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The ground-state properties of two-component repulsive Fermi gases in two dimensions are investigated by
means of fixed-node diffusion Monte Carlo simulations. The energy per particle is determined as a function of
the intercomponent interaction strength and of the population imbalance. The regime of universality in terms of
the s-wave scattering length is identified by comparing results for hard-disk and for soft-disk potentials. In the
large imbalance regime, the equation of state turns out to be well described by a Landau-Pomeranchuk functional
for two-dimensional polarons. To fully characterize this expansion, we determine the polarons’ effective mass
and their coupling parameter, complementing previous studies on their chemical potential. Furthermore, we
extract the magnetic susceptibility from low-imbalance data, finding only small deviations from the mean-field
prediction. While the mean-field theory predicts a direct transition from a paramagnetic to a fully ferromagnetic
phase, our diffusion Monte Carlo results suggest that the partially ferromagnetic phase is stable in a narrow
interval of the interaction parameter. This finding calls for further analyses on the effects due to the fixed-node
constraint.
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I. INTRODUCTION

In recent years, two-component atomic Fermi gases with
imbalanced populations have been the focus of intense the-
oretical and experimental research activities [1]. On the
attractive branch of Feshbach resonances, researchers ana-
lyzed the phase separation between superfluid and normal
phases beyond the critical polarization corresponding to the
Chandrasekhar-Clogston limit [2–11]. On the other hand, the
repulsive branch allowed exploring the Stoner ferromagnetic
instability [12]. Rather convincing experimental signatures
of ferromagnetic behavior have been recently observed [13],
following the pioneering experiment of Ref. [14] and the
theoretical analyses of Refs. [15–23]. The experimental in-
vestigation of Stoner ferromagnetism is hindered by the
increase of three-body recombinations in the strongly interact-
ing regime of the upper branch [24–27]. Several mechanisms
have been proposed to shift the ferromagnetic critical point to
weaker interactions, including adding shallow optical lattices
[28,29], introducing disorder [30], tuning the mass imbalance
[31–33], or including odd-wave interactions [34–36]. Setups
with reduced dimensionality have been considered as well
[37–41], but various issues remain to be investigated, in par-
ticular for two-dimensional (2D) geometries. The studies on
three-dimensional (3D) systems found that, at large popu-
lation imbalance, both attractive and repulsive Fermi gases
are well described by the so-called Landau-Pomeranchuk
energy functional [3,4,16,42]. This describes quasiparticles,
commonly referred to as (Fermi) polarons, that represent
the building block of Landau Fermi liquids. Many of their

properties have been theoretically and experimentally inves-
tigated, including their chemical potential, effective mass,
and lifetime, both in two and in three dimensions [7,8,43–
46]. However, the applicability of the Landau-Pomeranchuk
functional to 2D Fermi gases is still unclear.

The theoretical analysis of atomic gases in the strongly
interacting regime requires nonperturbative approaches. Pre-
vious computational studies for Fermi gases with short-range
repulsive interactions employed, e.g., quantum Monte Carlo
(QMC) simulations [15–17] and diagrammatic resummation
techniques [47,48], and they focused mostly on 3D ge-
ometries. Two-dimensional setups have been considered for
attractive interactions [49–55], for repulsive gases with bal-
anced populations [56], for single polarons or for the highly
polarized regime [57–62], or for longer-range interactions
[38,63]. Two-dimensional Fermi gases with short-range repul-
sive interactions at finite population imbalance require further
investigations. Beyond the aforementioned analysis on the 2D
Landau-Pomeranchuk functional, the magnetic susceptibility
has to be determined via accurate computational approaches.
Furthermore, the nature of the 2D Stoner ferromagnetic insta-
bility is still unclear.

In this paper, we investigate the ground-state properties
of 2D two-component Fermi gases with short-range repul-
sive interspecies interactions. Our computations are based on
diffusion Monte Carlo (DMC) simulations [64]. The negative-
sign problem is circumvented using the fixed-node constraint,
which leads to a variational upper bound for the ground-state
energy. The energy per particle is determined as a function of
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the interaction strength and of the population imbalance. The
role of the details of the interatomic interaction is quantified
by comparing results for two model potentials, namely, the
hard-disk (HD) and the soft-disk (SD) potentials. In the large
population-imbalance regime, we analyze the applicability
of the Landau-Pomeranchuk functional for 2D repulsive po-
larons. Beyond their chemical potential at zero concentration
[57], we determine their effective mass and their coupling
parameter. Furthermore, from low-imbalance data, we deter-
mine the magnetic susceptibility. These quantities allow us to
estimate the critical interaction strength for the Stoner ferro-
magnetic instability. The transition from a paramagnetic to a
partially ferromagnetic ground state is signaled by the diver-
gence of the susceptibility. The stability region of the fully
ferromagnetic phase is identified from the polaron chemical
potential. As we discuss, while the mean-field (MF) theory
predicts a direct transition from a paramagnetic to a fully
ferromagnetic phase [37,65,66], our QMC results suggest that
a partially ferromagnetic phase is stable in a narrow interme-
diate window of the interaction parameter.

