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Three-body scattering hypervolume of particles with unequal masses
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We analyze the collision of three particles with arbitrary mass ratio at zero collision energy, assuming arbitrary
short-range potentials, and generalize the three-body scattering hypervolume D first defined for identical bosons
in 2008. We solve the three-body Schrödinger equation asymptotically when the three particles are far apart
or one pair and a third particle are far apart, deriving two asymptotic expansions of the wave function, and the
parameter D appears at the order 1/B4, where B is the overall size of the triangle formed by the particles. We then
analyze the ground state energy of three such particles with vanishing or negligible two-body scattering lengths
in a large periodic volume of side length L, where the three-body parameter contributes a term of the order D/L6.
From this result we derive some properties of a two-component Bose gas with negligible two-body scattering
lengths: its energy density at zero temperature, the corresponding generalized Gross-Pitaevskii equation, the
conditions for the stability of the two-component mixture against collapse or phase separation, and the decay
rates of particle densities due to three-body recombination.
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I. INTRODUCTION

How do particles, composite or fundamental, such as
atoms, molecules, ions, atomic nuclei, neutrons, protons, elec-
trons, mesons, etc., interact at small collision energies? It
depends on their electric charges. If at least one of two such
particles is electrically neutral, usually the effective interac-
tion between the two particles is dominated by the s-wave
scattering length a, for collision energies that are so small
that the de Broglie wavelength of each particle in the center-
of-mass frame is much longer than the physical range of the
interaction. If we need more precise knowledge of the effec-
tive pairwise interaction at small collision energies, we need to
also know other parameters such as the s-wave effective range
rs, the p-wave scattering volume ap, etc. All these parameters
can be extracted from the wave functions for the two-body
collision at collision energies equal to or close to zero, outside
of the physical range of interaction. The s-wave scattering
length a, for example, can be extracted from the wave function
φ(s) of the two particles colliding at zero incoming kinetic
energy and zero orbital angular momentum [1,2]:

φ(s) = 1 − a

s
, if s > re, (1)

where s is the spatial vector extending from one particle to
the other, and re is the range of the microscopic interaction.
The scattering length a is a key parameter in the quantum few-
body and many-body physics for particles with small collision
energies.

If we want to gain more precise knowledge of the effective
interaction strengths of low-energy particles, we need to also
study the wave function for the collision of three particles
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at zero incoming kinetic energy. The three-body Schrödinger
equation is usually not analytically solvable, even outside of
the range of the microscopic interactions. But, in a prior paper
by one of the present authors, the three-body Schrödinger
equation was solved asymptotically for the collision of three
identical bosons at zero incoming kinetic energy and zero
orbital angular momentum, yielding well-controlled expan-
sions of the three-body wave function �(3) when three or two
pairwise distances are large [3]. In such expansions, a three-
body parameter named three-body scattering hypervolume D
emerges [3]. When all three pairwise distances go to infinity
simultaneously for a fixed ratio of pairwise distances, the
three-body wave function has the following expansion, which
may be called “111 expansion” (since each particle is alone
when they are all far apart from each other):

�(3) = 1 − � −
√

3 D

8π3B4
+ O(B−5 ln B), (2)

where B =
√

(s2
1 + s2

2 + s2
3)/2 is the hyperradius of the trian-

gle formed by the particles,

s1 ≡ r2 − r3, s2 ≡ r3 − r1, s3 ≡ r1 − r2, (3)

ri is the position vector of the ith particle, and � is a sum
of a few terms due to a typically nonzero two-body scattering
length. If a = 0, � = 0. When two particles are kept at a fixed
distance but the third particle is far away from the two, there
is another expansion which may be called the “21 expansion”
(since two particles are held at a fixed distance but the remain-
ing particle is far apart):

�(3) =
∞∑

q=0

S(−q), (4)
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where S(−q) scales as R−q for q � 3, and scales as R−q times
some polynomial of ln R for q � 4, and R is the distance
between the center of mass of the two particles and the re-
maining particle. The function S(−q) is expressed in terms of
the “two-body special functions” such as the φ(s) in Eq. (1),
with coefficients that depend on R. The three-body scattering
hypervolume D appears at the order R−4.

The scattering hypervolume D is the three-body analog
of the two-body scattering length a. It is a fundamental
parameter determining the effective strength of three-body
interactions at small collision energies, if the microscopic in-
teractions vanish or become negligible beyond a certain range.
For given microscopic interactions, one can numerically solve
the Schrödinger equation for the zero-energy collision of the
three particles and match the solution to either the 111 expan-
sion or the 21 expansion to determine D numerically. D have
been numerically computed in this way for identical bosons
interacting with hard-sphere [3], Gaussian [4], square-well
[5], and Lennard-Jones [6] potentials.

