the Appendix):

�−1
loc = 1

d

σ 2
ε + 4bσ 2

b

8J2 sin2(kd )
. (17)

We observe that the inverse localization lengths, after being
rescaled by a factor (1 + 4z2

b ), nearly coincide for the cases
zb = 0.7 and zb = 0.42 (and for both b = 1 and b = 2) and
are in good agreement, at the band center, with Eq. (17).
Specifically, the numerical data and Eq. (17) show that the
localization length scales with 1/(1 + 4z2

b ) as long as zb � 1.
The localization length thus decreases with b, which agrees
with the reduction of the asymptotic width of the wavepacket
for b � 3 that can be seen from the top panel in Fig. 4. When

zb > 1, on the other hand, the off-diagonal hopping terms start
to dominate over the Laplacian and �loc starts to increase with
b, in agreement with the usual behavior of BRMs of the form
of (12).

An interesting extension of the model would be to replace
the last ”Laplacian” term on the right-hand side of Eq. (15)
by −J

∑b
k=1(δi, j+k + δi, j−k ). This will modify the localization

length, but the boomerang effect is expected to survive. A
different picture may emerge for long-range hoppings. As it is
known that purely deterministic long-range hoppings causes
delocalization of electronic states [33], we expect in that
case an enhanced diffusion of the wavepacket and a partial
boomerang effect.

V. QUANTUM KICKED ROTOR

The kicked rotor is a physical system that has played a key
role in the study of classical and quantum chaos [13,14,34,35].
Its realization in cold-atom experiments has provided addi-
tional reasons for interest [15,16,36–39]. The kicked rotor
is also closely related to the Anderson model, (1). From a
mathematical point of view, the correspondence between the
Anderson model and the kicked rotor lies in the fact that
the Hamiltonian of the former is a tridiagonal matrix with
diagonal disorder, while the latter can be mapped onto a tight-
binding model with pseudorandom diagonal elements [13,40].
From a physical perspective, the counterpart of the localiza-
tion of the eigenstates in the Anderson model is a suppression
of the energy growth in the kicked rotor, a phenomenon known
as “dynamical localization.” The close analogy between the
kicked rotor and the Anderson model suggests that the quan-
tum boomerang effect, which exists in the first system, ought
to be present also in the second one. In this section we show
that this is indeed the case, although the boomerang dynamics
in the kicked rotor exhibits a specific dependence on the initial
state which has no counterpart in the Anderson model.

The quantum kicked rotor is defined by the Hamiltonian

H = p2

2
+ V (x)

∞∑
n=−∞

δ(t − n), (18)

with

V (x) = K cos(x).

It describes a planar rotor periodically subjected to instanta-
neous variations of the momentum (“kicks”) with a period
T = 1. The parameter K determines the strength of the kicks.

The variable x in Hamiltonian (18) can be interpreted either
as an angle or as a spatial Cartesian coordinate. In the first
case, one has x ∈ [−π, π ] and p is the associated angular
momentum. In the second case x ∈ R and p is the ordinary
momentum conjugated to a spatial coordinate. The first inter-
pretation is usually used in the study of classical and quantum
chaos. The second one is more appropriate for the analysis of
experiments with cold atoms in optical lattices [and, for this
reason, we refer to the model, (18), with x ∈ R as the “atomic”
kicked rotor].

The correspondence between the kicked rotor, (18), and
the Anderson model, (1), was first established in [13] (see
also [41]). Below we recall the main steps of this approach,
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considering the x variable as an angle for the sake of simplic-
ity. In this case, p is an angular momentum and its eigenvalues
are integer multiples of h̄. As the first step, it is useful to
consider the Floquet operator of the kicked rotor in the mo-
mentum representation:

U (α) = e−ip2(1−α)/2h̄e−iV/h̄e−ip2α/2h̄. (19)

The propagator, (19), describes the evolution over the period
[n − α, n + 1 − α], with α ∈ [0, 1]. It is the product of three
terms: the first factor on the right describes the free evolution
over the time interval [n − α, n], the central term represents
the kick at t = n, while the leftmost factor gives the free mo-
tion over the interval [n, n + 1 − α]. The parameter α defines
the time elapsed before the rotor is initially kicked: the kick
occurs at the beginning of the interval if α = 0, at the end
if α = 1, and in the middle of the period if α = 1/2. If one
introduces a new operator M via the equation

e−iV/h̄ = 1 + iM

1 − iM
, (20)

the Floquet operator, (19), becomes

U (α) = e−ip2(1−α)/2h̄ 1 + iM

1 − iM
e−ip2α/2h̄. (21)

Let |φα〉 be a Floquet (quasi-)eigenstate, satisfying the
equation

U (α)|φα〉 = e−iEα/h̄|φα〉. (22)