The rest of the paper is organized as follows: the model
Hamiltonian and our computational method are described in
Sec. II. Some known results from perturbative expansions
are reviewed in Sec. III. Our QMC results for the zero-
temperature equation of state, and for the polaron’s properties,
and the analysis of the onset of ferromagnetism are reported in
Sec. IV. Section V provides a summary of the main findings
and discusses some future perspectives. In the Appendix we
discuss the effective range of the model potentials we use.

II. MODEL AND METHOD

We consider 2D two-component atomic Fermi gases de-
scribed by the following Hamiltonian:

H = −
∑

σ=↑,↓

Nσ∑
iσ =1

h̄2

2m
∇2

iσ +
∑
i↑,i↓

v(ri↑i↓ ); (1)

here, m is the particle mass for both components and h̄ is
the reduced Planck constant. The indices i↑ = 1, . . . , N↑ and
i↓ = 1, . . . , N↓ label atoms of the two components, hereafter
referred to as spin-up and spin-down particles. The distance
between opposite-spin fermions is ri↑i↓ = |ri↑ − ri↓ |. The total
number of fermions is N = N↑ + N↓, and the polarization is
defined as P = (N↑ − N↓)/N . The particles move in a square
box of size L with periodic boundary conditions. The total
density is thus n = N/L2 = n↑ + n↓, where the spin densities
are nσ = Nσ /L2. The latter allow defining the Fermi energies
of the component σ : Eσ

F = (h̄kσ
F )2/2m, where the correspond-

ing Fermi wave vectors are kσ
F = √

4πnσ . v(r) is a short-range
potential that describes the intercomponent interactions. We
consider two model potentials. The first is the HD model:
v(r) = +∞ if r < a2D and zero otherwise. The disk diame-
ter coincides with the 2D s-wave scattering length a2D. The
second one is the SD potential: v(r) = V0 if r < R and zero
otherwise, where V0 � 0 is the potential intensity. In this case,
the scattering length is related to the disk diameter R by the
relation

a2D = R exp

[
− 1

K0R

I0(K0R)

I ′
0(K0R)

]
, (2)

where K0 = mV0/h̄2 and I0(x) is the modified Bessel function
of the first kind and I ′

0(x) is its derivative. In this paper, we set
R and V0 so that R = 2a2D. This allows us to analyze the pos-
sible role played by details of the model potential beyond the
s-wave scattering length. See the Appendix for a discussion
on the effective range of the SD potential. Notice that, due to
the logarithmic dependence of the 2D scattering amplitude on
energy, in the literature various definitions of the 2D scattering
length have been used. We stick to the notation that is most
natural for hard disks—namely, a2D corresponds to the disk
diameter—which was also used in Refs. [49,50,52,56,67].
An alternative definition, which is often used when con-
sidering attractive interactions [44,59,62], sets the scattering
length equal to b, where the dimer binding energy is |εB| =
h̄2/mb2. The relation between the two definitions is b =
a2Deγ /2, where γ ∼= 0.577 is Euler-Mascheroni’s constant, so
that the coupling constant ln (kF b) = ln (kF a2D) + γ − ln 2 	
ln (kF a2D) − 0.12. In cold-atom experiments, 2D systems are
created by limiting the particle motion in one direction to
zero-point oscillations using a strong confining potential. The
effective 2D scattering length for dilute gases is determined by
solving the scattering problem in the presence of such strong
confinement, integrating over virtual excitations induced by
the short-range interaction [68,69].