If the collision of the three particles is purely elastic, D
is a real number. But if the two-body forces are so strongly
attractive that they support two-body bound states, as is the
case for most neutral atoms, then the three-body collisions
are usually not purely elastic: two such particles may fall into
one of the bound states, releasing the binding energy in the
form of the center-of-mass kinetic energy of the two and the
kinetic energy of the remaining free particle; these inelas-
tic processes are called “three-body recombination” in cold
atoms physics [7–14]. When there is three-body recombina-
tion, D becomes complex, and the three-body recombination
rate constant is proportional to the imaginary part of D
[4,15].

The three-body scattering hypervolume [3] determines the
effective three-body coupling constant in the effective-field
theoretical description of low-energy particles [3,14,16]. It is
also directly related to the three-body parameters in three-
meson systems [17,18].

The three-body scattering hypervolume provides a three-
body effective interaction which, if repulsive, can stabilize
dilute quantum droplets [19–21].

In Sec. II of this paper, we generalize the 111 expansion
and the 21 expansion to the collision of three particles with
unequal masses, m1, m2, m3, for which we find that the
expansions take much more complicated forms. We assume
that two or three of the colliding particles are electrically
neutral, and our expansions are also applicable to the collision
of two neutral particles and one charged particle, such as
two neutral mesons and one charged particle, as long as the
neutral particles are not significantly electrically polarizable
in the field of the charged particles. Although in a prior paper
[3] the two expansions were carried out to the order B−7

and R−7 respectively, in this paper we will only expand �(3)

to the order B−4 and R−4, respectively, the order at which
the three-body scattering hypervolume first appears. If two
of the particles have equal mass but are not spin-polarized
identical fermions, and the third particle has a different mass,
the expansions we find in this paper are also applicable. Our
work is motivated by many cold atoms experiments in which
two or three atomic species having different atomic masses
are mixed together. But we believe our work will also be

of fundamental importance for other research areas such as
nuclear physics.

In Sec. III we compute the ground state energy of three par-
ticles with unequal masses in a large periodic cubic volume,
assuming vanishing or negligible two-body scattering lengths,
such that the energy is dominated by the three-body scattering
hypervolume D.

In Sec. IV we consider a zero-temperature Bose-Bose
mixture having negligible two-body scattering lengths and
derive its energy density in terms of the three-body scattering
hypervolumes D1, D112, D122, and D2, and write down the cor-
responding generalized Gross-Pitaevskii equation. Here D1 is
the scattering hypervolume of three particles of type 1, and
D112 is the scattering hypervolume of two particles of type
1 and one particle of type 2, and so on. We then give the
criteria for stability of the mixture against collapse or phase
separation. Finally we study the decay rates of the particle
densities in such a mixture due to three-body recombination,
in a shallow trap.

II. ASYMPTOTICS OF THE THREE-BODY
WAVE FUNCTION

Consider three particles, labeled 1, 2, and 3, having masses
m1, m2, and m3, respectively. Suppose that they have in-
teractions that are invariant under translation, rotation, and
Galilean transformations, and suppose the interactions vanish
beyond a certain range. Particles 1 and 2 have scattering
length a3, particles 2 and 3 have scattering length a1, and
particles 3 and 1 have scattering length a2. If the three particles
collide with zero energy and zero orbital angular momentum,
the three-body wave function �(3) satisfies the Schrödinger
equation:[

− h̄2

2m1
∇2

1 − h̄2

2m2
∇2

2 − h̄2

2m3
∇2

3 + V1(s1) + V2(s2)

+ V3(s3) + V123(s1, s2, s3)

]
�(3)(r1, r2, r3) = 0, (5)

where ri is the position vector of particle i, and

si ≡ r j − rk . (6)

In the above equation and in the rest of the paper:

if i = 1, then j = 2, k = 3;

if i = 2, then j = 3, k = 1;

if i = 3, then j = 1, k = 2.

Vi(si) is the interaction potential between particles j and k,
and V123(s1, s2, s3) is the three-body potential. Note that Vi

and V123 are not zero-range pseudopotentials. They are real
potentials that extend to some nonzero pairwise distances. But
in this paper we assume that these potentials vanish beyond a
certain range. �(3) is translationally invariant because of the
zero total linear momentum:

�(3)(r1 + δr, r2 + δr, r3 + δr) = �(3)(r1, r2, r3) (7)

for all δr. �(3) is also rotationally invariant because of the
zero orbital angular momentum. As a result, �(3) depends
only on the pairwise distances s1, s2, and s3. We choose the
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amplitude of �(3) such that it approaches 1 when the three
pairwise distances all go to infinity.

