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Tailoring Bose-Einstein-condensate environments for a Rydberg impurity
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Experiments have demonstrated that the excitation of atoms embedded in a Bose-Einstein condensate to
Rydberg states is accompanied by phonon creation. Here we provide the theoretical basis for the description
of phonon-induced decoherence of the superposition of two different Rydberg states. To this end, we determine
Rydberg-phonon coupling coefficients using a combination of analytical and numerical techniques. From these
coefficients, we calculate bath correlation functions, spectral densities, and reorganization energies. These
quantities characterize the influence of the environment and form essential inputs for followup open quantum
system approaches. We find that the amplitude of bath correlations scales like the power law ν−6 with the
principal quantum number ν, while reorganization energies scale exponentially, reflecting the extreme tunability
of Rydberg atomic properties.
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I. INTRODUCTION

A growing arena in ultracold atomic physics is the study of
impurities in quantum many-body systems. Here a minority
species composed of ions [1–5], different elements [6], or
molecules [7] is embedded in a majority species that may
form a Bose-Einstein condensate (BEC) [2,3,8], thermal gas
[9], or degenerate Fermi gas [10,11]. Besides the fundamental
atomic physics interest, such experiments allow controlled
tests of condensed matter impurity phenomena, ranging from
the Kondo effect [12,13] over Polaron formation [14–18] to
the Anderson orthogonality catastrophe [19].

While in the above examples the impurity typically is a
particle in its electronic ground state, the impurity can also be
a Rydberg excited atom of the same or another atomic species
as the cold gas [20–23]. Rydberg atoms complement the above
list of impurities in that they can interact equally strongly
with a large but finite volume of the host medium, rather
than dominantly with nearest neighbor atoms. The range and
strength of interactions is further highly controllable through
the choice of the Rydberg quantum state. Being neutral, Ryd-
berg atoms are not too sensitive to stray external fields, while
they still can be guided by controlled external fields. However,
being electronically excited, they suffer spontaneous decay.
The resulting lifetimes of tens or hundreds of microseconds
[24,25] are much shorter than the millisecond timescales
characteristic of BEC dynamics. We show in this article that
interesting joint dynamics may arise between the two, despite
this apparent timescale mismatch.

We focus on electronic dynamics of a single immobile
Rydberg excited impurity atom embedded in a Bose-Einstein
condensate. After rewriting the Hamiltonian in the form of a
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spin-boson model (SBM), we proceed to explicitly calculate
the relevant Rydberg-phonon coupling constants. Focusing
further on the case of two low-lying angular momentum states
(l = 0, 1), we infer bath correlation functions, spectral densi-
ties, and re-organization energies to characterize the phonon
environment. It turns out that the latter is highly tunable
through Rydberg state quantum numbers and BEC phonon-
mode structure.

In our setup, the environment is naturally initialized in a
coherent initial state, instead of the usual vacuum or thermal
state. This happens due to the sudden Rydberg excitation
within a ground-state, zero-temperature BEC, resulting in a
quench of the system. A similar scenario is encountered for
vibrational dynamics of molecules following photoexcitation
[26]. Many open-quantum system techniques are formulated
for environments in an initial vacuum or thermal state. These
can still be used here since the dynamics for an environment
in a coherent initial state can be mapped onto one for the

FIG. 1. Sketch of a Rydberg impurity in a BEC environment.
(Left) A single Rydberg impurity in either of two selected internal
states (s, p) couples to a large volume (blue or orange) of an embed-
ding BEC (green), exciting phonons with wave vector q (red arrows).
The shape of the coupling volume strongly differs in the two Rydberg
electronic states. (Right) The system-environment coupling potential
U has a peculiar oscillatory long-range character. For illustration, we
sketch U for an impurity in state | s 〉, cutoff at large |U | for better
visibility, along an arbitrary axis, here z.
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environment in a vacuum initial state but adding auxiliary
terms in the system Hamiltonian.

Our results then form the basis for quite general treat-
ment of Rydberg electronic state decoherence in BEC. For a
simple case, they are validated by comparison with concep-
tually more straightforward solutions of the Gross-Pitaveskii
equation in a companion article [27]. We also show there
that the Rydberg atom in a BEC represents a particularly
accessible example of an open quantum system where both
the system and the environment can be interrogated in detail.
The results may have further applications for the design of
hybrid quantum technologies based on Rydberg atoms and
BEC and creating flexible quantum simulation platforms for
energy transport [28,29].

BEC-phonon-induced impurity decoherence has so far
been mainly studied in the context of ground-state impurities
of a minority species [8,17,18,30–38], ions [39], or polaron
formation [40]. For ground-state impurities, spectral densities
were reported in Ref. [41].

This article is organized as follows: First, we divide the
many-body Hamiltonian in Sec. II into parts describing the
system, the environment, and the coupling between the two.
Then in Sec. III, within an open quantum system approach,
we calculate environment correlation functions as well as
spectral densities and then explore the scaling of the lat-
ter with principal quantum number. Finally, we conclude
along with an outlook in Sec. IV. Details of calculations are
provided in a set of Appendixes, with the incorporation of
Bogoliubov excitations in the system environment coupling in
Appendix A, calculation of the ensuing coupling constants in
Appendix B, transformation of a coherent state environment
into a vacuum one in Appendix C, details on correlation
functions in Appendix D, and details on spectral densities in
Appendix E.

II. INTERACTING MULTISPECIES SYSTEM

We begin with the many-body Hamiltonian Ĥ for a col-
lection of bosonic atoms of mass m. The internal states of
the atoms are denoted by k. This label k can, for exam-
ple, correspond to the electronic ground state |g〉 or to a
collection of Rydberg states |α〉 = |ν, l, m〉, with principal
quantum number ν, angular momentum l , and azimuthal
quantum number m.

Using the field operator in the Heisenberg picture �̂k (x),
which destroys an atom at location x in internal state k, we
have

Ĥ =
∑

k

∫
d3x

[
�̂

†
k (x)

(
− h̄2

2m
∇2 + Ek

)
�̂k (x)

+ 1

2

∑
i, j,s

∫
d3y�̂

†
k (x)�̂†

i (y)Uki js(x − y)�̂ j (y)�̂s(x)

]
.

(1)

The first line of the Hamiltonian (1) are single-particle ener-
gies: kinetic energy and internal electronic energies Ek . We do
not consider any external potential. The second term contains
interatomic interactions, which may be long range due to the

presence of Rydberg states and where we have allowed for
interactions to change the internal state.

We now focus on the scenario of a single Rydberg impurity
that is allowed to occupy multiple electronic states, which
is embedded in a majority BEC with atoms in the ground
state. Exploiting these constraints, we proceed in the follow-
ing subsections to split the general Hamiltonian (1) into the
three pieces that enter an open quantum system treatment
[42–44], namely the sub-Hamiltonians for the quantum sys-
tem (Rydberg atom states), the environment (BEC), and the
system-environment coupling, respectively:

Ĥ = Ĥsyst + Ĥenv + Ĥcoup. (2)

Based on this segregation, we are able to evaluate the essential
inputs for any open-quantum system approach, which are
environment correlation functions or spectral densities.

A. Rydberg quantum system

To make the above field operator notation compatible with
the more usual formalism employed in Rydberg physics, we
assume a highly localized Rydberg atom, restricting its posi-
tion to a single, immobile spatial mode. We thus write

�̂α (x) ≈ ϕ0(x)â(α), (3)

where â(α) creates a particle from the vacuum with internal
state α and spatial mode ϕ0(x). For the Rydberg atom, multi-
ple internal electronic states | α 〉 = | ν, l, m 〉, defined above,
are available. In the following, we shall use the Greek indices
α, β, with | β 〉 = | ν ′, l ′, m′ 〉 to refer to two such complete
sets of quantum numbers.

