
PHYSICAL REVIEW A 103, 063312 (2021)

Nature of the polaron-molecule transition in Fermi polarons

Cheng Peng,1,2,* Ruijin Liu,1,* Wei Zhang,3,4 and Xiaoling Cui1,5,†

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3Department of Physics, Renmin University of China, Beijing 100872, China
4Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices,

Renmin University of China, Beijing 100872, China
5Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

(Received 3 March 2021; revised 1 June 2021; accepted 7 June 2021; published 21 June 2021)

It has been commonly believed that a polaron-to-molecule transition occurs in three-dimensional (3D) and
2D Fermi polaron systems as the attraction between the single impurity and majority fermions gets stronger.
The conclusion has been drawn from the separate treatment of polaron and molecule states and thus deserves
a close reexamination. In this work, we explore the physics of polarons and molecules by utilizing a unified
variational Ansatz with up to two particle-hole (ph) excitations (V-2ph). We confirm the existence of a first-order
transition in 3D and 2D Fermi polarons, and we show that the nature of such a transition lies in an energy
competition between systems with different momenta, Q = 0 and |Q| = kF ; here Q is defined as the momentum
of a Fermi polaron system with respect to the Fermi sea of majority fermions (with Fermi momentum kF ). The
literally proposed molecule Ansatz is identified as an asymptotic limit of the |Q| = kF state in a strong-coupling
regime, which implies a huge SO(3) (for 3D) or SO(2) (for 2D) ground-state degeneracy in this regime. The
recognition of such degeneracy is crucially important for evaluating the molecule occupation in realistic systems
with finite impurity density and at finite temperature. To compare with recent experiment of 3D Fermi polarons,
we have calculated various physical quantities under the V-2ph framework, and we obtained results that are in
good agreement with experimental data in the weak-coupling and near-resonance regime. Further, to check the
validity of our conclusion in 2D, we have adopted a different variational method based on the Gaussian sample
of high-order ph excitations (V-Gph), and we found the same conclusion on the nature of the polaron-molecule
transition therein. For a 1D system, the V-2ph method predicts no sharp transition, and the ground state is always
at the Q = 0 sector, consistent with the exact Bethe-Ansatz solution. The presence/absence of a polaron-molecule
transition is analyzed to be closely related to the interplay effect of Pauli-blocking and ph excitations in different
dimensions.
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I. INTRODUCTION

A polaron refers to a typical quasiparticle in highly polar-
ized systems. Its concept was first raised by Landau in the
1930s when he discussed how an electron moving through a
solid will cause the distortion of the lattice and get trapped
[1]. After nearly a century, the concept of a polaron has been
well acknowledged and extended to various physical systems.
In particular, in recent years ultracold atoms have served as
an ideal platform for the study of polaron physics, thanks
to the high controllability of species, number, and interac-
tion therein. One important branch of these studies is the
Fermi polaron, which describes an impurity immersed in and
dressed by a fermionic environment. To date, the attractive
and repulsive Fermi polarons have been extensively explored
in ultracold atoms both experimentally [2–9] and theoretically
[10–36].
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For the attractive Fermi polaron in high dimensions, it
has been commonly believed that a polaron-to-molecule tran-
sition occurs when the attraction between the impurity and
majority fermions increases [14–16,18–20,23–26]. Namely,
depending on the attraction strength between the impurity
and fermions, it could end up with two distinct destinies: one
destiny is that the impurity is dressed with the surrounding
cloud of majority fermions and forms a fermionic polaron;
the other is that the impurity essentially binds with one sin-
gle fermion on top of the Fermi surface to form a bosonic
molecule. To characterize these distinct pictures, the follow-
ing variational Ansatz for polaron and molecule states with
truncated n particle-hole (ph) excitations have been proposed
[10,12,13,15–17,20–24,31,34]:
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Here c†
k,σ is the creation operator of spin-σ fermions at mo-

mentum k, the ↓-spin is the impurity, and |FS〉N is the Fermi
sea of ↑-spin with number N ; all q (k) are below (above) the
Fermi surface of ↑-atoms and P = ∑

j q j − ∑
i ki. The two

Ansätzes above have been shown to lead to a first-order transi-
tion between polaron and molecule for both 3D [15,16,18–20]
and 2D [23,24] Fermi polaron systems. The same conclusion
was also drawn from Monte Carlo methods [14,25,26], where
the polaron and molecule were treated separately with their
energies extracted from different physical quantities.

The separate treatment of polaron and molecule, though
physically inspiring, has its own drawback as the transition
appears to be artificially designed at the very beginning. As a
result, the conclusion of the polaron-molecule transition can
easily get questioned. For instance, a previous theory [36]
claimed the absence of such a transition by showing that the
two types of variational Ansätzes are mutually contained in
a generalized momentum space if more ph excitations are
included. Therefore, the relation and competition between
polaron and molecule deserve a close reexamination under a
unified framework.

On the experimental side, the polaron-molecule transition
has been identified by a continuous zero-crossing of quasi-
particle residue, instead of a sudden jump as in the first-order
transition, in both 3D and 2D Fermi gases [2,6]. In particular,
a recent experiment on 3D Fermi polarons has observed a
smooth evolution of various physical quantities across the
polaron-molecule transition, as well as the coexistence of
a polaron and molecule near their transition [9]. All these
observations need to be reconsidered carefully following the
unified treatment of polaron and molecule states.

With the above motivations, in a recent work [37] we have
adopted a unified variational method with one ph excitation
(V-1ph) to study the Fermi polaron problem in 3D. Specifi-
cally, the unified Ansatz we used is P3(Q), i.e., the extension
of P3(0) in Eq. (1) to finite momentum. Note that here mo-
mentum Q is defined in the reference frame of a background
Fermi sea of all majority atoms; in other words, it represents
the momentum difference between the ground states of an in-
teracting system (Fermi polaron) and a noninteracting system
(zero-momentum impurity plus the majority Fermi sea), and
thus it can well characterize the interaction effect. By this, we
found that the bare molecule state M2(0) actually constitutes
part of P3(Q) with |Q| = kF [denoted as P3(kF ) for short];
here kF is the Fermi momentum of majority fermions. Due
to the incomplete variational space of M2(0) even within the
lowest-order ph excitations, it always has a higher energy
than P3(kF ). The significance of introducing M2(0) is found
to lie in the strong-coupling regime, where it can serve as a
good approximation for P3(kF ). Within the V-1ph method, we
concluded that the nature of the “polaron-molecule transition”
is given by an energy competition between P3(0) and P3(kF ).

FIG. 1. Illustration of the polaron-molecule transition as chang-
ing the impurity (↓)-fermion (↑) attraction from weak (left side) to
strong (right side). In the weak-coupling regime, the ground state is
a zero-momentum polaron (Q = 0) dominated by a zero-momentum
impurity dressed by particle-hole excitations in the background
Fermi sea. In the strong-coupling regime, the ground state switches
to |Q| = kF in order to facilitate the impurity pairing with a fermion
originally at the Fermi surface to form a deeply bound molecule with
zero center-of-mass momentum (QM = 0). This results in a huge
ground-state degeneracy in the molecule regime, i.e., SO(3) for 3D
and SO(2) for 2D. In this sense, the molecule Ansatz M(0) represents
a symmetry-breaking state within the degenerate manifold.