To determine the ground-state properties of the Hamilto-
nian (1), we employ the fixed-node DMC algorithm [64].
This is designed to sample the lowest-energy wave function
by stochastically evolving a modified Schrödinger equation
in imaginary time. For stoquastic Hamiltonians, i.e., those
manageable by QMC simulations without a negative-sign
problem, this algorithm provides unbiased estimates of the
energy, provided that possible biases due to the finite time
step and the finite random-walker population are reduced
below the statistical uncertainty. In order to circumvent the
negative-sign problem, which affects fermionic simulations
in dimensions D > 1, the fixed-node constraint is introduced.
It consists in imposing that the nodal surface of the many-
body wave function is the same as that of a suitably chosen
trial wave function ψT . The predicted energies are rigorous
variational upper bounds and are very close to the exact
ground-state energy if the nodes of ψT are good approxima-
tions of the ground-state nodal surface. We choose trial wave
functions of the Jastrow-Slater type, defined as

ψT (r1, . . . , rN ) = D↑(N↑)D↓(N↓)
∏
i↑,i↓

f (ri↑i↓ ), (3)

where D↑(↓) denotes the Slater determinant of single-particle
plane waves for the spin-up (spin-down) particles. The Jas-
trow correlation term f (r) is taken to be the solution of the
s-wave radial Schrödinger equation describing two-particle
scattering with the potential v(r). The scattering energy is
set so that f ′(r = L/2) = 0 (for more details, see Ref. [67]).
Since f (r) > 0, the nodal surface is determined by the Slater
determinants.

Beyond the aforementioned possible biases, the QMC re-
sults might be affected by finite-size effects. To reduce them,
we correct the QMC energies using the finite-size correction
corresponding to noninteracting gases with the same spin
densities. This correction is rescaled according to the parti-
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cle’s effective mass m∗
0 of the interacting system, leading to

the following correction formula: E → E − [Eid (N↑, N↓) −
N↑e↑

FG − N↓e↓
FG]m/m∗

0 [70], where eσ
FG ≡ Eσ

FG/Nσ = Eσ
F /2 is

the energy per particle of the (fully imbalanced) ideal Fermi
gas with the component σ only, and id refers to ideal
gases. Notice that we use the same approximation for the
effective mass of both components. When extracting the mag-
netic susceptibility from data at low population imbalance
(and when displaying the QMC results in Fig. 2), we use
the estimate from second-order perturbation theory for bal-
anced gases [71]: m∗

0/m = 1 + 2/ ln2(c0na2
2D), where c0 =

πe2γ /2 ∼= 4.98. See the discussion in Sec. III for the choice
of c0. To account for the uncertainty in the validity of the
perturbative effective mass, half of the difference between
the above correction and the one obtained with m∗

0 = m is
summed in quadrature to the statistical uncertainty. The above
energy correction is implicit in the definition of the polaron
chemical potential (see Sec. IV). When extracting the polaron
coupling parameter from data obtained at large population
imbalance, we compute the energy correction with m∗

0 = m.
This choice is indeed more appropriate for the regime of
large population imbalance, since the interaction effects on the
majority component are strongly reduced, arguably leading to
an effective mass closer to the particle mass m.

The polaron effective mass can be determined in DMC
simulations from the imaginary-time diffusion coefficient of
a spin-down impurity in a spin-up Fermi sea, as [72,73]

m∗

m
= lim

τ→∞
m

2τ h̄
〈(r↓(τ ) − r↓(0))2〉, (4)

where r↓(τ ) is the impurity position at imaginary time τ and
the angular brackets indicate the Monte Carlo average.

III. PERTURBATIVE TREATMENT

Whenever possible, we compare our QMC data to the
corresponding perturbative results. The mean-field cou-
pling constant of a dilute system is the low-energy on-
shell T matrix [68,71,74], which reduces to the real part
of the scattering amplitude. For a 2D two-component
Fermi system this results in an energy-dependent cou-
pling g̃(E ) = (4π h̄2/m)/ ln[Ea/(μ↑ + μ↓ + E )], where Ea =
4h̄2/ma2

2De2γ and μσ is the chemical potential of the spin-σ
component. Differently from the 3D case, the zero-energy
limit E → 0 displays a significant density dependence, albeit
logarithmic, through the chemical potentials. By approxi-
mating the latter with the Fermi energies Eσ

F we obtain
g̃ = (4π h̄2/m)/| ln(c0na2

2D)|, where, as already mentioned in
Sec. II, c0 = πe2γ /2 ∼= 4.98. Notice that only the total density
n = n↑ + n↓ appears, even in the imbalanced case, due to
the linearity of the Fermi energy with the 2D density. In the
literature, it is sometimes set to c0 = 1 [75], which is correct
within logarithmic accuracy in the weak-coupling regime.
However, we observe that our choice for c0 allows for much
more accurate perturbative expressions, when compared to the
nonperturbative results, consistently with Refs. [56,57,71].