For a single Rydberg impurity, with the identification
â†(νlm)â(ν ′l ′m′ ) ↔ | νlm 〉〈 ν ′l ′m′ |, we thus reach the simple
system Hamiltonian

Ĥsyst =
∑
νlm

Eνlm| νlm 〉〈 νlm |, (4)

where Eνlm are the single-atom energies corresponding to the
state | νlm 〉, which can be found with standard methods [45].
Since we assume a localized Rydberg atom ϕ0(x) ≈ δ(3)(x −
R) at rest, we ignore its kinetic energy operator in Eq. (1).
Here δ(3) is the three-dimensional delta function.

We shall see later that as usual the coupling to the BEC
environment introduces energy shifts that are formally best
included in Ĥsyst as well, so that in Appendix B 6 we define a
modified system Hamiltonian Ĥ ′

syst; see Eq. (B23).

B. Condensate environment

For the ground-state atoms (k = g) that form the BEC, the
Hamiltonian (1) becomes

Ĥ =
∫

d3x
[
�̂†

g (x)

(
− h̄2

2m
∇2 + Eg

)
�̂g(x)

+ U0

2
�̂†

g (x)�̂†
g (x)�̂g(x)�̂g(x)

]
, (5)

assuming the usual s-wave contact interactions [46]

Ugggg(x − y) = U0δ
(3)(x − y), (6)
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with U0 = 4π h̄2as/m, where as is the s-wave atom-atom scat-
tering length.

We split the ground-state field operator as usual [46],

�̂g(x) = φ0(x) + χ̂ (x), (7)

where φ0(x) ∈ C is the mean-field condensate wave function
and χ̂ (x) is the fluctuation operator which we expand as

χ̂ (x) =
∑

q

(uq(x)b̂q − v∗
q(x)b̂†

q) (8)

in terms of Bogoliubov–de Gennes (BdG) excitations. In
a homogenous BEC with number density ρ = |φ0|2, these
have mode functions uq(x) = ūq exp [iq · x]/

√
V and vq(x) =

v̄q exp [iq · x]/
√
V with bosonic creation and destruction op-

erators b̂†
q and b̂q, assuming a box quantization volume V .

Here and in the following, we use subscripts q for quan-
tities that only depend on the modulus of the quasiparticle
wave number. The BdG mode amplitudes are ūq = [(ζq/εq +
1)/2]1/2 and v̄q = [(ζq/εq − 1)/2]1/2, with ζq = εq + ρU0,
where q = |q| and

εq = h̄ωq =
√

h̄2q2

2m

(
h̄2q2

2m
+ 2U0ρ

)
, (9)

are the BdG mode energies. The BdG amplitudes fulfill ū2
q −

v̄2
q = 1 and limq→∞ ūq = 1, limq→∞ v̄q = 0 with limq→0 ūq −

v̄q = 0.
Inserting (7) and (8) into the Hamiltonian (5) for the state

| g 〉 then as usual gives rise to the Hamiltonian

Ĥenv = EGP[φ0(x)] +
∑

q

εqb̂†
qb̂q, (10)

where EGP[φ0(x)] is the Gross-Pitaevskii energy functional

EGP[φ0(x)] =
∫

d3x
[

− h̄2

2m
|∇φ0(x)|2

+ Eg|φ0(x)|2 + U0

2
|φ0(x)|4

]
. (11)

C. System-environment interactions

The main interest is in the system-environment coupling
Hamiltonian Ĥcoup. Since we already dealt with interactions
of ground-state atoms in Sec. II B and focus on at most one
Rydberg excitation in the present article, the only remaining
combinations of indices ki js in the interaction part of the
Hamiltonian (1) must involve one or two Rydberg indices
only. We can exclude all terms that would involve transitions
between ground and Rydberg states, due to the large energy
difference and small wave-function overlap of the impurity
ground-state wave function and the BEC. Considering these
constraints, the only required index sets are ki js = gαβg and
ki js = αggβ, which describe the interaction of a ground state
with a Rydberg atom, possibly changing the internal state of
the latter.

The dominant mechanism by which Rydberg atoms can
interact with ground-state atoms is through elastic scattering
between the Rydberg electron and ground-state atoms, once
the latter venture into the Rydberg orbit [47]. This is described

by the Fermi pseudopotential

V (y + r, x) = g0δ
(3)(y + r − x), (12)

where g0 = 2π h̄2ae/me [48]. Here, ae is the electron-atom
scattering length with ae < 0 for Sr and Rb and me is
the electron mass. We have split the absolute position of the
Rydberg electron y + r into the location of the ion core of the
Rydberg atom y, and the relative displacement of its electron
r. Interactions require the location of the electron to co-incide
with that of a ground-state atom at x. We neglect for simplicity
the slight momentum dependence of the electron-atom scat-
tering length ae (see, e.g., Ref. [49]), as well as the effect of
the direct interaction with the ion core, which is relevant in a
small BEC volume only [50,51]. The latter is also independent
of electronic state and hence not expected to contribute to
decoherence.

In order to incorporate the potential (12), the Hamilto-
nian (1) could be written in terms of an explicit Rydberg
electron position, as has been analyzed in Ref. [52]. Since
energy differences between Rydberg states are much larger
than the typical interaction energy scales with ground-state
atoms, it is frequently useful to revert back to the atomic en-
ergy basis for the Rydberg electron, which we do here. Since
we consider only a single impurity and [�̂α (x), �̂β (y)] = 0,
the system-environment interaction part of (1) finally boils
down to

Ĥint =
∑
α,β

∫
d3x

∫
d3y

× �̂†
g (x)�̂†

α (y)U gαβg(x − y)�̂β (y)�̂g(x). (13)

with long-range ground-state Rydberg atom interaction

U gαβg(x − y) = g0[ψ (α) ∗(x − y)ψ (β )(x − y)]. (14)

Here ψ (α)(r) denotes the electronic wave function of the Ry-
dberg electron in quantum state | α 〉 at a separation r from the
core. The position y in (14) is that of the core of the Rydberg
atom and x is that of a ground-state atom. For α = β, the
term (14) hence describes the energy shifts of Rydberg and
ground-state atoms due to their proximity, while for α �= β it
allows the possibility that scattering from ground-state atoms
causes a Rydberg state transition. The range of the interaction
(14) is the extent of the Rydberg wave function ψ , which is
slightly larger than the mean orbital radius rorb ≈ 3a0ν

2/2,
where a0 is the Bohr radius.

We now insert Eqs. (7) and (8) into the ground-state–
Rydberg-state interaction Hamiltonian (13) containing (14)
and assume the core of the Rydberg atom to be very tightly
localized in a single mode at the origin, using Eq. (3). We
give some more details on intermediate steps, as well as some
initial steps for an inhomogenous condensate in Appendix A.

After defining a splitting of the interaction Hamiltonian
according to

Ĥint =
∑
αβ

Ŝ(αβ ) ⊗ B̂(αβ ) (15)

into system parts Ŝ(αβ ) = â(α)†â(β ) and environment parts
B̂(αβ ) and focusing on the case of a spatially homogeneous
condensate with real mean field φ0 ≈ √

ρ, where ρ is the
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number density, we find

B̂(αβ ) =
[

Ē (αβ ) +
∑

q

(
κ∗(αβ )

q b̂†
q + κ (αβ )

q b̂q
)]

, (16)

with mean-field shift

Ē (αβ ) = g0

∫
d3x |φ0(x)|2ψ∗(α)(x)ψ (β )(x) (17)

and system-phonon coupling

κ (αβ )
q = g0

√
ρ

∫
d3x ψ∗(α)(x)ψβ (x)[uq(x) − v∗

q(x)]. (18)

After adding (17) to EGP[φ0(x)], one can already use the
Gross-Pitaevskii equation (GPE) to study the mean-field dy-
namics of the condensate in the presence of a Rydberg
impurity in a single state α. One important effect in that case
is imprinting of a phase onto the condensate wave function in
any region where condensate atoms feel U gααg [53,54]. This
allows, for example, tracking of a mobile Rydberg impurity
[55] or distinguishing different electronic states [54]. In a
homogenous system as we consider here, Ē (αβ ) = g0ρ δα,β ,
which causes an energy shift that, e.g., can be utilized to locate
the Rydberg excitation in a specific density region of the BEC
[21,56]. For Sr atoms with density 4.9 × 1020 m−3, we would
have Ē (ss) = −54 MHz. In an inhomogeneous background
(not further considered here), the term provides an effective
potential exerting a force on the Rydberg impurity [55,57].