A. Jacobi coordinates, hyperradius, and hyperangles

For later use, we define Ri as the vector extending from the
center of mass of particles j and k to particle i:

Ri ≡ ri − mjr j + mkrk

mj + mk
. (8)

(si, Ri) are called Jacobi coordinates [15,22]. We define the
hyperradius B as

B ≡
√

3

2

m1m2s2
3 + m2m3s2

1 + m3m1s2
2

m1m2 + m2m3 + m3m1
. (9)

If the particles have equal mass, the above definition of B
reduces to the one in Ref. [3]. Let μi be the reduced mass
of particles j and k, and νi be the reduced mass of the particle
i and the pair jk:

1

μi
≡ 1

mj
+ 1

mk
,

1

νi
≡ 1

mi
+ 1

mj + mk
. (10)

They satisfy

μiνi = m1m2m3

m1 + m2 + m3
. (11)

Define

εi ≡
√

μi

νi
, (12)

λ ≡ 3

2

m1 + m2 + m3

m1m2 + m2m3 + m3m1
. (13)

One can show that

B2 = λ
(
νiR

2
i + μis

2
i

)
(14)

for any i ∈ {1, 2, 3}. We also define three hyperangles:

θi ≡ arctan
Ri

εisi
. (15)

si, Ri, and B satisfy

si = 1√
λμi

B cos θi, Ri = 1√
λνi

B sin θi. (16)

B. Two-body special functions

For i = 1, 2, or 3, we define the two-body special functions
φ

(l )
i,n̂(s), f (l )

i,n̂ (s), g(l )
i,n̂(s), ... for the collision of particles j and k

with orbital angular momentum quantum number l and zero
magnetic quantum number along the direction specified by the
unit vector n̂ [3]:

H̃iφ
(l )
i,n̂ = 0, H̃i f (l )

i,n̂ = φ
(l )
i,n̂, H̃ig

(l )
i,n̂ = f (l )

i,n̂ , . . . , (17)

where h̄2H̃i/2μi is the two-body Hamiltonian for the collision
of particles j and k in the center-of-mass frame, and

H̃i ≡ −∇2
s + 2μi

h̄2 Vi(s). (18)

Unlike the case of identical bosons [3], here l may be odd.

To complete the definition of φ
(l )
i,n̂, we need to specify its

overall amplitude. Since the potential Vi(s) vanishes beyond a
finite range re, φ

(l )
i,n̂ takes a simple form at s > re:

φ
(l )
i,n̂(s) =

[
sl

(2l + 1)!!
− (2l − 1)!!ai,l

sl+1

]
Pl (n̂ · ŝ), (19)

where we have fixed the overall amplitude of φ
(l )
i,n̂ by specify-

ing the coefficient of the term ∝sl . Here Pl is the Legendre
polynomial. The parameter ai,l is determined by solving
the two-body Schrödinger equation at zero collision energy,
H̃iφ

(l )
i,n̂ = 0, using the two-body potential Vi(s) at s < re, and

matching the solution with Eq. (19) at s > re.
The solution to the equation H̃i f (l )

i,n̂ = φ
(l )
i,n̂ is not unique,

because if f (l )
i,n̂ (s) satisfies this equation, then f (l )

i,n̂ (s) +
(arbitrary coefficient) × φ

(l )
i,n̂(s) also satisfies this equation. To

complete the definition of f (l )
i,n̂ (s), we specify that in the ex-

pansion of f (l )
i,n̂ (s) at s > re we do not have the term ∝s−l−1

(if such a term exists, we can add a suitable coefficient times
φ

(l )
i,n̂(s) to f (l )

i,n̂ (s) to cancel this term). Then at s > re we have

the following analytical formula for f (l )
i,n̂ (s):

f (l )
i,n̂ (s) =

[
− sl+2

2(2l + 3)!!
− ai,l ri,l sl

2(2l + 1)!!

− (2l − 3)!!