This naturally resolves the theoretical debate in Ref. [36]
because the transition is between different Q-states rather than
between different forms of variational Ansätzes. Furthermore,
near the transition point, we found the double-minima (at
|Q| = 0 and kF ) structure of the impurity dispersion curve,
providing the underlying mechanism for polaron-molecule
coexistence in realistic systems. Based on this, we qualita-
tively explained the smooth polaron-molecule transition as
observed in the recent experiment [9] with a finite impurity
density and at finite temperature.

In the present work, we extend the study of the Fermi
polaron problem to various dimensions using the unified vari-
ational method with up to two ph excitations (V-2ph), namely
under variational Ansatz P5(Q). With the V-2ph method, we
confirm the existence of the polaron-molecule transition in 3D
and 2D, and we reenforce the conclusion made in Ref. [37]
that the nature of such a transition lies in an energy compe-
tition between different momenta Q = 0 and |Q| = kF . Here,
we find that the main effect of including two ph excitations is
to shift the transition point and the coexistence region to the
weaker-coupling regime, from which we obtain a reasonably
better prediction to various physical quantities as measured in
the weak-coupling and resonance regime of the Fermi polaron
experiment [9]. Moreover, we emphasize in this work an im-
portant fact that has been overlooked by previous studies, i.e.,
the molecule ground state has a huge degeneracy [SO(3) for
3D and SO(2) for 2D]. The recognition of such degeneracy is
crucially important for correctly evaluating the individual oc-
cupation of polaron and molecule in their coexistence region
for realistic Fermi polaron systems. In Fig. 1, we illustrate the
nature of the polaron-molecule transition as well as the origin
of the huge ground-state degeneracy for molecules.

To further check the validity of our results in 2D, we adopt
a different variational method based on the Gaussian sample
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of high-order ph excitations (V-Gph) [38], which gives the
same conclusion for the nature of polaron-molecule transition
therein. For a 1D system, the V-2ph method predicts no sharp
transition and the ground state is always the Q = 0 state
for any coupling strength, consistent with the Bethe-Ansatz
solutions. These comparisons further justify the validity of
the V-2ph method and the reliability of our results in various
dimensions. We analyze that the presence or absence of the
polaron-molecule transition is closely related to the inter-
play effect of Pauli-blocking and ph excitations in different
dimensions.

The rest of the paper is organized as follows. In Sec. II, we
present the algorithm from two variational Ansätzes to treat
the Fermi polaron problem: one is the variational Ansatz with
up to two ph excitations (V-2ph), and the other is the Gaussian
variational Ansatz with high-order ph excitations (V-Gph). In
Sec. III, we present the results of the polaron-molecule tran-
sition for single-impurity system in various dimensions from
the two methods, and we analyze the intrinsic reason for the
presence/absence of such a transition in different dimensions.
In Sec. IV, we use the single-impurity results to investigate
the coexistence and smooth crossover between polaron and
molecule in 3D Fermi polaron systems, in comparison with
the experimental data from Ref. [9]. Finally the results are
summarized in Sec. V.

II. METHODS

We consider the following Hamiltonian describing a spin-↓
impurity interacting with spin-↑ majority fermions:

H =
∑
kσ

εk,σ c†
kσ ckσ + g/Ld

∑
Q,k,k′

c†
Q−k,↑c†

k,↓ck′,↓cQ−k′,↑ (3)

where εk = k2/(2m), d is the dimension of the system, and g
is the bare coupling constant, which needs to be renormalized
in 2D and 3D due to the induced ultraviolet divergence in
two-body scattering process. Specifically, for 3D, g is related
to the s-wave scattering length as via 1/g = m/(4πas) −
1/V

∑
k 1/(2εk ) with V = L3 the volume of the system; for

2D, the scattering length a2d defines the two-body binding
energy E2b = −1/ma2

2d , and g is related to E2b via 1/g =
−1/S

∑
k 1/(2εk − E2b), where S = L2 is the area of the sys-

tem. In this work, we take h̄ as unity for brevity.

In this section, we present the algorithm of two variational
methods used to treat Fermi polaron problems. One is the
unified variational Ansatz P5(Q) with up to two ph excitations
(V-2ph), in comparison with the molecule Ansatz M4(QM ).
The other is the Gaussian variational Ansatz with high-order
ph excitations (V-Gph).

A. Unified variational approach with up to two ph
excitations (V-2ph)

In the following, we will present the algorithm of P5(Q),
the polaron Ansatz with arbitrary momentum and with up
to two ph excitations, as well as the algorithm of M4(QM ),
the molecule Ansatz with arbitrary momentum and with one
ph excitation. It is noted that the Q = 0 case of P5(Q) has
been studied previously in 3D [13,15], 2D [24], and 1D [29]
Fermi polaron systems; the QM = 0 case of M4(QM ) has
also been studied previously in 3D [15–17] and 2D [23,24]
systems. Here we generalize the study to arbitrarily finite
momenta, which involves more numerical work than the
zero-momentum case. The intrinsic relation between the two
Ansätzes will also be discussed.

1. P5(Q)

The generalized polaron Ansatz with up to two ph excita-
tions is

P5(Q) =
[
ψ0c†

Q↓ +
∑
kq

ψkqc†
Q+q−k↓c†

k↑cq↑

+ 1

4

∑
kk′qq′

ψkk′qq′c†
Q+q+q′−k−k′↓c†

k↑c†
k′↑cq↑cq′↑

]
|FS〉N .

(4)

By imposing the Schrödinger equation, we can obtain the
coupled integral equations for all variational coefficients, from
which the ground-state energy can be obtained. This is equiv-
alent to minimizing the energy functional Etot = 〈H〉 for a
normalized Ansatz. In this paper, we take the unperturbed
Fermi sea |FS〉N as the reference system and define the impu-
rity energy as E = Etot − EFS, with EFS the energy of |FS〉N .

The equations for the variational coefficients are

−1

g

(
E − E (0)

Q

)
ψ0 =

∑
kq

ψkq, (5)

−1

g

(
E − E (1)

kq

)
ψkq = ψ0 +

∑
K

ψKq −
∑

q′
ψkq′ −

∑
Kq′

ψkKqq′, (6)

−1

g

(
E − E (2)

kk′qq′
)
ψkk′qq′ = −ψkq − ψk′q′ + ψkq′ + ψk′q +

∑
K

ψKk′qq′ +
∑

K

ψkKqq′ −
∑
Q′

ψkk′Q′q′ −
∑
Q′

ψkk′qQ′ , (7)

where E (0)
Q = εQ, E (1)

kq = εQ+q−k + εk − εq, E (2)
kk′qq′ = εQ+q+q′−k−k′ + εk + εk′ − εq − εq′ . As before, all q (k) in these equations

are by default below (above) the Fermi surface of |FS〉N .
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The above equations can be solved in 1D using the iterative
method. For 2D and 3D, due to the renormalization scheme of
bare coupling g, the equations can be simplified by using

g
∑

k′

αk′q

E − E (2)
kk′qq′

∼ 0,

g
∑

k′

1

E − E (2)
kk′qq′

∼ 1.