While the results so far were general, from now on we
consider the principal quantum number of both the Rydberg
states, ν and ν ′, to be equal for simplicity. Then, for α, β

with l = 0 and l ′ = 0, denoted (αβ ) = (ss), the expression
(18) can be calculated analytically and has been used in
Refs. [21,58] to understand atom loss through repeated ex-
citation of Rydberg impurities in a BEC; we list the result in
Appendix B. We approximate Rydberg electron wave func-
tions by those for hydrogen in the following, which should
be a good approximation at large ν. One finds that κ (ss)

q de-
pends on q = |q| only, with functional dependence shown
in Fig. 2(a). For demonstrations in this section, we consider
the Rydberg impurity at the origin, in a 84Sr condensate with
density ρ = 4.9 × 1020 m−3, and hence use the corresponding
atom electron scattering length ae = −18a0 [59], the atomic
mass m = 1.393 × 10−25 kg, and atom-atom scattering length
as = 122.7a0 [60]. The coupling coefficients still depend on
the mode quantisation volume (we used V = 204 μm3), de-
fined after Eq. (11). V will drop out in subsequent results. We
show the dependence of couplings on wave number multiplied
by healing length ξ = 1/(2

√
2πasρ ). Then qξ � 1 corre-

sponds to the phonon part of the BEC excitation spectrum
and the higher wavenumbers to the free particle one. For the
parameters above, ξ = 0.11 μm.

As discussed in the supplement of Ref. [21], the dominant
peak in κ (ss)

q , representing the largest value of the system-
environment coupling, occurs at wave numbers determined
by the size of the Rydberg orbit q ≈ 2/rorb and lies in the
regime of phonon excitations, as seen by comparison with the
BdG dispersion relation shown as red dashed line in Fig. 2.
Further equally spaced peaks with alternating sign follow

FIG. 2. Overview of Rydberg-phonon coupling constants for a
single impurity with ν = 40. (a) The coupling κ (ss)

q of state | s 〉 to
a phonon with wave number q is isotropic due to the symmetry
of the Rydberg wave function. The right axis shows the phonon
dispersion relation (9) for orientation. (b) In contrast, the transition
coupling κ

(sp)
q,10 between | s 〉 and | p 〉 is anisotropic, since it involves

| p 〉 states. (c) Isotropic component κ
(pp)
q,00 of coupling in the state

| p 〉. (d) Anisotropic component κ
(pp)
q,20 of coupling in the state | p 〉.

(e) Transition coupling κ (sp)
q in the qx , qz plane. (f) The difference

of couplings �κq = κ (pp)
q − κ (ss)

q will be most relevant for Rydberg
decoherence.

at wave numbers q � 1/ξ for which BEC excitations have
single-particle character.

When l = 1 or l ′ = 1, the integrand in (18) is no longer
isotropic. To be specific, we restrict the present work to az-
imuthal quantum numbers m = 0 assuming the quantization
axis along the z direction. Removing other m states from
the picture can typically be achieved by additional Zeeman
shifts through an external bias magnetic field [61,62]. The
resultant coupling will then depend on the angle θ between
the propagation direction of the phonon, q, and the quanti-
zation axis, sketched in Fig. 1. It turns out that the angular
dependence is described using just two spherical harmonics
Ylm as κ

(αβ )
q = κ

(αβ )
q,00 (q)Y00 + κ

(αβ )
q,20 (q)Y20(θ ), where κ

(αβ )
q,00 and

κ
(αβ )
q,20 are the isotropic and anisotropic parts of the coupling,

respectively.
As described in Appendix B, we perform the angular inte-

gration contained in (18) analytically and the subsequent one
over the radial variable r = |x| numerically. The results of this
procedure are also shown in Fig. 2. We see as in the case
of κ (ss)

q that the coupling to condensate excitations when p
states are involved has an oscillatory dependence on the exci-
tation wave number and extends over both the phonon and the
single-particle part of the spectrum. We will see shortly that
the difference between couplings in the s and p states, shown
in Fig. 2(f), will be most relevant for studies of decoherence,
since it encapsulates the ability of the BEC environment to
“measure” the electronic state of the Rydberg system.
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III. OPEN QUANTUM SYSTEM APPROACH

If one is not interested in all degrees of freedom of a com-
plex quantum system, it is convenient to split it into a system
S and an environment E , and then investigate the quantum
dynamics of the system only. Formally, the latter is given by

ρ̂S (t ) = TrE (Û (t )[ρ̂S (0) ⊗ ρ̂E (0)]Û †(t )), (19)

where ρ̂S (t ) is the reduced density matrix of the system, TrE
denotes the trace over the environmental degrees of freedom,
Û (t ) is the time evolution operator of the complete system,
and ρ̂S,E (0) are the initial reduced density matrices of system
and environment, respectively. Since (19) is still based on
the time-evolution operator of the complete system, it still
contains the full complexity of the problem.

Open quantum system techniques aim to remove part of
that complexity by finding an evolution equation that does not
require us to solve explicitly the bath degrees of freedom, but
instead directly evolves

ρ̂S (t ) =
∑
ss′

ρss′ (t )| s 〉〈 s′ |, (20)

with s, s′ ∈ {s, p}. The effect of the environment enters the
evolution equation for (20) through certain correlation func-
tions, which we discuss for our case in Sec. III A. If this effect
remembers the past evolution of ρ̂S (t ), we talk about a non-
Markovian system; otherwise we denote it as a Markovian one
[42,43].

With the identification | ↑ 〉 = | p 〉 and | ↓ 〉 = | s 〉 and con-
straining the Rydberg system to these two electronic states,
we show in Appendix B 6 how the total Hamiltonian for our
system can be rewritten as

Ĥtot = Ĥ ′
syst +

∑
q

h̄ωq b̃†
qb̃q +

∑
q

�κq

2
(b̃q + b̃†

q)σ̂z

+ i
∑

q

κ (sp)
q (b̃q − b̃†

q)σ̂y + const., (21)

with �κq = κ
(pp)
q − κ (ss)

q . In (21), the environmental oscillator
frequencies ωq are set by the BdG mode energies in (9). The
coefficients κ are defined in Eq. (18) and the caption of Fig. 2,
and σ̂y,z are the usual Pauli spin operators. We recognize
(21) as a variant of the well-known spin-boson model (SBM)
[63,64], with one term that describes energy gap fluctuations
of the spin (∼σ̂z) and one describing incoherent spin flips
(∼σ̂y).

The first term in Eq. (21) is essentially Eq. (4), with minor
energy shifts due to system-environment coupling discussed
in Appendix B 6. The BdG excitations in the second term
created by b̃† correspond to shifted harmonic oscillator modes,

b̃q = b̂q + κ̄q

2h̄ωq
, (22)

b̃†
q = b̂†

q + κ̄q

2h̄ωq
, (23)

with κ̄q = κ
(pp)
q + κ (ss)

q , as discussed in detail in
Appendix B 6. We assume a Bose-Einstein condensate at
temperature T = 0 as initial state prior to Rydberg excitation,
hence ρ̂E (0) = | 0 〉〈 0 |, where | 0 〉 is the Bogoliubov vacuum
of the original unshifted quasiparticle operators: b̂q| 0 〉 = 0.