At the mean-field level, the energy density ε = E/V in
a volume V = L2 is the sum of the kinetic contributions of
the two components, plus an interaction term which is given
by the coupling constant times the number of possible pairs,

leading to

εMF(n↑, n↓) = e↑
FGn↑ + e↓

FGn↓ + g̃n↑n↓. (5)

This standard expression is valid both for balanced and imbal-
anced systems [75]. In the balanced case (n↑ = n↓ = n/2), it
readily yields the energy per particle:

eMF(n) ≡ εMF(n/2, n/2)/n = eFG(1 + 2g), (6)

where eFG = EF /2 = π h̄2n/2m is the energy per particle of
the ideal balanced Fermi gas, and we defined the dimension-
less expansion parameter

g = 1∣∣ ln
(
c0na2

2D

)∣∣ . (7)

The second-order expansion in g for the balanced case is also
known [71,76,77]. It reads

e2nd (n) = eFG[1 + 2g + (3 − 4 ln 2)g2]. (8)

The coefficient of the second-order term is fixed by the choice
of c0.

The single-polaron chemical potential is the energy of a
single spin-down impurity in a Fermi sea of the majority spin-
up component. At the mean-field level, it can be derived from
Eq. (5), and, in dimensionless form, it reads [57]

AMF = L2[εMF(n↑, 1/L2) − εMF(n↑, 0)]/e↑
FG = 4g, (9)

where we eventually took the thermodynamic limit and g is
calculated at n = n↑.

IV. RESULTS

The zero-temperature equation of state for balanced pop-
ulations (corresponding to the polarization P = 0) has been
investigated in Ref. [56]. In Fig. 1, our QMC results for
the energy per particle e = E/N are plotted as a function of
the dimensionless interaction parameter kF a2D, where kF =√

2πn is the Fermi wave vector of the balanced ideal Fermi
gas. To better visualize the interaction effects, we subtract
the mean-field prediction Eq. (6). We also show the pertur-
bative second-order result Eq. (8) with the continuous black
curve. Evidently, this second-order expansion is valid only for
relatively weak interactions kF a2D � 0.1 [56]. At relatively
strong interactions kF a2D 	 0.45, the energy of the balanced
gas overcomes the one of the fully polarized configuration
(corresponding to P = 1). This implies that the paramagnetic
phase is unstable [17]. In this regime, the results for the HD
and the SD potentials deviate by less than 1%. This indicates
that the onset of ferromagnetism is essentially universal in
terms of the 2D s-wave scattering length, while other details
of the interaction potential play a marginal role.

Precisely locating the transition from the paramagnetic to
a ferromagnetic ground state requires simulating imbalanced
components. In Fig. 2, the energy per particle e is plotted
as a function of the polarization P, for several values of
the interaction parameter kF a2D. One notices that the QMC
results for the particle numbers N � 74 are in good agree-
ment, indicating that the correction described in Sec. II is
adequate to suppress finite-size effects. Interestingly, in the
regime of large population imbalance, corresponding to P 	

063314-3



S. PILATI, G. ORSO, AND G. BERTAINA PHYSICAL REVIEW A 103, 063314 (2021)

FIG. 1. Equation of state at zero population imbalance, i.e., P =
0. The dimensionless correlation energy (e − eMF )/eFG is plotted
as a function of the dimensionless interaction parameter kF a2D. e
is the ground-state energy per particle, eMF is the mean-field result
[see Eq. (6)], and eFG is the energy of a balanced ideal Fermi gas.
(Red) points correspond to the hard-disk intercomponent potential
(HD), and (green) empty squares correspond to the soft-disk (SD)
potential with range R = 2a2D. The number of particles is N = 98.
The continuous (black) curve indicates the second-order equation of
state [see Eq. (8)]. The long-dash (purple) curve indicates the energy
of the fully imbalanced ideal Fermi gas. The dot-dash curves are
guides to the eye. Here and in all figures, the errorbars are smaller
than the symbol size when not visible.

1, the equation of state is well approximated by the Landau-
Pomeranchuk energy functional:

ELP = E↑
FG

(
1 + Ax + m

m∗ x2 + Fx2
)
, (10)

where x = N↓/N↑ is the concentration of the minority com-
ponent, here identified with the spin-down particles. The
first term on the right-hand side is the kinetic energy of the
majority component; the second term is proportional to the
dimensionless chemical potential at zero concentration of the
polarons A(k↑

F a2D); the third term represents the kinetic en-
ergy of the polaron gas, and it is fixed by the polaron effective
mass m∗(k↑

F a2D). The fourth term represents the energy contri-
bution due to correlations among polarons, and its magnitude
is fixed by the dimensionless coupling parameter F (k↑