The final equations for numerical simulation are

E = εQ +
∑

q

Aq, (8)

αkq = Aq − ∑
q′ G(k, q, q′)

E − E (1)
kq

, (9)

G(k, q, q′) =
αkq′ − αkq − ∑

k′
G(k′,q,q′ )
E−E (2)

kk′qq′

h(k, q, q′)
, (10)

with

Aq =
1 − ∑

kq′
G(k,q,q′ )
E−E (1)

kq

h(q)
, (11)

h(q) = 1

g
−

∑
k

1

E − E (1)
kq

, (12)

h(k, q, q′) = 1

g
−

∑
k′

1

E − E (2)
kk′qq′

, (13)

where we have defined αkq = ψkq/ψ0, Aq = g(1 + ∑
k αkq),

and G(k, q, q′) = g
∑

k′ ψkk′qq′/ψ0.
Due to the rotational invariance of momentum Q, in this

work we have taken it along the z axis for simplicity. Com-
pared to the zero-momentum case, here the finite Q in 3D and
2D introduces more momentum variables in the simulation
and thus requires a larger amount of numerical work. In prac-
tice, we have used an iterative scheme to solve Eqs. (8)–(10).
In updating E in Eq. (8) and updating G(k, q, q′) in Eq. (10),
we have used the successive overrelaxation method to reduce
the fluctuation and ensure the convergency of the results.

2. M4(QM )

The generalized molecule Ansatz with one ph excitation is
written as

M4(QM) =
[∑

k

φkc†
QM−k,↓c†

k,↑

+ 1

2

∑
kk′q

φkk′qc†
QM+q−k−k′↓c†

k↑c†
k′↑cq↑

]
|FS〉N−1.

(14)

By imposing the Schrödinger equation, one can obtain the
equations for all variables φk, φkk′q. Again for the 2D and 3D
cases, the equations can be simplified. Namely, by introducing
two auxiliary functions γ = g

∑
k φk and ηkq = g

∑
k′ φkk′q,

we can arrive at the following integral equations for η̃kq =
ηkq/γ (see the QM = 0 case in [15,16,23,24]):

1

g
−

∑
k

1

E + EF − E (1)
k

=
∑
kq

η̃kq

E + EF − E (1)
k

, (15)

[
1

g
−

∑
k′

1

E + EF − E (2)
kk′q

]
η̃kq = −1 + ∑

q′ η̃kq′

E − E (1)
k

−
∑

k′

η̃kq

E + EF − E (2)
kk′,q

,

(16)

with E (1)
k = εQM−k + εk and E (2)

kk′,q = εQM−k−k′+q + εk +
εk′ − εq.

Again in the calculation we take QM along the z axis due
to its rotational invariance. Compared to P5(Q), the simulation
of M4(QM ) is easier due to the smaller variational space. One
can obtain the molecule energy E either by using the iterative
method or by solving large matrix equations with respect
to η̃kq. We have confirmed that these two methods produce
consistent results.

3. Relation between P5(Q) and M4(QM )

In our previous work [37], we have discussed the intimate
relation between M2(0) and P3(Q) with |Q| = kF . The discus-
sion can be straightforwardly extended to other momentum
sectors and to arbitrary levels of ph excitations. Here we con-
sider the case of P5(Q) and M4(QM ) and discuss their relation
as below. We start with the following equality between two
Fermi sea states:

|FS〉N−1 = ckF↑|FS〉N . (17)

Here kF is the Fermi momentum that can point to any direc-
tion on the Fermi surface. Given (17), one can see that if we
further take

ψ0 = 0, ψkq = φkδq,kF , ψkk′qq′ = φkk′qδq′,kF , (18)

then P5(Q) in (4) exactly reproduces M4(QM) in (14) under
the relation

QM = Q + kF . (19)

Equations (18) and (19), which can be directly generalized
to arbitrary order of ph excitations, immediately tell us two
important facts:

(i) M4(QM) has a smaller variational space than P5(Q =
QM − kF ). Specifically, the former corresponds to only con-
sidering a particular configuration of ph excitations in the
latter, i.e., with one hole pinning at the Fermi surface [see
Eq. (18)]. In principle, such a configuration is not isolated
and can be coupled to other ph excitations via interactions,
which will further reduce the variational energy. Due to such
incomplete variational space, M4(QM) always has a higher
variational energy than P5(Q = QM − kF ) for the ground
state of the system. When reduced to the special case QM = 0
and |Q| = kF , we arrive at the conclusion that M4(0) always
produces a higher energy than P5(Q) with |Q| = kF . This is a
direct extension of the conclusion in our previous work with
one ph excitation [37].

063312-4



NATURE OF THE POLARON-MOLECULE TRANSITION IN … PHYSICAL REVIEW A 103, 063312 (2021)

(ii) The correspondence (19) tells that the previously
studied zero-momentum molecule M(0) actually stays in a
different momentum sector from the zero-momentum polaron
P(0). Such a momentum difference, kF , which originates
from the relation (17) between two Fermi seas |FS〉N and
|FS〉N−1, is robust against the choice of reference state. Nev-
ertheless, to correctly characterize the status of the impurity,
it is important to choose the reference state as |FS〉N , in-
stead of |FS〉N−1. By choosing |FS〉N as the reference state,
the momenta of P(0) and M(0) are, respectively, Q = 0 and
Q = −kF , giving the momentum difference kF . Because of
such a momentum difference, M(0) and P(0) should have
zero overlap [note that the Hamiltonian (3) preserves the total
momentum]. Recognizing such a difference is crucially im-
portant for understanding the nature of the polaron-molecule
transition, as addressed in Sec. III.

Based on (i) and (ii), we can conclude that up to two
ph excitations, the generalized polaron Ansatz P5(Q) can
serve as the unified variational wave function for both po-
laron and molecule states. The ground state of the system
can then be obtained by searching for the energy minimum
in the Q-space.

B. Gaussian variational method with high-order particle-hole
excitations (V-Gph)

For a 2D system, besides the V-2ph method we adopt the
Gaussian variational method with high-order ph excitations
(V-Gph) [38]. The essence of this method is the combination
of a fermionic Gaussian state [39,40] and the Lee-Low-Pines
(LLP) transformation [41]. To be self-contained, in the fol-
lowing we give a brief introduction to this method.

Applying the LLP transformation ULLP = e−iK̂r̂, where
K̂ = ∑

k kc†
k↑ck↑ is the total momentum of the background

spin-up atoms and r̂ is the coordinate of the impurity, the
Hamiltonian (3) can be transformed as

HLLP = U †
LLPHULLP

=
∑

k

(εk − μ)c†
k↑ck↑ + p̂2

2m
−

∑
k

p̂ · k
m

c†
k↑ck↑

+
∑
k,k′

k · k′

2m
c†

k↑ck↑c†
k′↑ck′↑ + g

L2

∑
k,k′

c†
k↑ck′↑.