2
ai,l s

1−l

]
Pl (n̂ · ŝ). (20)

This completes the definition of f (l )
i,n̂ (s). We can similarly fix

the definitions of g(l )
i,n̂(s), etc. For brevity we do not show the

formula for g(l )
i,n̂(s) at s > re as it is not explicitly used in this

paper.
Given the two-body special functionsφ(l )

i,n̂, f (l )
i,n̂ , g(l )

i,n̂, . . . ,
we can express the wave function for the collision of particles
j and k at any small nonzero energy E = h̄2k2/2μi as an
infinite series in k2:

φ
(l,k)
i,n̂ (s) = φ

(l )
i,n̂(s) + k2 f (l )

i,n̂ (s) + k4g(l )
i,n̂(s) + · · · . (21)

It is easy to verify that this series satisfies the Schrödinger
equation at nonzero energy E , namely,

H̃iφ
(l,k)
i,n̂ (s) = k2φ

(l,k)
i,n̂ (s). (22)

On the other hand, if s > re, then Vi(s) = 0 and Eq. (22) can
be solved analytically to yield

φ
(l,k)
i,n̂ (s) = αi,l (k)[ jl (ks) cot δi,l − nl (ks)]Pl (n̂ · ŝ), (23)

where jl and nl are spherical Bessel functions of the first kind
and the second kind, respectively, δi,l is the scattering phase
shift, and the overall coefficient αi,l (k) is to be determined.
Comparing Eq. (23) with Eq. (21), and using the definitions
of φ

(l )
i,n̂ and f (l )

i,n̂ , etc., we find that αi,l (k) = −kl+1ai,l and

k2l+1 cot δi,l (k) = − 1

ai,l
+ 1

2
ri,l k

2 + O(k4). (24)

Equation (24) is in fact the well-known effective range expan-
sion [23]. We now see that ai,l which first appears in Eq. (19)
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is the two-body l-wave scattering length (or volume or hyper-
volume) of particles j and k, and ri,l which first appears in
Eq. (20) is the two-body l-wave effective range.

For l = 0, we write the functions φ
(0)
i,n̂ (s), f (0)

i,n̂ (s), and

g(0)
i,n̂(s) simply as φi(s), fi(s), and gi(s). We use symbols

s, p, d, f , . . . to represent l = 0, 1, 2, 3, . . . . For later conve-
nience we simply write the s-wave scattering length ai,s as ai.

The two-body special functions will appear in the expan-
sion of the three-body wave function �(3) when two particles
are held at a fixed distance and the third particle is far away
from the two.

C. Asymptotics of �(3) at large distances

When particle i is far away from particles j and k, but
particles j and k are held at a fixed distance si, the pairwise
interaction potentials Vj (s j ) and Vk (sk ) and the three-body
potential V123(s1, s2, s3) vanish, and Eq. (5) is simplified as

[
− ∇2

si
+ 2μi

h̄2 Vi(si ) − μi

νi
∇2

Ri

]
�(3) = 0. (25)

The following partial-wave expansion is the formal solution
to the above equation:

�(3) =
∞∑

l=0

[
A(l )

i (Ri )φ
(l )
i,R̂i

(si) + B(l )
i (Ri ) f (l )

i,R̂i
(si)

+ C(l )
i (Ri )g

(l )
i,R̂i

(si ) + · · · ], (26)

where the function A(l )
i (Ri ) has a well-controlled expansion at

large Ri, and B(l )
i (Ri ),C(l )

i (Ri ), . . . satisfy

B(l )
i (Ri ) = μi

νi

[
1

R2
i

d

dRi
R2

i

d

dRi
− l (l + 1)

R2
i

]
A(l )

i (Ri ), (27a)

C(l )
i (Ri ) = μi

νi

[
1

R2
i

d

dRi
R2

i

d

dRi
− l (l + 1)

R2
i

]
B(l )

i (Ri ), (27b)

and so on. We may also group the terms according to the
powers of 1/Ri:

�(3)(r1, r2, r3) =
∞∑

q=0

S(−q)
i (Ri, si ), (28)

where S(−q)
i scales as R−q

i times some polynomial of ln Ri

(such a logarithmic dependence on Ri could be absent for a
small q), and satisfies

H̃iS
(0)
i = 0,

H̃iS
(−1)
i = 0,

H̃iS
(−q)
i = μi

νi
∇2

Ri
S(−q+2)

i (q � 2).

(29)

Equation (28) is the 21 expansion.
When the three particles are all far apart from each other,

such that s1, s2, s3 go to infinity simultaneously for any fixed
ratio s1 : s2 : s3, we may expand �(3) in powers of 1/B:

�(3)(r1, r2, r3) =
∞∑

p=0

T (−p)(r1, r2, r3), (30)

where T (−p) scales as B−p times some polynomial of ln B
(such a logarithmic dependence on ln B could be absent for
a small p), and satisfies the free Schrödinger equation:(

− h̄2

2m1
∇2

1 − h̄2

2m2
∇2

2 − h̄2

2m3
∇2

3

)
T (−p) = 0 (31)

if the pairwise distances si are all nonzero. Equation (30) is
the 111 expansion.