F a2D).
A quadratic scaling with the concentration, namely, Fx2, is
found to accurately describe the QMC data. If the exponent of
x is used as a fitting parameter, the results are compatible with
the quadratic ansatz. In fact, this is the same scaling of the 3D
case [3,42]. An additional logarithmic factor might apply to
the 2D case, but it would not be noticeable on the available
range of concentration values. It is worth noticing that, in two
dimensions, both the third and the fourth terms scale with the
second power of the concentration x, as opposed to the 3D
case, where the former scales as m

m∗ x5/3 [3].
In Fig. 2, Eq. (10) is compared to the QMC datasets

for different (fixed) values of kF a2D, for varying P. The

following conversion formulas are used: k↑
F = kF

√
2

1+x ,

E↑
FG = 2EFG/(1 + x)2, and x = 1−P

1+P . The polaron chemical

FIG. 2. Equation of state of Fermi gases with imbalanced pop-
ulations. The energy per particle e/eFG is plotted as a function
of the population imbalance P. eFG is the energy of the balanced
ideal Fermi gas. Different symbols correspond to different particle
numbers N . Different datasets correspond to different interaction
parameters kF a2D, increasing from bottom to top. Panel (a) in-
cludes data for kF a2D

∼= 0, 0.0022, 0.0332, 0.111, 0.222, 0.332,

0.410, 0.443, 0.487, 0.554. Panel (b) is a zoom in the vertical axis,
including only data for kF a2D

∼= 0.222, 0.332, 0.410, 0.443, 0.487.
The (red) continuous curves represent the quadratic fitting functions
defined in Eq. (11). The (brown) dashed curves represent the Landau-
Pomeranchuk functional, namely, Eq. (10), which is applicable in the
large polarization regime.

potential is determined from QMC simulations as the fixed-
volume energy difference A = [E (N↑, 1) − E (N↑, 0)]/e↑

FG,
where E (N↑, N↓) is the energy of a gas with N↑ spin-up and N↓
spin-down particles. Our results are shown in Fig. 3. They are
compared with the QMC data from Ref. [57], finding excellent
agreement. The mean-field prediction of Eq. (9) is also shown.
It appears to be accurate only in the regime k↑

F a2D � 0.3.
When A exceeds the chemical potential of the majority com-
ponent μ↑ = E↑

F , a state with two fully separated domains,
each hosting one component only, is thermodynamically sta-
ble [16]. This criterion allows one to pinpoint the onset of full
ferromagnetism at k↑

F a2D 	 0.69, corresponding to kF a2D 	
0.49 for a gas with globally balanced populations. Again, the
small deviations between the HD and the SD results indicate
the marginal role played by nonuniversal details beyond the
s-wave scattering length. The role played by the effective
range is analyzed in more detail in the Appendix. If one uses
the mean-field result Eq. (9), the condition for the stability of
the fully ferromagnetic state reads AMF = 4g > 2. This cor-
responds to the critical interaction parameter kF a2D

∼= 0.413.
The polaron effective mass m∗ is determined from QMC sim-
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FIG. 3. Chemical potential at zero concentration of the repulsive
polaron A as a function of the interaction parameter k↑

F a2D, in units
of the energy per particle of the fully imbalanced ideal Fermi gas
e↑

FG. k↑
F = √

4πn↑ is the Fermi wave vector of the fully polarized
ideal Fermi gas. (Blue) squares correspond to the hard-disk (HD)
potential. (Red) triangles correspond to the soft-disk (SD) potential.
The number of majority-spin particles is N↑ = 61. The continuous
(brown) curve represents the mean-field prediction Eq. (9). The thin
horizontal (black) line indicates the chemical potential of the ma-
jority component μ↑. The empty (blue) squares represent the results
from Ref. [57].

ulations with a single spin-down impurity via Eq. (4). The
results for the HD potential are shown in Fig. 4. Previous stud-
ies reported corresponding QMC data for dipolar interactions
and for soft-core potentials with large effective range [57,78].
Notably, the effective mass increases up to m∗ ≈ 1.35m in the
regime where ferromagnetism occurs. In three dimensions, the

FIG. 4. Inverse effective mass m/m∗ as a function of the interac-
tion parameter k↑

F a2D. m is the particle mass. (Blue) squares represent
the QMC results for the HD potential. The continuous (blue) line
is a Padé fitting function (see text). The dashed (purple) curve and
the dot-dash (brown) curve represent two previous theoretical pre-
dictions for upper-branch polarons, extracted from Refs. [58,59],
respectively. The (red) circles represent the experimental results,
extracted from Ref. [44].