Using representation (21) for the Floquet operator, one can
write the previous equation as

e−ip2(1−α)/2h̄ 1 + iM

1 − iM
e−ip2α/2h̄|φα〉 = e−iEα/h̄|φα〉. (23)

After introducing the vector

|ψα〉 = 1

1 − iM
e−ip2α/2h̄|φα〉,

one can cast Eq. (23) in the form

e−i(p2/2−Eα )/2h̄(1 + iM )|ψα〉 = ei(p2/2−Eα )/2h̄(1 − iM )|ψα〉.
(24)

Let {|m〉} represent a complete set of eigenstates of mo-
mentum p. If the vector |ψα〉 is expanded in the momentum
basis, one can write

|ψα〉 =
∑

m

ψ (α)
m |m〉 (25)

with ψ (α)
m = 〈m|ψα〉. Substitution of the expansion, (25), in

Eq. (24) gives∑
m

e−i(p2/2−Eα )/2h̄(1 + iM )|m〉ψ (α)
m

=
∑

m

ei(p2/2−Eα )/2h̄(1 − iM )|m〉ψ (α)
m .

Projecting both sides of this equation on the momentum bra
〈n| and rearranging the terms, one finally obtains

εnψ
(α)
n +

∑
m �=n

〈n|M|m〉ψ (α)
m = E0ψ

(α)
n , (26)

where the symbol εn represents the “site energies”

εn = tan

[
1

2h̄

(
Eα − h̄2n2

2

)]
, (27)

while the zeroth component of the M operator plays the role
of the energy E0 = −〈0|M|0〉.

Equation (26) shows that the kicked rotor, (18), can be
mapped onto a tight-binding model whose Hamiltonian is an
effective band matrix with pseudorandom diagonal disorder.
Indeed, the variables {εn} represent the site energies and are
pseudorandom variables with a Lorentzian distribution, while
the terms 〈n|M|m〉 provide the hopping amplitudes. The ma-
trix elements 〈n|M|m〉 can be calculated in closed form for
K/h̄ < π and they fall off exponentially for increasing values
of |n − m|. The above mapping suggests that the kicked rotor
might behave as the BRM models considered in Sec. IV.
However, two differences exist between the two models of the
previous section and the tight-binding model, (26): the site
energies, (27), are not truly random variables, and in addition,
the hopping terms 〈n|M|m〉 are deterministic constants. From
this point of view, the tight-binding model, (26), is closer to
the pseudorandom Anderson model considered in Sec. III; one
can therefore expect that the boomerang effect should occur in
the kicked-rotor model, (18).

To check whether this conclusion is correct, we numer-
ically evaluate the evolution of a Gaussian wavepacket (in
momentum space) with Hamiltonian (18), with the variable
x spanning the real axis. In this case, the spatial potential
in Hamiltonian (18) is (2π )-periodic and the Bloch theorem
applies. As a consequence, the eigenstates of the momentum
p are now defined by an integer quantum number n and a real
quasimomentum β in the interval [−1/2;1/2(. In other words,
one has

p|n, β〉 = h̄(n + β )|n, β〉.
Note that, since the dynamical localization of the kicked rotor
occurs in momentum space, the analysis in Sec. II must now
be transposed from the x to the p space. For this purpose, we
consider an initial wavepacket of the form

ψn,β (t = 0) = 〈n, β|ψ (t = 0)〉
= N exp

[
− h̄2(n + β )2

2σ 2
p (0)

− i(n + β )x0

]
,

(28)
where N is a normalization constant [approximately equal

to N � h̄/
√
πσ 2

p (0) if σp(0) � 1], while the parameter

σp(0)/
√

2 gives the width of the wavepacket in momentum
space, which we chose much larger than h̄. This implies that
the wave function in the coordinate representation is a narrow
Gaussian with variance σ 2

x (0) = h̄2/2σ 2
p (0). The parameter x0

represents the initial “boost” of the packet. To numerically
propagate the initial state, (28), we used the quantum map

|ψ (t + 1)〉 = U (α)|ψ (t )〉, (29)

where U (α) is the Floquet operator, (19). In the momentum
representation, its matrix elements take the form

〈n, β|U (α)|m, β ′〉 = im−ne−ih̄(n+β )2(1−α)/2

×Jn−m(K/h̄)e−ih̄(m+β ′ )2α/2δ(β − β ′),

(30)
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FIG. 7. Width of the momentum distribution σp as a function of
time (number of kicks), computed numerically for the kicked rotor
starting from the initial state, (28), and with h̄=1 (so that σp is
dimensionless). The solid violet line corresponds to α = 0.5, the
dot-dashed blue line to α = 1, and the dashed green line to α = 0.
Here we set x0 = π/2 and σp(0) = 10. The average is done over
1000 values of β.

where Jn(k) is a Bessel function of the first kind, with integral
representation

Jn(k) = 1

π in

∫ π

0
dθeik cos θ cos nθ.