(20)

Here p̂ is the momentum operator of the impurity. Note that
here we have introduced an additional term “−μ

∑
k c†

k↑ck↑”
into the original Hamiltonian Eq. (3) to tune the parti-
cle number of the background Fermi sea. After the LLP

transformation, the conserved total momentum of the system
transforms into the momentum of the impurity, i.e.,

U †
LLP(p̂ + K̂)ULLP = p̂. (21)

Thus we can replace p̂ in HLLP with its eigenvalue Q, which
eliminates the degree of the impurity.

We further use fermionic Gaussian state to approximate
the ground state with total momentum Q of the trans-
formed Hamiltonian, Eq. (20). The fermionic Gaussian state is
defined as

|�GS〉 = c†
Q↓UGS|0〉, (22)

where |0〉 is chosen to be the vacuum state and

UGS = ei 1
4 AT ξA (23)

is called the Gaussian unitary operator, A =
(a1,k1 , . . . , a1,kNk

, a2,k1 , . . . , a2,kNk
)T , Nk is the number

of k modes satisfying |k| � kc with cutoff kc, the
Majorana operators are defined as a1,k j = c†

k j ,↑ + ck j ,↑,

a2,k j = i(c†
k j ,↑ − ck j ,↑), and the variational parameter ξ is

an antisymmetric Hermitian matrix which has 2N2
k − 2Nk

free matrix elements. We point out that the use of Majorana
operators is just for computational convenience, and the
operators can be re-expressed in terms of c†

k j ,↑ and ck j ,↑ as in
Ref. [42].

To eliminate the gauge degree of freedom in ξ , it is conve-
nient to introduce a covariance matrix [38]

()s1,k1;s2,k2 = i

2
〈�GS|[as1,k1 , as2,k2 ]|�GS〉, (24)

with s1(s2) = 1, 2. The covariance matrix is related to ξ as

 = −Um

(
0 −1Nk

1Nk 0

)
U T

m , (25)

where Um = eiξ and 1Nk is the identity matrix of dimension
Nk .

By reversing the LLP transformation, the eigenstate of the
original Hamiltonian (3) with a total conserved momentum Q
can be expressed as a non-Gaussian state

|�〉 = ULLPc†
Q↓UGS|0〉. (26)

The imaginary-time evolution equation for the non-Gaussian
state Eq. (26) can be written as

dτ |�〉 = −P (H − Etot )|�〉, (27)

where P is the projection operator onto the subspace spanned
by tangent vectors of the variational manifold, and Etot =
〈�|H |�〉 can be calculated using Wick’s theorem. Finally, we
obtain

Etot = 1

2

∑
k

εk − μNk

2
+ 1

4

∑
k

(
εk − μ − Q · k

m

)
(1,k;2,k − 2,k;1,k ) + Q2

2m

+ g

2L2
Nk + g

4L2

∑
k,k′

(1,k;2,k′ − 2,k;1,k′ ) + 1

8m

∑
k

k2

+ 1

32m

[∑
k

k(1,k;2,k − 2,k;1,k )

]2

− 1

8m

∑
k,k′

k · k′1,k;1,k′2,k;2,k′ + 1

8m

∑
k,k′

k · k′1,k;2,k′2,k;1,k′ . (28)
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To be consistent with the variational approach with truncated
ph excitations, we calculate the energy E = Etot+ μN↑ − EFS.
The imaginary-time equation of motion (EOM) for the covari-
ance matrix  is

∂τ = −h − h, (29)

with

h = 4
δEGS

δ
. (30)

Evolving  according to Eq. (29) until the variational energy
converges, we can finally obtain the approximated ground
state.

Now we discuss the level of ph excitations in V-Gph. Since
the Fermi sea |FS〉N is also a Gaussian state, we can replace
|0〉 as |FS〉N in Eq. (22) and immediately one can see that
it can include multiple ph excitations. By expanding UGS in
terms of ξ : UGS = 1 + i 1

4 AT ξA + · · · , the wave function �

can also be expanded in terms of ξ . We note that the first two
terms in the expansion have included all the bare and one ph
excitation terms in P3(Q), while the coefficients of two and
higher ph excitation terms in � are strongly correlated with
those of one ph terms and thus are not free variables. This
means that V-Gph can be a better variational approach than
V-1ph, but not necessarily better than V-2ph. In this work,
we use it as a complementary method to test the reliability of
V-2ph.

III. POLARON-MOLECULE TRANSITION/CROSSOVER
FOR SINGLE-IMPURITY SYSTEMS

In this section, we study the polaron-to-molecule tran-
sition or crossover for single-impurity systems in various
dimensions. We will apply the V-2ph method for all dimen-
sions, in combination with the V-Gph method for 2D and the
Bethe-Ansatz method for 1D. The conclusions for the pres-
ence/absence of the polaron-molecule transition from these
methods are consistent.

A. 3D

In our previous work [37], we have used the V-1ph method
based on Ansatz P3(Q) to unveil the nature of the polaron-
molecule transition in 3D. Here by using the V-2ph method
with up to two ph excitations, we will reexamine the polaron
and molecule physics in this system. In our numerical simula-
tions, we have taken the momentum cutoff as kc = 30kF .

First, we investigate the relation between M4(0) and P5(Q)
with Q = kF ez, and we will denote the latter state as P5(kF )
for short. As discussed in the preceding section, due to the in-
complete variational space of M4(0), it should be energetically
unfavorable as compared to P5(kF ). In Fig. 2, we show their
energies, in comparison with P3(kF ) and M2(0), as functions
of coupling strength. It is found that the molecule state M4(0)
[or M2(0)] always has a higher energy than P5(kF ) [or P3(kF )],
as expected. Only in the strong-coupling side does the energy
difference between M4(0) and P5(kF ) [or between M2(0) and
P3(kF )] become invisible. For instance, M4(0) energetically
approaches P5(kF ) at couplings 1/(kF as) � 0.3, and M2(0)
energetically approaches P3(kF ) at 1/(kF as) � 0.6. Moreover,
we can see that the V-2ph method produces a lower energy for

FIG. 2. Energy comparison between various Ansätzes for a 3D
single-impurity system. All energies are shifted by E2b = −1/(ma2

s )
in as > 0 in order to highlight the difference.

both polaron and molecule states, as compared to those from
the V-1ph method.