corresponding effect is significantly smaller, with the effective
mass reaching m∗ ≈ 1.1m [28]. This suggests that correlation
effects are more relevant in two dimensions. In Fig. 4, we
compare our QMC predictions against two previous theories
for the upper branch of resonant attractive interactions. The
first is the Nozières-Schmitt-Rink calculation of Ref. [59]; the
second is the calculation based on a particle-hole variational
wave function performed in Ref. [58]. While good agree-
ment is found for moderate interactions k↑

F a2D � 0.4, in the
strongly interacting regime the two previous theories appear
to overestimate the effective mass compared to the QMC data.
This discrepancy might be attributed to the different approx-
imations in the compared theories, or to intrinsic differences
between the repulsive model potentials adopted in our QMC
simulations and the upper-branch models adopted in the two
previous theories. The experimental results of Ref. [44] are
also shown in Fig. 4. They instead underestimate the polaron
effective mass compared to the QMC prediction. As argued
in Ref. [44], the experiment might not be describable by a
purely 2D model, possibly explaining this discrepancy (see
also Ref. [79]).

We determine the polaron coupling parameter F by fitting
the Landau-Pomeranchuk functional Eq. (10) to the HD QMC
data in the regime of large population imbalance, as illus-
trated in Fig. 2. For this fitting procedure, a predetermined
parametrization of the polaron chemical potential and of the
effective mass is used. The first is obtained from the HD
data in Fig. 3, which are well described by the polynomial
A(k↑

F a2D) = 4g + aAg2 + bAg3 + cAg4, with coefficients aA =
1.52(5), bA = −6.9(2), and cA = 4.2(2). Here, the expansion
parameter g, defined in Eq. (7), is computed at n = n↑ =
k↑2

F /4π . Notice that this expansion is consistent with the
mean-field result Eq. (9) in the weakly interacting limit. The
inverse effective mass is parametrized as m

m∗ (k↑
F a2D) = (1 +

amg2)/(1 + bmg2), with am = 3.2(6) and bm = 5.4(7) (see
Fig. 4). It is interesting to observe that this parametrization is
consistent with m∗

m 	 1 + 2g2 in the weakly interacting limit,
analogously to the perturbative result in the balanced case. To
parametrize the polaron coupling parameter, the polynomial
function F (k↑

F a2D) = aF g2 + bF g3 is found to be particu-
larly accurate. Indeed, with the optimal fitting parameters
aF = 6.2(1) and bF = −4.6(4), the Landau-Pomeranchuk
functional accurately describes all data at large population
imbalance before the ferromagnetic transition [80]. Notice
that these values imply that the polaron coupling parameter is
as large as, e.g., F ≈ 0.43 for k↑

F a2D = 0.3, indicating the rel-
evance of interpolaron correlations. A polynomial expansion
of the polaron coupling constant F was developed in Ref. [42]
for 3D attractive Fermi gases using the variational scheme of
Ref. [81]. Our result could serve as a benchmark for analogous
studies for 2D systems.

The stability region of the paramagnetic ground state can
be identified by analyzing the magnetic susceptibility χ =
[ 1

n
∂2e
∂P2 ]−1 of balanced gases. We extract χ by fitting the low-

polarization energies with quadratic functions written in the
form

e(P) = eFG

(
a + χ0

χ
P2

)
, (11)
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FIG. 5. Inverse magnetic susceptibility χ0/χ at P = 0 as a func-
tion of the interaction parameter kF a2D for the HD potential. χ0 is the
susceptibility of the ideal Fermi gas. Different symbols correspond
to different particle numbers N . The long-dash (red) curve represents
the mean-field (MF) prediction Eq. (12). The short-dash (green)
segment is a linear fit on N = 98 data close to the critical point of
the ferromagnetic transition. The vertical arrows indicate the critical
point for the stability of the fully ferromagnetic phase as predicted
by the mean-field (MF) theory (dot-dash red arrow) and by the QMC
results for the polaron chemical potential (continuous brown arrow).

where e(P) is the energy per particle at polarization P, a
and χ are the fitting parameters, and χ0 = n/(2eFG) is the
susceptibility of the 2D balanced ideal Fermi gas. The inverse
susceptibility for the HD potential is shown in Fig. 5. These
estimates are averaged over different fitting windows, extend-
ing to different maximum polarizations from P 	 0.10 to the
maximum values displayed in Fig. 2. Notably, we find good
agreement with the mean-field prediction, which we derive
from Eq. (5):

χMF = χ0(1 − 2g)−1. (12)