FIG. 3. Phonon correlation functions, defined in Eq. (28), for
coupling to a Rydberg impurity with principal quantum number
ν = 40. (a) Re[C (zz)(τ )] (black) and Im[C (zz)(τ )] (red dashed);
(b) C (yy)(τ ) with the same line styles. Other correlations vanish:
C (zy)(τ ) = C (yz)(τ ) = 0.

For the operators b̃q, the initial state ρ̂E (0) corresponds to a
many-mode coherent state as shown in Appendix B 6. This
seems to be an obstacle for the application of open quantum
system methods which require the environment initially
to be in the vacuum state. However, as we demonstrate in
Appendix C, the open quantum system evolution according to
(19) from the coherent environment initial state is equivalent
to evolution using a vacuum environment initial state with a
modified time-dependent system Hamiltonian

Ĥ ′′
syst =

[
�E

2
+

∑
q

�κq κ̄q

2h̄ωq
(cos(ωqt ) − 1)

]
σ̂z, (24)

entering the open quantum system method. The method then
additionally has to incorporate decoherence as usual. In (24),
�E = Ep − Es is the energy splitting between the | p 〉 and
the | s 〉 state. For this, we have combined Eqs. (4), (B23),
and (C3). Due to the equivalence discussed above, we shall
thus consider the environment in the vacuum state also for the
shifted operators b̃q, but using (24) for the system.

Finally, for later use, let us reformulate the interaction
Hamiltonian within (21) as

Ĥint = σ̂z ⊗ Ê (z) + σ̂y ⊗ Ê (y), (25)

Ê (z) =
∑

q

�κq

2
(b̃q + b̃†

q), (26)

Ê (y) = i
∑

q

κ (sp)
q (b̃q − b̃†

q). (27)

We shall in the following work out environmental properties
such as correlation functions in terms of these new operators
Ê (z) and Ê (y). As usual, the system environment interaction
Hamiltonian leads to entanglement between system and envi-
ronment and thus ultimately to decoherence of the system.

A. Single-impurity Bath correlation functions

In an approximate reduced description for the system, all
effects of the environment can usually be taken into account
through the environment correlation functions

C(kl )(τ ) = 〈 0 |Ê (k)(τ )Ê (l )(0)| 0 〉, (28)

where k, l ∈ {y, z}, operators are understood in the interaction
picture, and b̃q| 0 〉 = 0 as discussed above.

We show in Fig. 3 the relevant correlation functions for the
two system-bath coupling operators Ê (z), Ê (y) in (21), for the
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same parameters as in Fig. 2. The third possible correlation
function C(zy)(τ ) = 〈Ê (z)(τ )Ê (y)(0)〉 vanishes. The calcula-
tions are described in more detail in Appendix D. We can
already estimate typical decoherence timescales Tdecoh for Ry-
dberg electronic state superpositions from these results: It is
known that decoherence of a superposition of eigenstates of σz

(here the electronic states | s 〉 and | p 〉), will be dominated by
the part of Ĥint that depends on σ̂z [65]. The timescale can thus
be estimated as Tdecoh ∼ 1/

√
2C(zz)(0) [65]. For the case of

Fig. 3, we obtain Tdecoh ≈ 20 ns. This is much shorter than the
vacuum lifetime of ν = 40 Rydberg states, about τ ≈ 40 μs
[66,67], or decoherence times in vacuum, which can be of the
order of milliseconds even near surfaces [68]. The range of
decoherence timescales Tdecoh above also can easily be made
faster than inelastic processes, which for present parameters
would take place within 1–10 μs [56,67]. Decoherence times
can be read out by subjecting a superposition of | s 〉 and | p 〉
to a strong, fast Rabi π/2 pulse on the sp transition. After the
pulse, the population in, e.g., | p 〉 will reflect the coherence
density matrix element ρsp in Eq. (20) [69–71].

Another important aspect visible in Fig. 3 is the phonon
environment memory time Tm, over which correlation func-
tions drop to zero. Let us loosely refer to the characteristic
timescale of the Rydberg impurity as Tsys. This can be ei-
ther given by the energy splitting between our two states
Tsys ∼ h/|Eα − Eβ |, or if these are coupled by a microwave
set by its Rabi frequency: Tsys ∼ h/�mw. Then, for character-
istic Rydberg system timescales Tsys � Tm we would expect
Markovian open quantum system dynamics, for Tsys � Tm

non-Markovian. We can read off from Fig. 3 that Tm ≈ 50 μs
at ν = 40. Dynamics of either kind discussed above can typ-
ically be faster, and hence we expect our system to be able
to show non-Markovian features. It will in fact be difficult
to generate a nontrivially evolving quantum system that is
Markovian, since the Rydberg evolution time would be lim-
ited by the radiative lifetime, which even in vacuum is of the
same order as Tm.

By inspecting the Hamiltonian (21), we see that C(yy) is
related to phonon-induced transitions between Rydberg states.
One would expect those to be strongly suppressed for phonon
energies in the kHz range, and Rydberg energy splittings of
GHz for energetic reasons. We confirm this expectation in
Ref. [27].

B. Phonon spectral densities and environment tuning

To isolate temperature effects that are encoded in the
environment initial state ρ̂E (0), from the features of the
system-environment coupling, one also frequently consid-
ers the environment spectral density J (ω) that encapsulates
the relevance of environmental degrees of freedom with fre-
quency ω. In our case, spectral densities are defined as

J (z)(ω) =
∑

q

�κ2
q

4
δ(ω − ωq), (29)

J (y)(ω) =
∑

q

κ (sp)2
q δ(ω − ωq). (30)

Since our environment is in the vacuum state, these can also
be written as the Fourier transform of the bath correlation

FIG. 4. Spectral properties of BEC phonon environment for a
Rydberg impurity in ν = 120. (a) Spectral density J (z)(ω) and (b)
J (y)(ω). These are defined by Eqs. (29) and (30) or equivalently
Eqs. (31) and (32).

functions in Sec. III A, via

J (z)(ω) = 1

2π

∫ ∞

0
dτ C(zz)(τ )eiωτ , (31)

J (y)(ω) = 1

2π

∫ ∞

0
dτ C(yy)(τ )eiωτ . (32)

The results are shown in Fig. 4, with details of the calcula-
tion in Appendix E. The spectral densities display a nontrival
series of peaks and thus indicate the presence of a structured
environment. The structure originates from that of the cou-
pling constants κq in Fig. 2, since the spectral densities are
found as Fourier transform of the Bath correlation functions
C. These in turn are a type of inverse Fourier transform of
the κ2

q according to Eqs. (D4) and (D8). However, since one
transform is in terms of the variable pair (ω, τ ) and the other
in term of (q, τ ), the peaks are now no longer equidistant, but
stretched in accordance with the dispersion relation ω(q) (9).

Either spectral densities such as in Fig. 4 or bath corre-
lation functions as in Fig. 3 now fully capture the effect of
the condensate environment on the Rydberg impurity. Note
that the bath correlation function at time zero, which entered
the estimation of the decoherence time, is directly related to
the integral over the corresponding spectral density. Given
the extreme scaling of Rydberg electronic state properties with
principal quantum number, we now expect a similar degree of
tunability in the influence of the environment. To demonstrate
that this is indeed the case, Fig. 5 shows how two measures
for the impact of the environment on the system depend on
the Rydberg principal quantum number ν.