To explain why the energies of M4(0) and P5(kF ) be-
come so close in the strong-coupling limit, we examine the
wave function of P5(kF ) in Fig. 3. Specifically, we show the
hole angular distribution of variational coefficients at two
different coupling strengths. It is found that at intermediate
coupling, 1/kF as = 0.2, the angular distribution of the hole
(q) spreads in a broad region, while at stronger coupling,
1/kF as = 0.9, the distribution shows a pronounced peak at
θq = π , i.e., along the opposite direction of Q (= kF ez ). Re-
calling Eqs. (18) and (19), this corresponds to locking the

FIG. 3. Hole angular distribution of variational coefficients in
P5(kF ) at different coupling strengths. Here we use the polar coordi-
nate (|k|, θk, φk) to characterize momentum k, with θk ∈ [0, π ) and
φk ∈ [0, 2π ). In the figure we choose k = (1.32kF , 0.53, 0.44), k′ =
(2.64kF , 0.53, 0.44), q′ = (kF , 0, 0.44), and q = (kF , θq, 0.44) in
αkq ≡ ψkq/ψ0 and αkk′qq′ ≡ ψkk′qq′/ψ0.
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FIG. 4. (a) Energy dispersion of P5(Q) (solid lines) in 3D at
various couplings (from top to bottom) 1/(kF as ) = 0.2, 0.5, 0.55,

0.6, 0.7, 0.8, 0.9, 1.2, shifted by the value at Q = 0. The rectangular
point marks the position of maximum energy, and the small black
dots show the energies of M4(QM), with |QM| shifted by kF in order
to compare with the energies of P5(Q). Here Q = |Q|.

hole at −Q so as to produce a molecule state with QM = 0.
We have checked that such a pronounced hole distribution at
−Q applies for general excited momenta k and k′. Together
with the energy resemblance as shown in Fig. 2, this serves
as strong evidence that M4(0) indeed can well approximate
P5(kF ) in the strong-coupling limit.

Given the fact that the molecule M4(0) is merely a good
approximation for the finite-momentum state P5(kF ), we are
now ready to investigate the polaron-molecule competition by
examining the energy dispersion E (Q) from P5(Q), with Q =
|Q| (in our numerical calculation, we have taken Q along the
z-direction). In Fig. 4, we show E (Q) for various coupling
strengths. We can see that for weak coupling, 1/(kF as) � 0.5,
there is only one minimum in the dispersion, and the Q = 0
polaron is the only ground state. Near Q ∼ 0, one has

E (Q) = εP + Q2

2m∗
P

, (31)

with εP = E (0) and m∗
P denoting the energy and effective

mass of the polaron state, respectively. As 1/(kF as) increases
to ∼0.5 and beyond, another minimum appears at Q = kF as
a metastable state. At 1/kF as = 0.91, the two minima have
the same energy, signifying a first-order transition between
Q = 0 and Q = kF states, or between polaron and molecule
states given that M4(0) can well approximate P5(kF ) near the
transition (see black dots). At even stronger attractions, the
local minimum at Q = 0 is bent downward, and the only
stable state is at Q = kF , the molecule state. It is found that
near the local minimum Q ∼ kF , the dispersion follows

E (Q) = εM + (|Q| − kF )2

2m∗
M

, (32)

with εM = E (kF ) and m∗
M , respectively, the energy and effec-

tive mass of the molecule state. Here with the V-2ph method,
the double minima structure of the dispersion appears in the

FIG. 5. Residue Z as a function of coupling strength 1/(kF as ) for
different momentum states using V-1ph or V-2ph methods.

coupling window 1/kF as ∈ (0.5, 1.2), moving to the weaker-
coupling side as compared to the double minima region from
the V-1ph method [37].

In Fig. 2, we compare the energies at two momenta 0
and kF from both the V-2ph and V-1ph methods. One can
see that under V-2ph, the critical point for the transition is
at (1/kF as)c = 0.91, very close to the critical point obtained
from Monte Carlo [14] and diagrammatic [15] methods.
Clearly, this critical point shifts to the weaker-coupling side
as compared to the value (1/kF as)c = 1.27 from the V-1ph
method [15–17,37]. Near the transitions, the molecule states
[M4(0) under V-2ph and M2(0) under V-1ph] can well ap-
proximate the Q = kF states, and thus the transition between
Q = 0 and Q = kF states can indeed be interpreted as the
polaron-molecule transition. This sets the nature of such a
first-order transition between polaron and molecule.

In Fig. 5, we further show the residue Z = |ψ0|2 as a func-
tion of 1/(kF as) for different momentum (Q = |Q|) states. For
zero-momentum Q = 0, we can see that Z is insensitive to
the variational approach used (V-1ph or V-2ph). However, for
momentum Q = kF , Z can change a lot between the V-1ph
and V-2ph methods, or between P3(kF ) and P5(kF ). Moreover,
for a given coupling strength, Z can be greatly reduced by
increasing the momentum Q. In particular, as Q approaches
kF , the reduction of Z is quite substantial in the weak-coupling
limit, implying the failure of the quasiparticle picture for the
Q ∼ kF state in this regime.

In the following, we comment on the nature of the polaron-
molecule transition as the momentum shifts by kF , and
its implication on the huge ground-state degeneracy in the
molecule limit. In Fig. 1, we show schematically the ground
state switch from polaron (Q = 0) to molecule (|Q| = kF ) as
the attraction between impurity (↓) and majority fermions (↑)
increases. In the extremely weak attraction limit, it is natural
to expect that the ground state is a zero-momentum polaron
(Q = 0) described by a zero-momentum impurity dressed
with ph excitations in the majority Fermi sea. On the contrary,
in the extremely strong attraction limit, the ground state is
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composed by a zero-momentum molecule on top of the rest of
the Fermi sea. To accomplish this, the impurity has to acquire
a finite momentum Q such that it can pair with a fermion at
the Fermi surface (kF ) to form a zero-momentum molecule
(Q + kF = 0). As kF can point to any direction on the Fermi
surface, the direction of Q is also free and the system has a
huge ground-state degeneracy [SO(3) for the 3D case] in this
limit.

In fact, the huge SO(3) degeneracy can also be seen clearly
from the molecule dispersion (32), where the energy mini-
mum is located at a sphere in momentum space with radius
|Q| = kF . Such a huge degeneracy in k-space resembles the
single-particle SO(3) degeneracy under an isotropic spin-orbit
coupling [43,44], where the ground state is located at a sphere
with radius determined by the strength of spin-orbit coupling.
In comparison, here the degeneracy is supported by the pres-
ence of a majority Fermi sea. An important consequence of
such degeneracy is that it greatly enhances the density of states
(DOS) at low-energy space near |Q| ∼ kF , thereby signifi-
cantly favoring the molecule occupation in a realistic system
with a finite impurity density, as we will discuss in a later
section.

Given the molecule degeneracy at momentum |Q| = kF ,
one may raise the follow question: if we equally superpose
two of the Q-states, such as |kF ez〉 + | − kF ez〉, which have
the same zero-averaged momentum as the polaron state, will
there still be a polaron-molecule transition? The answer to this
question is yes. This is because such a superposed state has
zero overlap with the Q = 0 polaron state, and thus the energy
crossing between them (featuring the first-order transition)
persists in changing the coupling strength. Moreover, the huge
degeneracy in the molecule side will not be affected since one
can in principle superpose any two momentum states |Q1〉 and
|Q2〉, as long as |Q1| = |Q2| = kF . In fact, such superposed
state is not the eigenstate of total momentum operator P̂. Re-
calling that the Hamiltonian Ĥ preserves the total momentum,
i.e., [Ĥ , P̂] = 0, it is a regular strategy to look for the ground
state as the eigenstate of both Ĥ and P̂. In this sense, we
recover the nature of the polaron-molecule transition as the
energy competition between different Q-sectors.