Small deviations occur only close to the divergence point.
This divergence signals the transition from the paramagnetic
to a ferromagnetic phase. This criterion corresponds to a
second-order transition. Our QMC data are indeed consistent
with the second-order scenario. However, from the numerics
one cannot rigorously rule out a weakly first-order transition,
with two competing minima in the e(P) curve—one at P = 0
and the other at finite P—separated by an extremely shallow
maximum. According to the MF theory, the divergence oc-
curs when g = 1/2. Interestingly, this critical point coincides
with the MF prediction for the onset of full ferromagnetism
discussed above. Therefore, the MF theory predicts a direct
transition from the paramagnetic to the fully ferromagnetic
phase [37,66]. To locate the transition point from the QMC
data, we perform a fit in the critical region with the scaling law
χ ∝ |kF a2D − kF acrit

2D |−γ̄ , where γ̄ = 1 is the susceptibility
critical exponent for the ferromagnetic transition in metallic
systems [82]. This fit is represented by the dashed segment
in Fig. 5. The best-fit parameter kF acrit

2D
∼= 0.44 represents

an estimate of the critical interaction strength. This value is
sizably smaller than the critical point for the onset of full fer-
romagnetism (predicted from QMC results) discussed above,

namely, kF a2D 	 0.49. Therefore, according to the QMC data,
a partially ferromagnetic phase is stable in the narrow window
0.44 � kF a2D � 0.49. This statement should be taken with
caution. As discussed in Sec. II, the QMC predictions are
affected by the fixed-node constraint. It is possible that more
accurate nodal surfaces based on, e.g., backflow correlations
[63] or Pfaffian wave functions [83,84] would provide lower
variational upper bounds for balanced populations, leading
to a direct paramagnetic to fully ferromagnetic transition, as
predicted by the MF theory. It is worth mentioning that be-
yond mean-field effects were found to open a narrow partially
ferromagnetic window also in Ref. [37]. However, that study
considered a density-independent coupling constant, which
applies to quasi-2D traps in the weakly interacting regime,
where the 3D s-wave scattering length is much smaller than
the cloud size in the confined direction [85]. It is worth
emphasizing that, in two dimensions, QMC simulations lo-
cate the ferromagnetic transition at larger interaction strength
compared to the mean-field prediction, as opposed to the 3D
case where the mean-field theory overestimates the critical
interaction strength.

The 2D Stoner ferromagnetic instability has been studied
also in the 2D Hubbard model with infinite on-site repulsion
[86]. This reference employed QMC algorithms and predicted
a sharp transition from the paramagnetic to the fully fer-
romagnetic phase as the density increases, with a narrow
intermediate region where the polarization state could not
be unambiguously determined. These QMC results were de-
scribed in the framework of an infinite-order phase transition
[87]. This is characterized by the vanishing of all coefficients
of the polynomial expansion of e(P), leading to the flattening
of the curve at the transition point. This scenario implies a
discontinuous jump of the polarization from P = 0 to the
saturation value, as in first-order transitions, but without hys-
teresis. The susceptibility exponent in the paramagnetic phase
is, again, γ̄ = 1 [87]. Similarly to the results of Ref. [86], also
our QMC data display a flattening of the e(P) curve close to
the critical point, consistently with the infinite-order transi-
tion. However, further investigations are in order to confirm
the applicability of this scenario to the continuous-space 2D
Fermi gas.

V. CONCLUSIONS

We employed fixed-node DMC simulations to investigate
the ground-state properties of 2D two-component Fermi gases
with short-range repulsive intercomponent interactions. Our
focus was on configurations with imbalanced populations.
Notably, we have shown that the Landau-Pomeranchuk energy
functional, which was previously applied only to 3D Fermi
gases, accurately describes the equation of state of 2D repul-
sive Fermi gases in the large imbalance regime. Beyond the
previously investigated quantities, namely, the energy of the
balanced gas [56] and the polaron chemical potential [57], we
provided QMC results for the polarons’ effective mass, for
their coupling parameter, and for the magnetic susceptibility
for balanced populations. These are experimentally relevant
properties [43]. The polaron effective mass and chemical po-
tential have been measured in Refs. [7,7,44,88,89] for 3D or
quasi-2D geometries. Reference [44] also observed effects
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due to the interpolaron coupling for attractive interactions.
The QMC predictions for the susceptibility of 3D repulsive
Fermi gases have been used in the calculations of the spin-
dipole oscillation frequency [90], which were then employed
for the experimental analysis of Stoner ferromagnetism [13].
Spin transport has also been investigated in imbalanced 2D
attractive Fermi gases [91,92].