We start from the leading-order term in the 111 expansion:

T (0) = 1, (32)

and first derive S(0)
i , and then derive T (−1), and then derive

S(−1)
i , and then derive T (−2), and so on, all the way until

S(−4)
i . At every step, we require the 111 expansion and the

21 expansion to be consistent in the region re � si � Ri. See
the Appendix for details. Our resultant 111 expansion is

�(3) = 1 −
√

3D

8π3B4
+

3∑
i=1

{
− ai

si
+ 2biθi

πRisi
− 2λ

π

νiwiai

B2si
+ ms

B4
J (s)

i

[(
ln

B√
λνi|ai|

)
+ γ − 1 − θi cot(2θi)

]

+ dp

B4
J (p)

i

sin(4θi ) − 4θi

sin2(2θi )
(R̂i · ŝi )

}
+ O(B−5 lnn B), (33)

where γ = 0.577 215 66 . . . is Euler’s constant, n is a non-
negative integer (we conjecture here n = 1, just like the case
of identical bosons [3]), and

bi = ai(a j + ak ), (34a)

wi = −εibi + βkb j

ηik
+ β jbk

ηi j
, (34b)

ημν = mμ

mμ + mν

, for μ, ν ∈ {1, 2, 3}, (34c)

βi = arctan
√

mjmk

mi(m1 + m2 + m3)
, (34d)

ms = 18(m1m2m3)3/2√m1 + m2 + m3

π2(m1m2 + m2m3 + m3m1)2
, (34e)

dp = 27m1m2m3(m1 + m2 + m3)

2π (m1m2 + m2m3 + m3m1)2
, (34f)

J (s)
i = ai

(
w ja j

μ j
+ wkak

μk

)
, (34g)

J (p)
i = ai,p

mja j − mkak

mj + mk
. (34h)

D is the three-body scattering hypervolume, and its di-
mension is [length]4. It is the generalization of the scattering
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hypervolume for identical bosons defined in Ref. [3]. The
value and sign of the scattering hypervolume in each three-
particle system depend on the details of two-body and
three-body potentials, as well as the masses of the three
particles. For very weakly repulsive potentials D is small
and positive. For very weakly attractive potentials D is small
and negative. As one increases the strength of attractive in-
teractions such that they nearly support a three-body bound
state, D becomes large and negative. At the critical attraction
strength at which the three-body s-wave bound state energy
is zero, D is divergent. As one slightly increases the strength
of attraction further, then D becomes large and positive. Fur-

ther increasing the strength of attraction, one can make D
smaller. D will pass zero and turn negative as one further
increases the strength of attraction. If the two-body potentials
are sufficiently strongly attractive such that there are two-body
bound states, D will in general acquire some imaginary part
which determines the three-body recombination rate constant
for dilute gases consisting of the relevant particles (the rate
constant is proportional to ImD) [4]. If there are multiple two-
body bound states, then ImD contains the contributions from
the three-body recombination processes to all these two-body
bound states.

Our resultant 21 expansion is

�(3) =
[

1 − a j + ak

Ri
+ 2wi

πR2
i

− 2μi

πR3
i

(
w ja j

μ j
+ wkak

μk

)
+ Wi

R4
i

+ 8εiμiJ (s)

π2R4
i

ln
Ri

|ai|
]
φi(si)

+
(

3

R2
i

m ja j − mkak

mj + mk
+ 3ci

R3
i

+ #ip

R4
i

)
φ

(p)
i,R̂i

(si ) +
[
−15

R3
i

m2
j a j + m2

kak

(mj + mk )2
+ #id

R4
i

]
φ

(d )
i,R̂i

(si)

+ 105

R4
i

m3
j a j − m3

kak

(mj + mk )3
φ

( f )
i,R̂i

(si) + 4ε2
i wi

πR4
i

fi(si) + O
(
R−5

i lnn Ri
)
, (35)

where φ
(l )
i,R̂i

and fi are the two-body special functions for particles j and k as defined in Sec. II B, and

J (s) = J (s)
1 + J (s)

2 + J (s)
3 , (36a)

ci = − 2b j

πη2
ik

[ε jη jk + (2η jkηik − 1)βk] + 2bk

πη2
i j

[εkηk j + (2ηk jηi j − 1)β j], (36b)

#ip = 6μ2
i

π

(
w ja j

μ jmk
− wkak

μkmj

)
, (36c)