B. 2D

For a 2D Fermi polaron system, we have carried out numer-
ical simulations using both the V-2ph and V-Gph methods and
found consistent results. We use the dimensionless coupling
strength ln(kF a2d ) to characterize the interaction effect. In
our numerical calculations, we set the momentum cutoff as
kc = 30kF in the V-2ph method. In the V-Gph method, we
discretize the whole space to 40×40 cells, and we set the
number of majority fermions as N = 49 and the momentum
cutoff as kc = 8kF .

In Fig. 6, we show the energies of P5(kF ), P5(0), and M4(0)
as functions of ln(kF a2d ), in comparison with the energies of
P3(kF ), P3(0), and M2(0). One can see that similar to the 3D
case, the molecule state M4(0) always has a higher energy than
P5(kF ); however, in the strong-coupling regime, ln(kF a2d ) <

−0.7, the two states are indistinguishable in energy, indi-
cating that the former can serve as a good approximation
for the latter. Moreover, we note from Fig. 6 that the V-2ph

FIG. 6. Energy comparison in 2D. All energies are shifted by
E2b = −1/(ma2

2d ) in order to highlight the difference.

method can produce visibly lower energy for both polaron
and molecule states than V-1ph. For instance, within one ph
framework, P3(0) always has a lower energy than P3(kF ) and
M2(0). However, by adding two ph excitations, the molecule
energy can be significantly reduced. In the strong-coupling
limit, ln(kF a2d ) → −∞, the energies of P5(kF ) and M4(0)
(from V-2ph) both approach E2b − EF , much lower than the
asymptotic energy E2b + EF of P3(kF ) and M2(0) states (from
V-1ph) in this limit. This shows a significant role played by ph
excitations in 2D. However, adding more (three and above) ph
excitations is not expected to lower the energy too much in the
strong-coupling regime, since E2b − EF sets the lower bound
of the energy. This is further confirmed by the results from the
V-Gph method (see Fig. 8), which includes the high-order ph
excitations and gives a similar conclusion to that of the V-2ph
method; see the discussions below.

In Figs. 7(a) and 7(b), we plot out the energy dispersions
at various couplings from both V-2ph and V-Gph methods,
from which we see that the results from the two methods are
qualitatively consistent. Namely, as the attraction between the
impurity and fermions increases, there is a first-order tran-
sition at a certain coupling strength where the ground state
of the system switches from total momentum Q = 0 to Q =
kF . Near the transition and beyond, the dispersion near Q ∼
kF can indeed be well approximated by the molecule state
M4(QM) near QM ∼ 0; see the triangular points in Fig. 7(a).
To see more clearly the transition point, we show the energies
at these two momenta as functions of coupling strengths in
Fig. 8. The critical coupling at which the ground state switches
from Q = 0 to Q = kF is ln(kF a2d )c ≈ −0.97 from the V-2ph
method, and −0.81 from V-Gph. In comparison, the critical
coupling obtained from the comparison between P5(0) and
M4(0) is ln(kF a2d )c ≈ −0.98 [24,45].

All the above results confirm a first-order polaron-
molecule transition in a 2D single impurity system, and the
nature of such a transition shares the same spirit as the 3D
case, i.e., the energy competition between different total mo-
menta states Q = 0 and |Q| = kF . Since Q can point to any
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FIG. 7. (a) Energy dispersion of P5(Q) (solid line) in 2D at
various couplings (from top to bottom) ln(kF a2d ) = −0.8, −0.9,

−1.0, −1.1, −1.2, shifted by the values at Q = 0. The small black
dots show the energies from M4(QM), with |QM| shifted by kF in
order to compare with the energies of P5(Q). (b) Energy dispersion
from the V-Gph method at various couplings (from top to bottom)
ln(kF a2d ) = −0.5, −0.6, −0.7, −0.8, −0.9, −1.0, again shifted by
the values at Q = 0. Here Q = |Q|.

direction in the 2D plane, there will be a SO(2) ground-state
degeneracy in the molecule regime with a fixed |Q| = kF .

We note that the polaron-molecule competition in 2D has
also been investigated by Monte Carlo methods [25–27].
Among these studies, Refs. [25,26] have claimed a transition
while Ref. [27] has claimed a smooth crossover between
polaron and molecule. However, we note that in Ref. [27]
the number of majority fermions used in the weak-coupling
regime is different (by one) from that in the strong-coupling
regime. This automatically changes the total momentum of the
system by kF and thus the conclusion of a smooth crossover
is not for the same system with a fixed total momentum.
Moreover, Fig. 8 shows that the shifted energy E (kF ) − E2b

evolves nonmonotonically with ln(kF a2d ), different from the
3D case (see Fig. 2). In particular, in the weak-coupling
regime it shares a similar functional line shape to E (0) − E2b,
which may also cause the confusion that the polaron-molecule
conversion in 2D is a smooth crossover.

FIG. 8. Energies of Q = 0 and Q = kF states as functions of
coupling strengths in 2D, obtained from both the V-2ph and V-Gph
methods. All energies are shifted by E2b = −1/(ma2

2d ) in order to
highlight the difference.

C. 1D

We will briefly go through the 1D case, where the coupling
strength is governed by a dimensionless parameter kF a1d , with
a1d = −2/(mg) the 1D scattering length. In our numerical
calculations, we are able to compute with a different momen-
tum cutoff kc and finally obtain the results for kc → ∞ by
extrapolation.

In Fig. 9, we show the energy dispersion at weak and strong
couplings from the V-2ph method (solid lines), in comparison
with those from the exact Bethe-Ansatz solutions [46–48]
(dashed lines). It is found that the two methods give consistent
conclusions that there is no transition in the system and the
ground state is always at zero momentum Q = 0, contrary to
2D and 3D. Remarkably, the energy from the V-2ph method
fits the exact solution remarkably well in the weak-coupling
limit; see Fig. 9(a). For strong coupling [see Fig. 9(b)], the
deviation between the two energies is attributed to the insuffi-
ciency of the V-2ph method and thus more ph excitations are
required. In the strong-coupling limit, the ground-state energy
(at Q = 0) is given by E → E2b − EF , signifying a smooth
crossover to the molecule regime for the 1D single-impurity
system.

D. Discussion

In the above we have shown that the presence of a polaron-
molecule transition depends sensitively on the dimension of
the system, namely, there is such a transition in 3D and 2D
but not in 1D. In the following, we point out some intrinsic
reasons for this sensitive dependence on dimensionality.

Let us start from the weak-coupling regime that can be
smoothly connected to the noninteracting limit. In this regime,
one can easily anticipate that the ground state should be
the Q = 0 polaron, describing a zero-momentum impurity
dressed with a limited number of ph excitations of background
fermions. Therefore, the key question is to find out the ground
state in the strong-coupling regime, which determines whether
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FIG. 9. Dispersion for the 1D system at different couplings
kF a1d = 1 (a) and 0.2 (b). The solid and dashed line are, respec-
tively, from the V-2ph and Bethe-Ansatz [46–48] methods, which
show consistently that the ground state always stays at zero mo-
mentum. All energies are shifted by the two-body binding energy
E2b = −1/(ma2

1d ).

there is a transition (switch of ground state) as the attraction
is increased from weak to strong. Since the molecule state
(belonging to the Q = kF sector) is an important candidate
for the ground state in the strong-coupling regime, in the
following we will analyze how its energy depends on the
dimension. In particular, we will highlight the roles played by
the Pauli-blocking effect and the ph excitations of background
fermions in different dimensions.