Note that the Bessel functions decrease quickly when the
index becomes larger than the argument; this entails that the
elements of U fall off for |n − m| � K/h̄ and that the ma-
trix, (30), has an effective band structure. The phase factors,
on the other hand, endow the matrix Unm with a pseudorandom
character.

In our numerical computations, we took h̄=1 and we con-
sidered the initial state, (28) with x0 = π/2 and σp(0) = 10.
Following [42], we averaged the time evolution of the initial
wavepacket over Nβ = 1000 values of the quasimomentum
β. In the results shown below, we set the strength K of the
kicking potential to K = 5, which corresponds to the region
of strong chaos for the classical kicked rotor. We selected
three values for the parameter α: α = 0 (kick followed by
free evolution over a period), α = 1 (free evolution over a
period and then a kick), and α = 1/2 (kick preceded and
followed by half a period of free evolution). Figures 7 and 8
show the results obtained for the wavepacket width σp(t )
(which measures the kinetic energy of the kicked rotor) and
the mean wavepacket position 〈p(t )〉 in momentum space.
Figure 7 shows that the kinetic energy of the system first
increases quickly but then slows down. This corresponds to
localization in momentum space of the wavepacket, (28), and
is known as dynamical localization. Varying the parameter
α does not produce significant differences in the behavior of
the energy, except for a small increase in its long-time value
for α = 1/2. The situation is quite different for the temporal
evolution of 〈p(t )〉. As can be seen in Fig. 8, when α = 1/2 a
quantum boomerang effect is present: the center of mass of the
wavepacket first moves away from the origin and eventually
comes back to its initial position. However, when α �= 1/2, the
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FIG. 8. Average momentum 〈p〉 as a function of time (number of
kicks), computed numerically for the kicked rotor starting from the
initial state, (28), and with h̄=1 (so that 〈p〉 is dimensionless). Here
we set x0 = π/2 and σp(0) = 10. The solid violet line corresponds to
α = 0.5, the dot-dashed blue line to α = 1, and the dashed green line
to α = 0. The green circles and the blue triangles correspond to α =
0 and α = 1, respectively, for the case of an initial state dephased
according to Eq. (33). The averages are performed over 1000 values
of β.

center of the wavepacket does not return to the starting point
but instead gets localized in a different position, to the left (for
0 � α < 1/2) or to the right of the origin (for 1/2 < α � 1).
The asymptotic value of 〈p(t )〉 increases continuously with
α. We have also performed simulations for different values of
K ranging in the interval 1–10 (not shown) and have found
qualitatively similar results.

Two remarks are in order concerning the dependence on
α of the the long-time value of 〈p(t )〉. First, we observe
that selecting α = 1/2 endows the quantum map, (29), with
the symmetry under time reversal that is required for the
boomerang effect to appear [8]. Indeed, the time evolution
described by U (1/2) consists of a kick preceded and followed
by a half-period of free evolution, so that moving forwards or
backwards in time is completely equivalent. This is no longer
true for every other value of α: For instance, if α = 0, the
evolution towards positive times starts with a kick followed
by free motion, whereas the evolution towards negative times
has the free motion preceding the kick. This is the reason why
the center of the wavepacket does not come back to its original
position when α �= 1/2.

As the second remark, we observe that the shift of the
asymptotic position of the wavepacket is due to the rightmost
factor in Eq. (19). This can be seen as follows. It is easy to
show that two Floquet operators, corresponding to different
values of α, are related by the identity

U (α2) = e−ip2�α/2h̄U (α1)eip2�α/2h̄

with �α = α2 − α1. The same relation holds for their N th
powers:

[U (α2)]N = e−ip2�α/2h̄[U (α1)]N eip2�α/2h̄. (31)

Applying both sides of Eq. (31) to an initial state |�(0)〉 and
projecting the resulting vectors onto the |m, β〉 momentum
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eigenstate, one obtains

|〈m, β|[U (α2)]N |�(0)〉|2 =|〈m, β|[U (α1)]N |�(0)〉|2 (32)

with

|�(0)〉 = eip2�α/2h̄|�(0)〉. (33)

Equation (32) shows that letting an initial state |�(0)〉 evolve
with the quantum map, (29), with α = α2 produces a quan-
tum state with the same probability distribution as the state
obtained by first applying the operator eip2�α/2h̄ to the initial
state |�(0)〉 and then letting it evolve with the quantum map,
(29), with α = α1. This conclusion is confirmed by numerical
calculations shown in Fig. 8: By using Eq. (33) to dephase
the momentum components of the initial wavepacket, (28),
and letting the resulting state evolve with the map, (29), with
α = 0 and α = 1, the boomerang dynamics becomes identical
to that observed for α = 1/2 without dephasing. This shows
that the dynamical evolution of the center of mass in the
kicked rotor can be controlled by appropriately tailoring the
initial state. This also agrees with previous observations of
the dependence of the dynamics of the kicked rotor on the
initial state [43–47].