FIG. 5. Tuning of the condensate environment. (a) Variation of
the bath auto-correlation function C (zz)(0) (black diamonds) as a
function of principal quantum number ν along with the power-law
fit C (zz)(0) = 1.25 × 1011 ν−6 MHz2 as a red dashed line. We show
both linear (black) and logarithmic (red) axes. (b) The reorganiza-
tion energy λ(z), see Eq. (33), with the exponential fit λ(z) = 5.76 ×
103 e−0.06×ν GHz.
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The first measure is the initial value of the bath correla-
tion function C(0), shown in Fig. 5(a), which scales as ν−6.
To understand this, note that neglecting the weak q depen-
dence of uq − vq allows one to write Eq. (18) as κ (αα)

q ∼
F[|ψ (x)(αα)](−q), where F denotes the Fourier transform.
Using the convolution theorem, we can then show that C(0) ∼∫

d3x|ψ (x)|4 ∼ ν−6. Another frequently used measure is the
reorganization energy

λ(z) =
∫ ∞

0

J (z)(ω)

ω
dω, (33)

which is shown in Fig. 5(b). Large values for either quan-
tity indicate a fast decohering effect of the environment. We
can see that system-environment coupling can be tuned over
orders of magnitude through the principal quantum number.
Despite the wider excursions of the Rydberg electron into the
ambient BEC medium for the higher principal quantum num-
bers, we find stronger system bath coupling at lower principal
quantum numbers, because the stronger confinement of the
Rydberg wave function at lower ν leads to a higher electron
probability density, which in turn determines the coupling
strength.

While we have focused here on the tuning of system-
environment coupling through choice of Rydberg properties,
an alternate route is a modification of the ambient conden-
sate. We can see from Eq. (18) in conjunction with (28) or
(30) that all quantities in Fig. 5 are multiplied with the BEC
density ρ. The decoherence time estimates given in Sec. III A
will scale like Tdecoh ∼ ρ−1/2 due to this factor. Additionally,
the condensate mean-field interaction strength U0 and density
enter the expression through the phonon energies εq in (9)
and BdG mode amplitudes. Interactions U0 can be tuned using
Feshbach resonances [46], and thus both quantities will pro-
vide additional control knobs. Finally, when going beyond a
homogenous system, the nontrivial spatial BdG mode shapes
uq(x) and vq(x) entering Eq. (18) will depend on the system
geometry, for example, the trapping. A final interesting aspect
would be the scaling in angular momentum l , l + 1 of the two
states involved in Fig. 5, where presently we fixed l = 0, 1.

We defer explorations of the above options to the future.

IV. CONCLUSIONS AND OUTLOOK

We have studied an immobile Rydberg excited atom within
an atomic Bose-Einstein condensate, treating the latter as a
controllable environment for the electronic states of the for-
mer. For this environment of phonon excitations in the BEC,
we have introduced a framework for the calculation of bath-
correlation functions, spectral densities, and reorganisation
energies. These are important quantities for open quantum
system approaches and contain all relevant information about
the environmental influence on the systems dynamics. Knowl-
edge of the reorganization energy or the bath correlation
function at time zero already allows one to estimate the rele-
vant timescales for decoherence and phonon-induced Rydberg
state transitions. We found that they vary over orders of mag-
nitude as a function of the principal quantum number ν.

For the example of 84Sr atoms, we find that estimated de-
coherence timescales Tdecoh = 1/

√
2C(zz)(0) between angular

momentum states |νs〉 and |νp〉 range from Tdecoh = 20 ns at a

principal quantum number ν = 40 to Tdecoh = 0.9 μs at ν =
120 in an exemplary BEC density of ρ = 4.9 × 1020 m−3.
We show in a companion article [27] that phonon-induced
Rydberg state transitions between | νs 〉 and | νp 〉 are negli-
gible on these timescales. Bath memory times change from
around Tm = 56 μs at a principal quantum number ν = 40 to
Tm = 660 μs at ν = 120. Since Rydberg dynamics is limited
by lifetimes in a similar range, they would thus necessarily
be placed in the non-Markovian regime where system dy-
namics happens on timescales faster or comparable to the
memory time.

While the resultant open-quantum system is already
strongly tuneable in its system-environment coupling by vari-
ation of the principal quantum number of the Rydberg atom,
additional tunability might arise when extending the interac-
tion model, for example, to long-range dressed interactions
[53]. By affecting also the condensate atoms [72], dressing
additionally modifies the dispersion relation (9) which will in
turn modify the spectral properties of the BEC environment.
Further control knobs would arise through the shape of the
condensate wave function when moving from the homoge-
nous condensate considered here to tightly trapped clouds
of atoms.

The phonon environment can also affect the motional de-
grees of freedom of the Rydberg impurity, akin to Brownian
motion, as has been considered for ground-state impurities
in Refs. [8,37,73–80]. It would be of interest to generalize
those results to Rydberg impurities with long-range interac-
tions as discussed here. However, we expect the electronic
decoherence times given above to typically be faster than any
spatial diffusion. Alternatively, the impurity could be spatially
trapped to suppress that effect.

In the present work, we have focused on the electronic
decoherence dynamics of the Rydberg atom. One might now
also be interested in the coherence and correlation properties
of the ambient BEC. So far, schemes based on ground-state
impurities have been investigated and it has been shown the-
oretically that one can obtain information on coherence and
correlation properties [36,81,82] and also on the tempera-
ture [75,83] of the BEC. These schemes can now directly
be adapted to the case of the Rydberg impurity studied in
the present work, using the present results. It is possible that
Rydberg impurities offer advantages over ground-state atoms
for some of these purposes, due to their stronger coupling to
the condensate.
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APPENDIX A: GROUND-RYDBERG STATE INTERACTION
HAMILTONIAN

As discussed in Sec. II C, the Hamiltonian for ground-state
Rydberg-state interactions is

Ĥint =
∑
α,β

∫
d3x

∫
d3y

× �̂†
g (x)�̂†

α (y)U gαβg(x − y)�̂β (y)�̂g(x), (A1)

with �̂g,α,β (x) field operators that destroy a ground-state atom
or Rydberg atom in states | α 〉, | β 〉 respectively, at position x.
Here α denotes a complete set of quantum numbers {ν, l, m},
and similarly β groups {ν ′, l ′, m′}. We now insert the potential
U gαβg(x − y) from (14) into (A1) and then assume the BdG
expansion (7) for the ground-state field operator. Additionally,
using the Rydberg field operator (3) restricted to a single mode
�̂α (x) ≈ ϕ0(x)â(α), we obtain

Ĥint = g0

∑
α,β

∫∫
d3xd3y(φ∗

0 (x) + χ̂†(x))ϕ∗
0 (y)â†

α

× ψ∗(α)(x − y)ψ (β )(x − y)

× ϕ0(y)â†
β (φ0(x) + χ̂ (x)). (A2)

So far, the single-mode ϕ0(x) could still be delocalized, e.g., a
trap ground state. In the following, we assume a fixed location
of the Rydberg core at the origin, so that |ϕ0(y)|2 ≈ δ(3)(y).
Inserting the expansion (8) of the fluctuation operators into
BdG modes, we then reach

Ĥint = g0

∑
α,β

â†(α)â(β )
∫

d3x
{

|φ0(x)|2

+
[
φ∗

0 (x)
∑

q

(uq(x)b̂q − v∗
q(x)b̂†

q)

+ φ0(x)
∑

q

(u∗
q(x)b̂†

q − vq(x)b̂q)
]}

× ψ∗(α)(x)ψ (β )(x). (A3)

As the next simplification, we consider a real condensate
mean field, φ0(x) = φ∗

0 (x), which excludes, for example, con-
densates with nontrivial velocity profile. It includes, however,
the homogeneous static case treated here later and typical sim-
ple trapped cases. Since we shall deal with a single impurity,
we can finally identify â†(α)â(β ) with | α 〉〈β | and cast (A3)
into the form

Ĥint =
∑
α,β

| α 〉〈β |
∑

q

[
κ (αβ )

q b̂q + κ∗(αβ )
q b̂†

q + E (αβ )
]
, (A4)

with

κ (αβ )
q = g0

∫
d3x ψ∗(α)(x)ψ (β )(x)φ0(x)(uq(x) − vq(x)),

(A5)

E (αβ ) = g0

∫
d3x ψ∗(α)(x)ψ (β )(x)|φ0(x)|2, (A6)

which for a homogenous condensate φ0(x) = √
ρ with den-

sity ρ reduce to the expressions given in (17) and (18).