Let us consider the bare molecule M2(0) and analyze
the Pauli-blocking effect on the molecule energy. For a
d-dimensional system, it has been shown that in the strong-
coupling or deep molecule regime (when |E2b| → ∞), the
molecule energy (with respect to the energy of |FS〉N ) is [22]

EM = E2b − EF + cd EF (2EF /|E2b|)(d−2)/2, (33)

where cd is a positive constant. One can see that in the deep
molecule regime, the shift of EM from E2b − EF is negligible
for 3D, a constant (∝ EF ) for 2D, and an exceedingly large
number for 1D. It means that the effect of Pauli blocking
by the underlying Fermi sea is very little for 3D molecule,
but it becomes more and more significant if we go to lower
dimensions. This is because in 3D, the phase space blocked by
the Fermi sea is negligible as compared to the full phase space,
while in lower dimensions the difference between the two
phase spaces is not that substantial. As a result, the molecule
becomes energetically less favored in lower dimensions
systems, which may serve as a crucial reason for the absence
of a polaron-molecule transition in 1D.

Moreover, we note that the ph excitations also become
more and more important to affect the molecule energy than
going to lower-d systems. As one can see from the energy
comparison between M2(0) and M4(0) in Figs. 2 and 6, adding
one more ph excitation will reduce the molecule energy by a
small proportion of EF in 3D, but by a visible constant (as
large as ∼2EF ) in 2D. Within V-2ph, the molecule energy in
3D and 2D in the strong-coupling regime approaches E2b −
EF (with respect to the energy of |FS〉N ), which is the low-
est energy one can imagine for the system. Therefore, there
must be a transition between polaron (Q = 0) and molecule
(Q = kF ) at a certain intermediate coupling strength for 3D
and 2D. On the contrary, for a 1D system, the ground state
is always at Q = 0 (see Fig. 9), and in the strong-coupling
regime the energy at Q = 0 approaches E2b − EF while at
Q = kF it approaches E2b − EF /2. It means that in 1D, the
polaron-to-molecule conversion is completed entirely within
the zero-momentum sector, and thus the process is a smooth
crossover rather than a transition.

The above analysis shows that it is important to consider
the effects of Pauli-blocking and ph excitations in lower
dimensional Fermi polaron systems. The interplay of these
effects significantly influences the presence or absence of
polaron-molecule transitions in different dimensions.

IV. POLARON-MOLECULE COEXISTENCE AND SMOOTH
CROSSOVER IN REALISTIC FERMI POLARON SYSTEMS

In our previous work [37], we used the single-impurity
result from the V-1ph method to qualitatively explain the
polaron-molecule coexistence and smooth crossover as ob-
served in recent 3D Fermi polaron systems with a finite
impurity density and at finite temperature [9]. Recently,
a theoretical study [49] extended the finite-momentum V-
1ph method to finite-temperature and explained the smooth
crossover between polaron and molecule. Here we will re-
fine the explanation by utilizing the results from V-2ph and
incorporating the trap effect through the local density approx-
imation (LDA). In our calculation, we will take the same
temperature (T = 0.2TF ) and the same impurity concentration
as was used in the experiment in Ref. [9].

As seen from Fig. 4, the double minima structure of the
single-impurity dispersion provides a clear picture of polaron-
molecule coexistence under a finite impurity density and at
finite temperature. As in Ref. [37], we will neglect the thermal
distortion of majority Fermi sea and mediated interactions
between the impurities (including polaron-polaron, polaron-
molecule, and molecule-molecule interactions), which are
expected to produce invisible effects at sufficiently low
impurity densities. Here we only focus on two possible con-
figurations for the dressed impurities: one is “polaron” near
zero-momentum and obeying fermionic statistics; the other is
“molecule” near |Q| = kF and obeying bosonic statistics.

Now we discuss how to separate the polaron and molecule
in the dispersion curve. In the polaron-molecule coexistence
regime 1/(kF as) ∈ (0.5, 1.2), there is a natural momentum
boundary in the diversion curve, denoted as Qc, that can be
chosen as the location of the energy maximum between Q = 0
and Q = kF , as marked by squares in Fig. 4. After defining
Qc, the energy cutoff for the thermal excitation of impurities
is also fixed as Ec = E (Qc). More specifically, the polaron
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occupies at |Q| < Qc and the molecule occupies at |Q| > Qc

with energy cutoff Ec. The value of Qc outside the coexistence
regime is defined as follows. In the weak-coupling regime,
1/(kF as) < 0.5, the impurities occupy as polarons and there
is no molecule distribution; in this case, we define Qc as the
polaron momentum when its residue reduces to 0.01. In the
strong-coupling regime, 1/(kF as) > 1.2, the polaron vanishes
and all impurities occupy as molecules; in this case, we simply
take Qc = 0.

Next we incorporate the trap effect. For the majority
fermions, we use the zero-temperature density distribution as
the approximation:

n↑(r) = 1

6π2
{2m[μ↑ − V (r)]} 3

2 , (34)

where V (r) = mω2r2/2 is the trap potential and μ↑ =
k2

F↑(0)/(2m) = (6N↑)1/3ω is the chemical potential of ma-
jority fermions at the center of the trap. Under LDA,
one can define the local Fermi momentum as kF↑(r) =
[6π2n↑(r)]1/3, which determines the local occupation of po-
laron and molecule states.

Under the above assumptions, the local impurity density
can be written as [with a θ (x) step function]

n↓(r) =
∫

d3Q
(2π )3

[nF (E (Q, r), μ↓,V↓(r)) θ (Qc − |Q|)
+ nB(E (Q, r), μ↓,V↓(r)) θ (|Q| − Qc)

× θ (Ec − E (Q, r))], (35)

where nF/B(E , μ↓,V↓(r)) = [1 ± exp( E−μ↓+V↓(r)
kBT )]−1, and

V↓(r) = V↑(r)(1 − E
EF

) is the renormalized trap potential
felt by impurity atoms [9,11]. Note that because of the r-
dependence of local kF↑, the quantities E , Qc, and Ec in the
above equation all depend locally on r.