To conclude our study of the kicked rotor, we also inves-
tigated the relevance of the pseudorandom character of the
phase factors in the evolution matrix, (30). To this end, we
replaced h̄n2/2 and h̄m2/2 in Eq. (30) with the uncorrelated
random phases φn and φm, uniformly distributed in the interval
[0, 2π [. The system thus obtained constitutes a purely random
kicked rotor. We found that the evolution of 〈p(t )〉 has the
same behavior as observed in the kicked rotor. In particu-
lar, the initial state, (28), has a boomerang dynamics only if
α = 1/2. For different values of α, the asymptotic value of
〈p(t )〉 again does not vanish, unless the initial state is modified
with an appropriate change of the phases of the momentum
components.

VI. CONCLUSIONS

The purpose of this work was to assess the robustness of
the quantum boomerang effect in various random and pseu-
dorandom tight-binding models commonly used in the theory
of low-dimensional disordered systems. We also considered a
closely related model, i.e., the kicked rotor, which has played
a crucial role in the study of quantum chaos.

Our findings show that the quantum boomerang effect is
a rather widespread phenomenon that can be found in every
tight-binding model with diagonal disorder and deterministic
hopping amplitudes. The random or pseudorandom character
of the site energies does not seem to make a big difference.
On the other hand, the introduction of hopping processes with
zero-average random amplitudes suppresses the boomerang
dynamics. Our study of the kicked rotor, finally, shows that the
boomerang effect can be observed also in this model, although
with a specific dependence on the initial state which has no
analog in the Anderson model. We can therefore conclude
that the boomerang effect is not a specificity of the Anderson
model, but a general feature that can be observed in a broad
variety of tight-binding models with diagonal disorder. While
its observation could naturally be sought in cold-atom setups,
it is also within reach of optical experiments based on, e.g.,

the propagation of light through media displaying transverse
disorder, where Anderson localization occurs in a plane and
the optical axis plays the role of an effective time [48]. From
a theoretical point of view, interesting open questions on the
boomerang effect include the fate of this phenomenon in other
symmetry classes—for example, when time reversal invari-
ance is broken—or in interacting systems [49].

ACKNOWLEDGMENTS

P.V. acknowledges the Laboratoire Kastler Brossel and the
Piri Reis University for their hospitality. N.C. and D.D. ac-
knowledge financial support from the Agence Nationale de la
Recherche (Grants No. ANR-19-CE30-0028-01 CONFOCAL
and No. ANR-18-CE30-0017 MANYLOK, respectively).
L.T. acknowledges the financial support from UMSNH (grant
5872890-[2021]).

APPENDIX: DERIVATION OF EQ. (17)

In this Appendix we provide a derivation of expression (17)
for the inverse localization length of the eigenstates of the
model, (15). For a weak short-range disorder in a 1D system,
the localization length is directly related to the mean free path
through the equation [32,50]

1

�loc
= 1

4�
= 1

4vτ
(A1)

with

1

τ
= −2

h̄
Im[E (k)]. (A2)

Note that in our system, because we take all disorder matrix
elements as delta correlated, the transport mean free path is
equal to the scattering one.

In Eq. (A2), E (k) represents the self-energy, which, in the
Born approximation, can be written as

E (k) = 〈k|V G0V |k〉, (A3)

where G0 = (E − H0)−1 is the Green function corresponding
to the unperturbed Hamiltonian H0 defined by Eq. (1), while
V = H − H0 represents the difference between Hamiltonian
(15) and Hamiltonian (1). By expanding the self-energy, (A3),
on the site basis, one obtains

E (k) =
∑

j,l,m,n

eik(n− j)Vj,l [G0]l,mVm,n. (A4)

Taking into account that [G0]l,m = [G0]l,l e−ik|m−l| =
[G0]0,0e−ik|m−l| and that the nonvanishing averages Vj,lVm,n

are V 2
j, j+r , V 2

j+r, j , Vj, j+rVj+r, j , with r = −b, . . . , 0, . . . , b, one
gets

E (k) = [G0]0,0

[
V 2

j, j +
b∑

r=−b

(V 2
j, j+r + Vj, j+rVj+r, j )

]
. (A5)

Since V 2
j, j = σ 2

ε and V 2
j, j+r = Vj, j+rVj+r, j = σ 2

b , Eq. (A5) can
be written

E (k) = [G0]0,0
(
σ 2

ε + 4bσ 2
b

)
. (A6)
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Finally, putting together Eqs. (A1), (A2), and (A6) and
using the identities −2Im[G0]0,0 = [J sin(kd )]−1 and v =

(2J/h̄) sin kd , one obtains Eq. (17) in a straightforward
way.
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