APPENDIX B: CALCULATION
OF COUPLING CONSTANTS

The expression for coupling constants κ
(αβ )
q in Eq. (A5)

applies for a Rydberg atom in an arbitrary real condensate. We
now consider the simpler homogeneous case, which should be
a good approximation whenever the condensate density does
not significantly vary on length scale of the Rydberg orbital
radius rorb. In that case, the Bogoliubov modes take the simple
plane-wave form

uq(x) = ūq√
V

eiq·x, vq(x) = v̄q√
V

eiq·x, (B1)

using q = |q|. Then, (A5) becomes

κ (αβ )
q = g0

√
ρ√
V

(ūq − v̄q)
∫

d3x ψ∗ (α)(x)ψ (β )(x)eiq·x. (B2)

We thus see that coupling constants are related to the Fourier
transform of spatial Rydberg electron probability densities,
for α = β, or of products of two wave functions, for α �= β.
The prefactor ūq − v̄q → 0 for q � ξ and approaches one for
q > ξ , where ξ is the healing length.

At this stage, we expand the plane waves in terms of spher-
ical harmonics Ylm, according to

eiq·x = 4π

∞∑
l1=0

l1∑
m1=−l1

il1 jl1 (qr) Yl1m1 (q̂) Y ∗
l1m1

(x̂). (B3)

Here jl1 (qr) are spherical Bessel functions of the first kind,
q̂ = q/|q| is a unit vector along the wave vector of the
phonon, and x̂ = x/|x|, while r = |x| and q = |q|.

1. Evaluation of angular integrals for general quantum states

As described before, the indices for electronic states α [β]
are shorthand for quantum numbers (ν, l, m) [(ν ′, l ′, m′)]. The
corresponding electronic wave function in the Rydberg state
of a hydrogen or alkali atom can be written as

ψ (α) ≡ ψνlm = Nνl Rνl (r)Ylm(�,�), (B4)

with normalization constant Nνl and radial wave function
Rνl (r), while the angular wave functions are spherical har-
monics Ylm(�,�) in terms of angular coordinates of the
electron � and �. Note that we use capitalized angles
for the coordinates of the electron and lowercase ones for
the direction of the phonon wave vector q. For hydrogen

states that we use in the following, Nνl =
√

( 2
νa0

)3 (ν−l−1)!
2ν[(ν+l )!] ,

with Bohr radius a0. The radial wave function Rνl (r) has
the usual analytical form in terms of exponential times La-
guerre polynomials. For multielectron alkali atoms, Rνl (r)
could, for example, be numerically found using the Numerov
method [45].
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From Eq. (B2), using (B3) and (B4), we then obtain

κνlm,ν ′l ′m′
q = g0

√
ρ√
V

(ūq − v̄q) Nνl Nν ′l ′

×
∫ ∞

0
dr r2R∗

νl (r)Rν ′l ′ (r)

×
∫ 2π

0
d�

∫ π

0
d� sin(�)

×Y ∗
lm(�,�)Yl ′m′ (�,�)

× 4π
∑
l1,m1

il1 jl1 (qr) Yl1m1 (q̂) Y ∗
l1m1

(�,�). (B5)

The integral over three spherical harmonics gives∫ 2π

0
d�

∫ π

0
d� sin(�) Y ∗

lm (�,�) Yl ′m′ (�,�)Y ∗
l1m1

(�,�)

= (−1)m(−1)m1

√
(2l + 1)(2l ′ + 1)(2l1 + 1)

4π

×
(

l l ′ l1
0 0 0

)(
l l ′ l1

−m m′ −m1

)
, (B6)

where the last two terms in brackets are Wigner 3- j symbols.
We can thus rewrite Eq. (B5) as

κνlm,ν ′l ′m′
q = g0

√
ρ√
V

(ūq − v̄q)NνlNν ′l ′

×
∫ ∞

0
dr r2R∗

ν,l (r)Rν ′,l ′ (r)4π
∑

l1

jl1 (qr)

×
∑
l1,m1

(i)l1

[√
(2l + 1)(2l ′ + 1)(2l1 + 1)

4π

×
(

l l ′ l1
0 0 0

)(
l l ′ l1

−m m′ −m1

)]
Yl1m1 (q̂),

(B7)

which will be useful for a general choice of states. Among
the experimentally most accessible choices, we now further
evaluate (B7) for s (l = 0, m = 0) and p (l = 1, m = 0) states,
within the same principal quantum number manifold ν = ν ′.

2. Coupling constant for the Rydberg s state

For α = (ν00) and β = (ν00), we shall use the shorthand
κν00,ν00

q = κ (ss)
q for coefficients in Eq. (B5). Inserting this

choice of quantum numbers into (B7) gives

κ (ss)
q = g0

√
ρ√
V

(ūq − v̄q)|
[(

2

νa0

)3
(ν − 1)!

2ν(ν!)

]

×
∫ ∞

0
dr r2|Rν0(r)|24π

∑
l1m1

jl1 (qr)(i)l1

×
[√

(2l1 + 1)

4π

(
0 0 l1
0 0 0

)(
0 0 l1
0 0 −m1

)]
×Yl1m1 (q̂). (B8)

The orthogonality properties encoded in the Wigner-3 j sym-
bol now leave only the l1 = 0, m1 = 0 term of the double sum,
and hence

κ (ss)
q = κ∗(ss)

q = g0
√

ρ√
V

(ūq − v̄q)

[(
2

νa0

)3 (ν − 1)!

2ν(ν!)

]

×
∫ ∞

0
dr r2|Rν0(r)|2 j0(qr), (B9)

where we already inserted Y00(q̂) = 1/
√

4π and noted that
κ (ss)

q is manifestly real. The final evaluation of the radial ma-
trix element is deferred to Appendix B 5.

3. Coupling constant for the Rydberg p state

Similarly, the starting point for κ
(pp)
q will be

κ (pp)
q = g0

√
ρ√
V

(ūq − v̄q)|
[(

2

νa0

)3 (ν − 2)!

2ν[(ν + 1)!]

]

×
∫ ∞

0
dr r2|Rν1(r)|24π

∑
l1,m1

jl1 (qr)(i)l1

×
[√

9 (2l1 + 1)

4π

(
1 1 l1
0 0 0

)(
1 1 l1
0 0 −m1

)]
×Yl1m1 (q̂). (B10)

As in case of κ (ss)
q , the selection rules in the Wigner symbols

help us to restrict the summation for κ
(pp)
q in Eq. (B10) to

obtain

κ (pp)
q = κ∗(pp)

q = g0
√

ρ√
V

(uq − vq)|
[(

2

νa0

)3 (ν − 2)!

2ν[(ν + 1)!]

]

×3
√

4π

[
1

3
Y00(q̂)

∫ ∞

0
dr r2|Rν1(r)|2 j0(qr)

−2
√

5

15
Y20(q̂)

∫ ∞

0
dr r2|Rν1(r)|2 j2(qr)

]
, (B11)

which is again manifestly real.

4. Coupling constant for sp

Finally, we follow the same procedure for the coupling
constant κ

(sp)
q and find

κ (sp)
q = −κ∗(sp)

q = i
g0

√
ρ√
V

(ūq − v̄q)

√(
2

νa0

)3 (ν − 1)!

2ν(ν!)

×
√(

2

νa

)3 (ν − 2)!

2ν[(ν + 1)!]

∫ ∞

0
dr r2R∗

0(r)

× R1(r) j1(qr)Y10(q̂). (B12)

In contrast to the expressions in the two subsections before,
this coupling is fully imaginary as indicated.

5. Evaluation of radial matrix elements

To reach explicit forms for (B9), (B11), and (B12), we have
to evaluate the remaining radial matrix elements.
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TABLE I. Parameters in fit functions (B16)–(B18) for Rydberg-phonon coupling coefficients κ . Physical parameters are as for Fig. 2.