Following the definition of the averaged density ratio in
[9],

〈
n↓
n↑

〉
=

∫
d3rn↓(r) n↓(r)

n↑(r)∫
d3rn↓(r)

, (36)

in our calculation we will set 〈 n↓
n↑

〉 = 0.15 as in Ref. [9], which
is used to determine μ↓ in Eq. (35). Then we go further
to calculate the trap-averaged residue, the contact, and the
polaron energy by

Z̄ =
∫

d3rn↓(r)Z (r)∫
d3rn↓(r)

,

C̄ =
∫

d3rn↓(r)C(r)∫
d3rn↓(r)

,

Ēpol =
∫

d3rn↓(r)Epol(r)∫
d3rn↓(r)

, (37)

where Z (r), C(r), and Epol(r) are

Z (r) = 1

n↓(r)

∫
d3k

(2π )3
Z (k)nF (E (k, r), μ↓,V↓(r))θ (Qc − |k|),

C(r) = 4πm

2n↓(r)k2
F

∫
d3k

(2π )3

dE (k, r)

d (1/kF as)
nF (E (k, r), μ↓,V↓(r))θ (Qc − |k|)

+ 4πm

2n↓(r)k2
F

∫
d3k

(2π )3

dE (k, r)

d (1/kF as)
nB(E (k, r), μ↓,V↓(r)) θ (|k| − Qc) θ (Ec − E (k, r)),

Epol(r) = E (k = 0, r). (38)

In Figs. 10(a)–10(c), we show the calculated Z̄ , C̄, and
Ēp (see orange circles and lines) as functions of coupling
strength, in comparison with the experimental data in Ref. [9]
(shown as blue circles with error bars) and the theory predic-
tion therein based on the separate treatment of polaron (under
V-1ph) and molecule (no ph excitation) while without con-
sidering the SO(3) degeneracy of molecules (shown by black
dashed-dot lines). We can see that compared to the theory
prediction in Ref. [9], our prediction of Z̄ is visibly lower and
the prediction of C̄ is visibly higher, giving a better fit to the
experimental data in the weak-coupling and near-resonance
regime. These visible improvements can be attributed to the
following two reasons:

First, compared to the V-1ph method, the inclusion of two
ph excitations in V-2ph does not change too much the polaron
energy but reduces the molecule energy considerably; see
Fig. 2. A direct consequence of this change is to move the

polaron-molecule transition point and their coexistence region
to the weaker coupling side. The other consequence is to
enhance the molecule occupation in the coexistence regime.
These two factors both contribute to reducing the residue Z̄
and increasing the contact C̄ for a given coupling strength.

Secondly, we have a different classification and sampling
scheme for the polaron and molecule as compared to Ref. [9].
In particular, in the theory of Ref. [9] the molecule dispersion
is centered at zero rather than kF , and thus the SO(3) degen-
eracy is not considered. This significantly underestimates the
molecule occupation number due to the small density of states
(DOS) near Q ∼ 0. In comparison, in this work we point
out that the molecule actually stays around |Q| ∼ kF with a
huge SO(3) degeneracy and thus a much larger DOS at low
energy. This will also help to enhance the molecule occupation
further and lead to a smaller Z̄ and a larger C̄ than the theory
prediction in Ref. [9].
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FIG. 10. Residue Z̄ (a), contact C̄ (b), and the polaron energy Ēp

(c) as functions of coupling strength given the realistic experimental
condition in Ref. [9]. The blue squares with an error bar show the
experimental results in Ref. [9]. Black dashed-dot lines show the
theoretical prediction in Ref. [9] based on the separate treatment
of polaron (under V-1ph) and molecule (no ph excitation) without
considering the SO(3) degeneracy. Orange circles and lines show our
results based on V-2ph plus LDA. Here kF is the Fermi momentum
of majority fermions at the trap center.

To examine the individual contributions of the above two
effects, in Fig. 11 we plot Z̄ as a function of coupling strength
from the combination of different methods (V-1ph or V-2ph)
and different sampling schemes [with or without considering
SO(3) degeneracy of molecules]. We can see that in the weak-
coupling regime, Z̄ can be visibly reduced by including two
ph excitations, which can be attributed to the sensitive change
of Z for the finite-momentum polaron (note that the residue of
the Q = 0 polaron shows little difference between V-1ph and

FIG. 11. Residue Z̄ from the combination of different methods
(V-1ph or V-2ph) and different sampling schemes [with or without
considering SO(3) degeneracy of molecules]. The blue squares with
an error bar show the experimental results of Ref. [9].

V-2ph methods; see Fig. 5). In this regime, the SO(3) degen-
eracy has no effect since there is no molecule occupation yet.
However, when going to the strong-coupling regime where
the polaron and molecule coexist, the SO(3) degeneracy plays
an important role in enhancing the molecule occupation and
reducing Z̄ , regardless of the order of ph excitations.

Finally, it is noted that our theory does not fit well to the
experimental data of Z̄ in the strong-coupling regime. For
instance, Z̄ from our prediction continuously drops to zero
around 1/(kF as) ∼ 0.9, very close to the polaron-molecule
transition point (∼0.91) for the single-impurity system. Nev-
ertheless, the data of Z̄ in Ref. [9] show a long tail in this
regime and seem to be better fit by V-1ph results without
considering the SO(3) degeneracy of molecules. Possible rea-
sons for the discrepancy are as follows. First, the data of
Z̄ in Ref. [9] are not from a direct measurement; instead,
they are extracted from the total Raman spectrum of impu-
rities that is parametrized by six free parameters (Z̄ is one
of them). Moreover, the parametrization of the background
Raman signal therein is based on the assumption of thermal
occupation of a bare molecule without SO(3) degeneracy. All
of these assumptions may cause the deviation of Z̄ from its
actual value, especially in the polaron-molecule coexistence
regime. Thus, the deterministic test of different theories calls
for future experimentation with a more accurate and direct
probe of various physical quantities.

V. SUMMARY

In this work, we have investigated the polaron and
molecule physics in 3D, 2D, and 1D Fermi polaron systems
by utilizing a unified variational Ansatz with up to two ph
excitations (V-2ph). Moreover, we have checked the reliability
of our results by comparing with the result from the variational
method in 2D based on the Gaussian sample of high-order
ph excitations (V-Gph), and with the result of Bethe-Ansatz
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solutions in 1D. These methods produce consistent conclu-
sions, which are summarized as follows:

(i) There exists a first-order transition for a single-impurity
system in 3D and 2D as the attraction between the impurity
and fermions increases. The nature of such a transition lies
in an energy competition between different total momenta
Q = 0 and |Q| = kF , with kF the Fermi momentum of ma-
jority fermions. From the V-2ph method, the transition point
is at 1/(kF as) = 0.91 for 3D and at ln(kF a2d ) = −0.97 for
2D. In 1D, there is no transition and the ground state is
always at Q = 0 for all couplings. The underlying reason for
the presence/absence of such a transition is analyzed to be
closely related to the interplay effect of Pauli-blocking and
ph excitations in different dimensions.

(ii) The literally proposed molecule state has an incomplete
variational space in terms of ph excitations, but it can serve
as a good approximation for the Q = kF state in the strong-
coupling regime. Due to the finite momentum, the ground
state in the molecule regime has a huge degeneracy [SO(3)
for 3D and SO(2) for 2D], which can greatly enhance the low-
energy density of states for the molecule occupation in realis-

tic Fermi polaron systems with a finite impurity density. Our
theory explains well the coexistence and a smooth crossover
between polaron and molecule as observed in a recent 3D
Fermi polaron experiment [9], and it also produces quantita-
tively good fits to various physical quantities measured in the
weak-coupling and resonance regime of the system.

In the future, it would be interesting to extend our theory
to various other impurity systems, such as with different mass
ratios between the impurity and the background, as well as the
regime with strong three-body correlations where the trimer
physics can dominate.
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