#id = 10

π

{
3b j

[
ε jμi

η2
ikμ j

(2η jkηik − 1) + 1

η3
ik

(
1 − 2η jkηik + 2η2

jkη
2
ik

)
βk − ε2

i

2βk

3ηik

]
+3bk

[
εkμi

η2
i jμk

(2ηk jηi j − 1) + 1

η3
i j

(
1 − 2ηk jηi j + 2η2

k jη
2
i j

)
β j − ε2

i

2β j

3ηi j

]}
, (36d)

Wi = − (m1m2 + m2m3 + m3m1)2D

6
√

3π3m2
i (mj + mk )2

+ 2ε2
i wiairi,s

π
+ 8εiμi

π2

{
J (s)

i

(
γ − 3

2

)
+ J (s)

j

[
γ + ln

(√
νi

ν j

|ai|
|a j |

)
− 1 − βk cot 2βk

]

+J (s)
k

[
γ + ln

(√
νi

νk

|ai|
|ak|

)
− 1 − β j cot 2β j

]}
+ 6ε2

i

π

[
J (p)

j

sin(4βk ) − 4βk

sin2(2βk )
− J (p)

k

sin(4β j ) − 4β j

sin2(2β j )

]
. (36e)

III. THE GROUND STATE ENERGY OF THREE
PARTICLES IN A PERIODIC BOX

In this section, we consider the ground state of three par-
ticles in a large periodic cubic box with side length L. Their
wave function satisfies the periodic boundary condition:

�(r1, r2, r3) = �(r1 + L, r2, r3)

= �(r1, r2 + L, r3) = �(r1, r2, r3 + L), (37)

where L = L(nx êx + nyêy + nzêz ). Here ex, ey, and ez are unit
vectors along the sides of the cube, and nx, ny, and nz are
integers.

Here we assume the two-body s-wave scattering lengths
a1, a2, a3 are 0, while the three-body scattering hypervolume
D is not. If there are no two-body or three-body bound states,

the three-body ground state wave function takes a simple form

�(r1, r2, r3) ≈ 1 −
√

3D

8π3B4
(38)

at re � si � L, where re is the maximum range of two-body
and three-body interactions. The wave function should also
satisfy the free Schrödinger equation

− h̄2

2

(∇2
1/m1 + ∇2

2/m2 + ∇2
3/m3

)
� = E� (39)

if s1, s2, and s3 are all greater than re. Because the ground state
has zero total momentum, � depends only on (s2, s3), and can
be written as � = �(s2, s3). We multiply both sides of Eq.
(39) by d3s2d3s3 and integrate over s2 and s3 in the domain
B > B0 (where re � B0 � L): the right-hand side yields ap-
proximately EL6, and the left-hand side can be computed by
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using Gauss’s theorem and Eq. (38). We get

E = h̄2D̃

L6
, (40)

where

D̃ ≡
√

3(m1m2 + m2m3 + m3m1)2

9(m1m2m3)3/2
√

m1 + m2 + m3
D. (41)

The dimension of D̃ is [length]4/[mass].
If there are three-body bound states but no two-body bound

states, Eqs. (38)–(41) are applicable to the lowest-energy
three-body scattering state although this is no longer the three-
body ground state.

If there are two-body bound states, Eq. (38) would describe
a metastable state rather than the ground state. This is analo-
gous to real ultracold atomic gases which are after all not the
true ground state of atoms (the true ground state of multiple
atoms having attractive interactions is a tiny solid or liquid).
One can tune the two-body interactions between ultracold
atoms such that the scattering lengths are zero [24], and then
the three-body scattering hypervolumes will be among the
dominant parameters for low-energy effective interactions.

IV. IMPLICATIONS FOR A DILUTE BOSE-BOSE MIXTURE

We consider an interacting mixture of two Bose-Einstein
condensed gases [25–34]. If the scattering lengths are tuned
to zero near a Feshbach resonance for cold atoms [24,35] or
if they are accidentally close to zero, or if the particles are
near a low-energy three-body resonance, the interactions of
the particles could be dominated by the three-body scattering
hypervolumes. For a two-component Bose gas, consisting of
bosons of types 1 and 2, there are four scattering hypervol-
umes, D1, D112, D122, and D2. Here D1 is the intraspecies
scattering hypervolume of three bosons of type 1, D112 is the
scattering hypervolume of two bosons of type 1 and one boson
of type 2, D122 is the scattering hypervolume of one boson of
type 1 and two bosons of type 2, and D2 is the intraspecies
scattering hypervolume of three bosons of type 2.