Function A
[ s

kg m7/2

]
α1 [μm] β1 γ1 [μm] B

[ s
kg m7/2

]
α2 [μm] β2 γ2 [μm]

f (ss) 2.28 × 1045 0.002 0.002 0.13 −6.82 × 1042 0.16 1.48 0.025

f (pp)
1 2.19 × 1045 0.002 0.002 0.135 −6.83 × 1042 0.16 1.48 0.026

f (pp)
2 0.54 × 1045 −0.002 −3.15 0.07 −5.84 × 1042 0.15 −1.02 0.024

f (sp) 6.94 × 1042 0 −0.98 0.04 −5.75 × 1042 0.15 −2.95 0.037

a. Involving Rydberg s states

For κ (ss)
q , this is possible analytically. From Eq. (B2), we

can write

κ (ss)
q = g0

√
ρ√
V

(ūq − v̄q)
∫

d3x |ψ (s)(x)|2eiq·x. (B13)

When we expand the integration using three-dimensional (3D)
spherical coordinates defined earlier, the radial part involves
an integration over exponential functions times Laguerre
polynomials, which has an explicit solution [84]. The final
coupling constant then takes the form

κ (ss)
q = g0

√
ρ√
V

(ūq − v̄q) × i N 2
ν0

2q
× �(2ν)(iq)2(ν−1)

(ν − 1)!2

×
[

1[(
2

νa0

) − iq
]2ν

− 1[(
2

νa0

) + iq
]2ν

]

× 2F1

[
1 − ν, 1 − ν; 1 − 2ν, 1 +

(
2

νa0q

)2]
, (B14)

where 2F1 denotes the Gauss hypergeometric function and �

is the Gamma function.

b. Involving Rydberg p states

Although analytic expressions exist also for radial inte-
grations involving p states in (B11) and (B12) [85], these
are quite involved and we hence opted to perform those
integrations numerically, which will also allow the future
incorporation of numerically determined wave functions for
alkali atoms. Since we later have to evaluate further integra-
tions over the coupling constant as a function of momenta q, it
is beneficial to fit the results of the radial numerical integration
with a simple functional form, which we describe now. While
the coefficient κ (ss)

q does have an analytical expression in
(B14), we found it convenient to treat all coupling on the same
footing and also proceed with κ (ss)

q using the fitting procedure.
To this end, we define a function template

T (q) = A sin(α1q + β1)e−γ1q + B cos(α2q + β2)e−γ2q,

(B15)

and then express
√
Vκ (ss)

q /g0 = f (ss)(q), (B16)

√
Vκ (sp)

q /g0 = f (sp)(q) cos(θ ), (B17)

√
Vκ (pp)

q /g0 = f (pp)
1 (q) − f (pp)

2 (q)[3cos2(θ ) − 1], (B18)

where each of the functions f (ss)(q), f (sp)(q), f (pp)
1 (q),

f (pp)
2 (q) has the form of the template T (q), with different

coefficients A, B, α1, β1, γ1, α2, β2, and γ2 as listed in Table I.
We have excluded

√
V from the fit since the quantization

volume must cancel in the calculation of physical quantities
later and g0 to facilitate the conversion of the results to other
atomic species. The quality of these fits is shown in Fig. 6.

6. Formulation of the final Hamiltonian

Now that all coupling constants that enter the interaction
Hamiltonian Eq. (A4) in the Rydberg manifolds | ν, l = 0 〉
and | ν, l = 1 〉 are known, via (B9), (B11), and (B12), we
proceed to regroup that Hamiltonian. Note that all terms E (αβ )

with α, β ∈ {s, p} do not contain BdG mode operators, and
hence will be reallocated to the system Hamiltonian. Using the
identification | ↑ 〉 = | p 〉 and | ↓ 〉 = | s 〉 discussed in Sec. III
and Pauli spin matrices, we rewrite the remaining terms as

Ĥint =
∑

q

(
κ

(pp)
q − κ (ss)

q

)
2

(b̂q + b̂†
q)σ̂z

+
∑

q

(
κ

(pp)
q + κ (ss)

q

)
2

(b̂q + b̂†
q)1

+ i
∑

q

κ (sp)
q (b̂q − b̂†

q)σ̂y, (B19)

FIG. 6. (a) Coupling constant κ (ss)
q (red solid) of state | s 〉 to a

phonon with wave number q for principal quantum number ν = 40
as in Fig. 2 and the fit (black dashed) g0 f (ss)/

√
V from (B16) with the

parameters in Table I. (b) Isotropic part of the coupling constant κ
(pp)
q,00

of state | p 〉 with its the fit g0 f (pp)
1 /

√
V and (c) the anisotropic part

κ
(pp)
q,20 with the fit g0 f (pp)

2 /
√
V from (B18). (d) The transition coupling

κ (sp)
q between | s 〉 and | p 〉 to a phonon with wave number q and its

fit g0 f (sp)/
√
V from (B17).
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where 1 is the unit operator in the Rydberg electronic state
space. Let us define κ̄q = κ

(pp)
q + κ (ss)

q and �κq = κ
(pp)
q −

κ (ss)
q and then consider jointly the present interaction Hamil-

tonian and the environmental Hamiltonian from (10):

Ĥenv + Ĥint = EGP +
∑

q

h̄ωqb̂†
qb̂q +

∑
q

�κq

2
(b̂q + b̂†

q)σ̂z

+
∑

q

κ̄q

2
(b̂q + b̂†

q)1 + i
∑

q

κ (sp)
q (b̂q − b̂†

q)σ̂y.

(B20)

We can then absorb the term ∼1 by using shifted environmen-
tal mode operators

b̃q = b̂q + κ̄q

2h̄ωq
, (B21)

b̃†
q = b̂†

q + κ̄∗
q

2h̄ωq
. (B22)

We use these in the Hamiltonian (B20) and then allocate all
terms that do not contain environmental operators b̃q or b̃†

q
to a shifted system Hamiltonian, so that our final result for

the complete Hamiltonian Ĥ = Ĥ ′
syst + Ĥcoup + Ĥ ′

env + const.
becomes

Ĥ ′
syst = Ĥsyst −

∑
q

�κqκ̄q

2h̄ωq
σ̂z, (B23a)

Ĥ ′
env =

∑
q

h̄ωq b̃†
qb̃q, (B23b)

Ĥcoup =
∑

q

�κq

2
(b̃q + b̃†

q)σ̂z,

+ i
∑

q

κ (sp)
q (b̃q − b̃†

q)σ̂y, (B23c)

where the constant energy offset in Ĥ has absorbed some
contributions from (B20).

We can evaluate the environment induced energy shift in
H ′

syst after converting the discrete summation over modes to
a continuous integral,

∑
q −→ ∫

d3qD, with density of states
D = V/(2π )3, and find

Ē σ̂z ≡ −
∑

q

�κqκ̄q

2h̄ωq
σ̂z = D

∫
d3q

�κqκ̄q

2h̄ωqV
σ̂z

= 2πD
∫ ∞

0
dq q2

[
2 f (pp)

1 (q)2 + 8
5 f (pp)

2 (q)2 − 2 f (ss)(q)2

2h̄ωq

]
σ̂z, (B24)

where we already integrated over θ and ϕ. Evaluating the
final integral, we reach, for example, Ē = 1.7 GHz using the
parameters of Fig. 2. For later use, we finally split Ĥcoup =
σ̂z ⊗ Ê (z) + σ̂y ⊗ Ê (y), with

Ê (z) =
∑

q

κ
(pp)
q − κ (ss)

q

2
[b̃q + b̃†

q], (B25)

Ê (y) = i
∑

q

κ (sp)
q [b̃q − b̃†

q]. (B26)

A very important final point is that after redefining the BdG
operators as in (B21), they fulfill

b̃q| 0 〉 = dq| 0 〉, (B27)

〈 0 |b̃†
q = 〈 0 |d∗

q , (B28)

for dq = κ̄q

2h̄ωq
, where | 0 〉 is the BdG vacuum for the orig-

inal unshifted operators b̂. These equations make clear that
in terms of the new operators the original BdG vacuum is
a many-mode coherent state or displaced vacuum. However,
we will show in the next section that open quantum system
dynamics with an environment initialised in a coherent state
is equivalent to one with an environment in a vacuum state
and a slight shift in the Hamiltonian. Hence, we subsequently
consider also the environment state ρ̂E for the newly defined
operators b̃q to be the vacuum state.