Furthermore, we provided estimates for the critical interac-
tion strengths where partially and fully ferromagnetic phases
occur. The mean-field theory predicts a direct paramagnetic
to fully ferromagnetic transition. Instead, our QMC results
suggest that a partially ferromagnetic phase is stable in a
narrow interval of the interaction parameter. The transition we
observe is consistent with a second-order or with an infinite-
order scenario. Further investigations are in order to clarify the
findings in the close vicinity of the critical point signaled by
the divergence of the susceptibility, possibly with more accu-
rate nodal surfaces. High-order perturbative expansions might
provide useful benchmarks, as in the recent studies on 3D
Fermi gases [93–95]. Furthermore, it is worth mentioning that
more exotic ferromagnetic phases with spin textures might
form in the critical region [15]. Also, exotic pairing mecha-
nisms [96] described by Pfaffian wave functions might be at
work. We leave these analyses to future investigations. Our re-
sults highlight interesting effects in 2D repulsive Fermi gases,
and we hope that they will stimulate further experiments on
this setup. The long lifetime of upper-branch polarons recently
observed in the presence of orbital Feshbach resonances [45],
as contrasted to the one for broad resonances [44,58,59], gives
us hope that the phenomena we discussed will be experimen-
tally realized in the near future.

All of the QMC results presented in this paper are freely
available online (see Ref. [97]).
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APPENDIX: FINITE-RANGE EFFECTS ON THE POLARON
CHEMICAL POTENTIAL

Here, we further analyze the role played by the range of the
intercomponent potential v(r). In Fig. 6, the polaron chemical
potential at zero concentration is plotted as a function of
the range R of the SD model. The scattering length and the
density are fixed so that k↑

F a2D 	 0.6527. This is a relatively
strong interaction, close to the regime of stability of the fully
ferromagnetic phase. The first considered range is R = a2D,
which corresponds to the HD potential. The case R = 2a2D

is the range considered in Figs. 1 and 3. The case R 	
2.829 67a2D corresponds to the range considered in Ref. [78],
where the focus was on soft-core potentials designed to mimic

FIG. 6. Polaron chemical potential A, in units of e↑
FG, as a func-

tion of the rescaled range R/a2D of the SD potential. The interaction
parameter is k↑

F a2D 	 0.6527. The labels close to the symbols in-
dicate the corresponding values of the s-wave effective range reff ,
computed as in Eq. (A6).

the scattering properties in the presence of orbital Feshbach
resonances in quasi-2D traps [45]. We notice that close to the
hard-core regime R 	 a2D the finite-range effects are mod-
erate, i.e., the polaron chemical potential undergoes small
variations as R increases beyond the HD case. Instead, in
the soft-core regime R � 2a2D, the variations become more
pronounced, consistently with the findings of Ref. [78].

It is worth analyzing the results of Fig. 6 also in terms of
the effective range of the SD model. We start from the 2D
scattering amplitude for the partial wave l at scattering wave
vector p, which can be expressed as [98]

fl (p) ∝ p2l

p2l cot δl (p) − ip2l
. (A1)

The effective-range expansion for the phase shift δl (p) reads

p2l cot δl (p) = − 1

al
+ 2

π
p2l ln(pρl ) + 1

2
rl p2 + O(p4),

(A2)
where ρl is an arbitrary (nonzero) length scale that shifts the
value of the coefficient of p2l . In particular, in the s-wave case
l = 0, one has

cot δ0(p) = − 1

a0
+ 2

π
ln(pρ0) + 1

2
reff p2 + O(p4), (A3)

so that a0 is dimensionless and the s-wave effective range
reff ≡ r0 has the dimensions of an area. The redundancy of
a0 and ρ0 allows one to set ρ0 = R/2, obtaining

cot δ0(p) = 2

π
ln

(
pa2Deγ

2

)
+ 1

2
reff p2 + O(p4). (A4)

Here, a2D corresponds to the 2D scattering length defined in
Sec. II; it can be expressed as

a2D
eγ

2
= R

2
e− π

2a0 , (A5)
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where the coefficients on the left-hand side are such that, for
the HD potential, a2D = R. For the SD potential, the effective
range reads [98]

reff

R2
= 1

π
+ 2

πK2
0 R2

− 2

π

I0(K0R)

K0R I1(K0R)

= 1

π
+ 2

π

[
h̄2

mV0R2
+ ln

(
a2D

R

)]
. (A6)

Figure 6 reports the values of reff corresponding to the con-
sidered SD ranges. It is worth noticing that reff is negative for
R � 2.2a2D, i.e., in the soft-core regime, where finite-range
effects become more pronounced. An interesting question,
which is left to future investigations, is if and in which density
regime different model potentials characterized by the same
s-wave scattering length and the same effective range lead to
similar results, meaning that the other scattering parameters,
namely, the shape parameters and the higher partial-wave
terms, do not play a sizable role.
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