We consider N1 bosons of type 1 and N2 bosons of type
2 having vanishing or negligible intraspecies and interspecies
two-body scattering lengths (a11 = a12 = a22 = 0) in a large
cubic box of side length L, and impose the periodic boundary
condition. Using Eq. (40), and assuming low enough densities
such that the total ground state energy E may be approximated
as a sum of the three-particle energies, we get

E = h̄2

L6

(
C3

N1
D̃1 + C2

N1
C1

N2
D̃112 + C1

N1
C2

N2
D̃122 + C3

N2
D̃2

)
,

(42)

where Cn
N = N!/[n!(N − n)!]. According to the general rela-

tions between D̃ and D in Eq. (41),

D̃1 = D1

m1
, (43a)

D̃112 = (m1 + 2m2)2

3m1m2
√

3m2(2m1 + m2)
D112, (43b)

D̃122 = (2m1 + m2)2

3m1m2
√

3m1(m1 + 2m2)
D122, (43c)

D̃2 = D2

m2
, (43d)

where m1 is the mass of each boson of type 1, and m2 is the
mass of each boson of type 2. In the thermodynamic limit,
in which N1, N2, L → ∞ while the densities n1 = N1/L3 and
n2 = N2/L3 are fixed, we get

E

h̄2�
= 1

6
D̃1n3

1 + 1

6
D̃2n3

2 + 1

2
D̃112n2

1n2 + 1

2
D̃122n1n2

2, (44)

where � = L3 is the volume of the system. The energy can
also be calculated using the effective field theory (EFT) [16].

Taking the partial derivative of the energy with respect to
the densities n1 or n2, we get the chemical potentials μ1 and
μ2. Further adding the kinetic energy operators and the exter-
nal potentials, we find that the two-component Bose-Einstein
condensate (BEC) can be described by the following coupled
Gross-Pitaevskii equations [36,37]:

ih̄
∂

∂t
�1 =

[
− h̄2∇2

2m1
+ V1(r, t ) + h̄2

2
D̃1|�1|4 + h̄2D̃112|�1|2|�2|2 + h̄2

2
D̃122|�2|4

]
�1, (45a)

ih̄
∂

∂t
�2 =

[
− h̄2∇2

2m2
+ V2(r, t ) + h̄2

2
D̃112|�1|4 + h̄2D̃122|�1|2|�2|2 + h̄2

2
D̃2|�2|4

]
�2, (45b)

where �1 = �1(r, t ) and �2 = �2(r, t ) are the macroscopic
wave functions whose norm squares are the densities n1

and n2, respectively, and V1(r, t ) and V2(r, t ) are the ex-
ternal potentials experienced by the bosons of types 1 and
2, respectively. The terms containing |�1|4, |�1|2|�2|2, or
|�2|4 in the above two equations generalize the three-body
coupling term in the Gross-Pitaevskii equation for a single-
component BEC [38,39]. We have related the three-body
coupling constants to the wave functions for the zero-
energy collisions of three particles, facilitating numerical
determinations of these constants for any given microscopic
interactions.

In a two-component BEC, if the two-body scattering
lengths ai j are not zero, the system is stable when g11 > 0,
g22 > 0, and |g12| <

√
g11g22 [1,2], where gi j = 2π h̄2ai j/μi j

is the two-body coupling constant, and μi j is the reduced mass
of mi and mj . The first and second conditions ensure stability
against collapse when only one component exists. The third
condition ensures the two species are mixed together, rather
than phase separated [25,26,40–43].

Now we derive the conditions for the stability of the
two-component BEC with only three-body scattering hy-
pervolumes and negligible two-body scattering lengths. The
zero-temperature state energy of a homogeneous gaseous
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mixture of the two components is given by Eq. (44). The
mixture should be dynamically stable against local density
fluctuations [1] if

∂2E/∂n2
i > 0 (46)

and (
∂2E

∂n2
1

)(
∂2E

∂n2
2

)
>

(
∂2E

∂n1∂n2

)2

. (47)

Substituting Eq. (44) into the above inequalities, we get

D̃1n1 + D̃112n2 > 0,

D̃2n2 + D̃122n1 > 0, (48)

(D̃1n1 + D̃112n2)(D̃2n2 + D̃122n1) > (D̃112n1 + D̃122n2)2.