APPENDIX C: TRANSFORMATION OF
ENVIRONMENTAL STATE

We had seen in the preceding Appendix that in order to
reach a standard form of the spin-boson model in (B23), it
has to be formulated in terms of Bogoliubov operators shifted
as in Eq. (B21). Thus, the initial environment vacuum state
ρ̂E = | 0 〉〈 0 | for operators b̂q becomes ρ̂E = | d 〉〈 d |, where
| d 〉 is a many-mode coherent state of the environment. This
implies that for each operator b̃q, it acts as a coherent state
with amplitude dq.

Let us insert this state into (19), and then rewrite the many-
mode coherent state using the standard displacement oper-
ator | d 〉 = D̂(d)| 0 〉, where D̂(d) = ∏

q exp (dqb̃†
q − d∗

q b̃q).
We find

ρ̂S (t ) = TrE (Û (t )[ρ̂S (0) ⊗ | d 〉〈 d |]Û †(t ))

= TrE (Û (t )[ρ̂S (0) ⊗ D̂(d)| 0 〉〈 0 |D̂†(d)]

× Û †(t )D̂(d)D̂†(d)), (C1)

where we have also inserted 1 = D̂(d)D̂†(d) into the trace.
This can be rearranged into

ρ̂S (t ) = TrE (Ũ (t )[ρ̂S (0) ⊗ | 0 〉〈 0 |]Ũ †(t )), (C2)

where the time evolution is now governed by the shifted
time evolution operator Ũ (t ) = D̂(d)Û (t )D̂†(d), but starts
from a vacuum environment initial state. That time evolu-
tion operator arises in turn from a shifted Hamiltonian H̃ =
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D̂(d)Ĥ (t )D̂†(d), where Ĥ (t ) is the interaction picture Hamil-
tonian following from (B23).

This shifted Hamiltonian finally takes the form

Ĥ ′′
syst = Ĥ ′

syst + σ̂z

∑
q

�κq κ̄q

2h̄ωq
cos(ωqt ), (C3)

where Ĥ ′
syst was given in Eq. (B23). We shall explore the ram-

ifications of this term for our scenario in Ref. [27]. A similar
procedure was used in Ref. [86] to handle finite-temperature
environments.

APPENDIX D: CALCULATION OF BEC ENVIRONMENT
CORRELATION FUNCTIONS

As discussed in Sec. III A, the effect of the BEC envi-
ronment on the Rydberg impurity is fully encapsulated in the
environmental correlation functions defined in Eq. (28). These
equations define three different correlation functions, owing to
the two nontrivial parts of the system-environment coupling
Hamiltonian (B23). Correlations depend on the assumed state
of the environment, for which we can take the vacuum state as
shown in Appendix C.

1. zz correlations

Inserting Eq. (B25) into C(zz)(τ ) of Eq. (28), we can write

C(zz)(τ ) =
∑
q,q′

�κq

2

�κq′

2

×〈 0 |[b̃q(τ ) + b̃†
q(τ )][b̃q′ (0) + b̃†

q′ (0)]| 0 〉. (D1)

In the interaction picture, we have

b̃q(τ ) = b̃q(0)e−iωqτ , (D2)

b̃†
q(τ ) = b̃†

q(0)eiωqτ . (D3)

Hence Eq. (D1) becomes

C(zz)(τ ) =
∑

q

�κ2
q

4
e−iωqτ . (D4)

To evaluate (D4), we again convert from the discrete to a con-
tinuous notation, according to

∑
q −→ ∫

d3q D. As expected,
we see that the quantization volume V from the

∑
q cancels

those from �κq and dq; see, e.g., Eq. (B9). Let us denote the
3D spherical coordinates of the wave vector q with q = |q|, θ ,
and ϕ. We now insert the fitted coupling constants obtained in
Appendix B 5 to obtain

dq = g0√
V

f (pp)
1 (q) − f (pp)

2 (q)[3cos2(θ ) − 1] + f (ss)(q)

2h̄ωq
,

(D5)

�κq = g0√
V

{
f (pp)
1 (q) − f (pp)

2 (q)[3cos2(θ ) − 1] − f (ss)(q)
}
.

(D6)

Evaluating angular integrals, we find

C(zz)(τ ) = πg2
0D

∫ ∞

0
dq q2e−iωqτ ×

[
f (pp)
1 (q)2 + 4

5
f (pp)
2 (q)2

+ f (ss)(q)2 − 2 f (pp)
1 (q) f (ss)(q)

]
, (D7)

after also integrating over the azimuthal angle ϕ. The integra-
tions over q are finally performed numerically, with results
shown in Fig. 3.

2. yy correlations

The calculation of environmental correlation functions in-
volving the operator Ê (yy) proceeds similarly. After insertion
of interaction picture bath operators, we now have

C(yy)(τ ) =
∑

q

[
κ (sp)

q

]2〈 0 |b̃q(0)e−iωqτ b̃†
q(0)| 0 〉. (D8)

After the same conversion from discrete to continuous bath
modes as in the previous section, we reach

C(yy)(τ ) = −4π

3
g2

0D
∫ ∞

0
dq q2 f (sp)(q)2e−iωqτ . (D9)

3. yz correlations

For a system environment Hamiltonian containing two
coupling terms such as (B23), in principle also cross-
correlation functions between environmental operators in
those two terms may become relevant. However, we show now
that

C(zy)(τ ) = 〈 0 |Ê (z)(τ )Ê (y)(0)| 0 〉 (D10)

vanishes in our case. As before, we insert (B25) and (B26)
into (D10) to find

C(zy)(τ ) = −i
∑

q

�κq

2
κ (sp)

q e−iωqτ . (D11)

The angular structure of the resultant integral is odd and the
integral vanishes, so that C(zy)(τ ) = 0.

APPENDIX E: CALCULATION OF SPECTRAL DENSITIES

As discussed in Sec. III B, spectral densities contain in-
teresting information on environmental properties. We can
obtain them directly from the definition (30)

J (z)(ω) =
∑

q

�κ2
q

4
δ(ω − ωq). (E1)

If we convert the sum to a continuum integral, we can write
this as

J (z)(ω) =
∫ ∞

0
d3q

�κ2
q

4
δ(ω − ωq)D, (E2)

where ωq =
√

h̄q2

2m ( h̄2q2

2m + 2U0ρ). To evaluate the delta func-
tion, we require

dωq

dq
=

h̄2q2

m2 + 2U0ρ

m

2
√

h̄2q2

4m2 + U0ρ

m

(E3)
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and using the parametrizations (B16) and (B18) for �κq we
finally reach

J (z)(ω) =πD√
2

q2
ω

[
f (pp)
1 (qω )2 + 4

5
f (ss)(qω )2

+ f (sp)(qω )2 − 2 f (pp)
1 (qω ) f (ss)(qω )

]dqω

dωq
, (E4)

with qω =
√

2m
h̄

√√
(h̄ω)2 + (U0ρ)2 − U0ρ.

Similarly the spectral density for the σ̂y coupling can be
written as

J (y)(ω) =
∫ ∞

0
d3q κ (sp) 2

q δ(ω − ωq)D, (E5)

which will have the final form

J (y)(ω) =πD√
2

q2
ω

[
1

3
f (sp)(qω )2

]
dqω

dωq
. (E6)

We explicitly verified that the same spectral densities are
obtained via the Fourier transform relation (32).
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