(49)

If the scattering hypervolumes become complex (with neg-
ative imaginary parts [4]), the energy in Eq. (44) gains a
negative imaginary part, indicating the decaying of the BEC.
Within a short time �t , the probability that no recombination
occurs is exp(−2|ImE |�t/h̄) � 1 − 2|ImE |�t/h̄. Then the
probability for one recombination is 2|ImE |�t/h̄. If the BEC
is contained in a shallow trap (whose depth is small compared
to the energy released in a three-body recombination event),
after each recombination event, three atoms escape from the
trap. This leads to the decay rates of the atomic densities
within the trap:

1

h̄

dn1

dt
= −|ImD̃1|n3

1 − 2|ImD̃112|n2
1n2 − |ImD̃122|n1n2

2,

1

h̄

dn2

dt
= −|ImD̃2|n3

2 − 2|ImD̃122|n1n2
2 − |ImD̃112|n2

1n2.

(50)

V. SUMMARY

We studied the wave function for the collision of three
particles of unequal masses with short-range interactions at
zero incoming kinetic energy and zero orbital angular momen-
tum. We derived the asymptotic expansions of such a wave
function when two particles are held at a fixed distance and
the third particle is far away from the two, or when all three
particles are far away from each other. From these expansions
we defined the three-body scattering hypervolume for the
three particles. This generalizes the definition of three-body
scattering hypervolume for identical bosons in Ref. [3]. We
then computed the ground state energy of three particles of
unequal masses with short-range interactions in a large cubic
box, assuming vanishing two-body scattering lengths. This
result enabled us to compute the zero-temperature energy of
a dilute two-component BEC having vanishing or negligible
two-body scattering lengths, to write down the corresponding
Gross-Pitaevskii equation for such a BEC in some external
potentials, to derive conditions for the stability of the mixture,
and to find the decay rates of particle densities due to three-
body recombination events.
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APPENDIX: PROCEDURE FOR DETERMINING THE 1-1-1
EXPANSION AND 2-1 EXPANSION

If si � Ri, we can expand T (−p) as

T (−p) =
∑

n

t (n,−p−n)
i , (A1)

where t (n,m)
i scales like Rn

i sm
i (with a possible extra factor that

scales like a polynomial of ln Ri). If si � re, we can expand
S(−q)

i as

S(−q)
i =

∑
m

t (−q,m)
i . (A2)

Because the three-body wave function �(3) may be expanded
as

∑
p T (−p) at B → ∞, and may also be expanded as∑

q S(−q) at Ri → ∞, the t (n,m)
i in the above two expansions

should be the same. In fact the wave function has a double
expansion �(3) = ∑

n,m t (n,m)
i in the region re � si � Ri.

We choose the overall amplitude of �(3) such that T (0) = 1.
Therefore

t (0,0)
i = 1,

t (−1,1)
i = 0,

t (−2,2)
i = 0,

· · · .

(A3)

From

ĤiS
(0)
i = 0, (A4)

we deduce that S(0)
i takes the form

S(0)
i =

∑
l

clφ
(l )
i,R̂i

(si ). (A5)

Using the expansion S(0)
i = t (0,0)

i + t (0,−1)
i + · · · at si � re,

we find that here the coefficient c0 = 1 but cl = 0 for l � 1.
So

S(0)
i = φi(si). (A6)

If si > re we get

S(0)
i = 1 − ai

si
. (A7)

This leads to

t (0,−1)
i = −ai

si
, (A8)

and it will contribute to T (−1).
T (−1) should satisfy Eq. (31) outside the interaction range,

and T (−1) = t (0,−1)
i + t (−1,0)

i + t (−2,1)
i + · · · if si � Ri. From
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these conditions we can determine T (−1):

T (−1) =
3∑

i=1

−ai

si
. (A9)

Expanding T (−1) at si � Ri, we get

t (−1,0)
i = −a j + ak

Ri
,

t (−2,1)
i = (η jka j − ηk jak )

si

R2
i

P1(R̂i · ŝi ),

t (−3,2)
i = −(

η2
jka j + η2

k jak
) s2

i

R3
i

P2(R̂i · ŝi ),

t (−4,3)
i = (

η3
jka j − η3

k jak
) s3

i

R4
i

P3(R̂i · ŝi ), (A10)

and so on. From the expansion S(−1)
i = t (−1,1)

i + t (−1,0)
i +

t (−1,−1)
i + · · · at si � re, and

ĤiS
(−1)
i = 0, (A11)

we find

S(−1)
i = −a j + ak

Ri
φi(si). (A12)

This leads to

t (−1,−1)
i = ai(a j + ak )

Risi
, (A13)

and it will contribute to T (−2).
Repeating this procedure, we can successively determine

T (−2), S(−2)
i ,..., T (−4), and S(−4)

i . In this way we computed
the three-body wave function order by order, and finally ar-
rived at the 111 expansion Eq. (33) and the 21 expansion
Eq. (35).
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