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Low-momentum interactions for ultracold Fermi gases

M. Urban *

Université Paris-Saclay, CNRS-IN2P3, IJCLab, 91405 Orsay, France

S. Ramanan †

Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India

(Received 6 April 2021; accepted 28 May 2021; published 14 June 2021)

We consider a two-component Fermi gas with a contact interaction from the BCS regime to the unitary
limit. Starting from the idea that many-body effects should not depend on short-distance or high-momentum
physics which is encoded in the s-wave scattering length, but only on momentum scales of the order of the
Fermi momentum, we build effective low-momentum interactions that reproduce the scattering phase shifts of
the contact interaction below some momentum cutoff. Inspired by recent successes of this method in nuclear
structure theory, we use these interactions to describe the equation of state of the Fermi gas in the framework
of Hartree-Fock-Bogliubov theory with perturbative corrections. In the BCS regime, there is a range of cutoffs
where we obtain fully converged results. Near unitarity, convergence is not yet reached, but we obtain promising
results for the ground-state energies close to the experimental ones. Limitations and possible extensions of the
approach are discussed.
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I. INTRODUCTION

The study of ultracold Fermi gases opens new and ex-
citing avenues into the rich physics of fermions, where one
can observe the effects of quantum degeneracy and interac-
tions and explore regions of strong correlations, for example,
the crossover from the BCS to the BEC state, including the
unitary limit, where the scattering length diverges [1]. The
progress made in the theoretical understanding has been in-
timately coupled to the experimental observation of these
phenomena using advanced trapping and cooling techniques
and the possibility to tune the interaction between alkali atoms
such as 6Li or 40K via Feshbach resonances.

In nuclear physics, it is well known that the s-wave scatter-
ing length between two nucleons in the spin-singlet channel
is very large compared to the range of the interaction. Fur-
thermore, in neutron stars, the neutrons in the inner layers
of the crust are in a strongly correlated (almost) unitary
regime. Therefore, much can be gleaned by the connection be-
tween cold Fermi gases near the unitary limit and low-energy
nucleons.

Since in the case of ultracold atoms the range of the interac-
tion is about four orders of magnitude smaller than the typical
interparticle spacing, the interaction between two fermions
has been usually modeled as a contact interaction with a cou-
pling constant g. This simplifies the many-body calculations,
as the interactions get restricted to the s wave. The use of this
so-called single-channel model is valid in the case of a broad
Feshbach resonance [2]. However, such an interaction has to
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be regularized, which can be done by choosing a momentum
cutoff �. Fixing the coupling constant for a given cutoff by the
requirement that it should reproduce the physical scattering
length a, one gets [3]

1

g
= m

4πa
− m�

2π2
, (1)

where m is the atom mass. This shows that the coupling
constant vanishes when � → ∞ and hence particle-particle
ladders have to be resummed in order to get a nonvanishing
contribution [4]. However, for a realistic description of the
atom-atom interaction, the limit � → ∞ must be taken, since
otherwise the finite cutoff results in an effective range of the
interaction, reff = 4/(π�).

In nuclear structure theory, the idea of using renormaliza-
tion group (RG) approaches to get low-momentum effective
interactions has allowed for major advances over the past two
decades [5]. In the two-body sector, starting with the s-wave
T -matrix equation,

T0(k, k′; E ) = V0(k, k′)

+ 2

π

∫ �

0
dq q2 V0(k, q)T0(q, k′; E )

E − q2/m
, (2)

where V0 denotes the interaction in the s wave, E is the
total energy of the pair, and k and k′ are the incoming and
outgoing momenta in the center of mass frame, the inter-
mediate states are cut off at �. The requirement that the
two-body observables (bound states and phase shifts at mo-
menta below the cutoff) must be independent of the cutoff
leads to a �-dependent effective low-momentum interaction
called Vlow-k . Therefore, contrary to what is done in cold-atom
physics, the cutoff � for the low-momentum interaction is
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not only finite but typically lowered as much as possible
to include just the relevant momentum scales of the prob-
lem. Such low-momentum interactions are “soft” and hence
have the advantage that many-body calculations become more
perturbative.

To give an example, using RG softened interactions de-
rived from chiral perturbation theory, including the three-body
force, one gets bound nuclei already at the Hartree-Fock (HF)
[6] or Hartree-Fock-Bogoliubov (HFB)1 [7] level and obtains
satisfactory results for ground-state energies if one includes
perturbatively corrections to the HF(B) ground state. As an-
other example, we mention our recent work on screening of
the pairing interaction in neutron matter [8], where the use
of a small cutoff allowed us to retrieve the Gorkov-Melik-
Barkhudarov result [9] in the low-density limit without the
resummation of ladder diagrams in the (three-particle–one-
hole and one-particle–three-hole) vertices.

The aim of this paper is to try this strategy, which is
very successful in nuclear physics, in the case of ultracold
Fermi gases in the BCS-BEC crossover. On the one hand,
the situation is more favorable in the case of cold atoms,
namely in what concerns the three-body force. While the �

dependence of Vlow-k completely accounts for the effects of
the intermediate states beyond � in the two-body sector, this
is not true in the many-body sector. There, the RG running
generates �-dependent three- and higher body forces [10–12].
The leading three-body term is of the form (ψ†ψ )3, where ψ

is the field operator. Because of the Pauli principle, this term
can only contribute if ψ has at least three components, which
is the case in nuclear physics (neutrons and protons with spin
↑ and ↓), but not in ultracold atoms with only two spin states.
On the other hand, the pairing correlations can become much
more important in ultracold atoms than in nuclei, especially
near unitarity and on the BEC side (a > 0). Far on the BEC
side, the lowest excitations are molecules out of the conden-
sate, which clearly require a nonperturbative resummation of
ladder diagrams. Therefore, we will limit ourselves in the
present work to the BCS side (a < 0) of the crossover, up to
the unitary limit.

The paper is organized as follows. In Sec. II, we set up a
separable interaction which exactly reproduces the two-body
scattering phase shifts of a contact interaction up to the cut-
off. The elements of HFB and the Bogoliubov many-body
perturbation theory (BMBPT) are set up in Secs. III and
IV. We present our results in Sec. V and our conclusions in
Sec. VI, where we discuss perspectives for future work. Some
technical details and lengthy equations are relegated to the
Appendixes. Throughout the paper, we use units with h̄ = 1,
where h̄ is the reduced Planck constant.

II. SEPARABLE FORM OF A CONTACT INTERACTION

The scattering phase shifts of two particles, 1 and 2, with
opposite spins, ↑ and ↓, interacting via a contact interaction

1In Ref. [7], the interaction was softened by the similarity renor-
malization group (SRG) instead of Vlow-k .

with s-wave scattering length a, are given by

δ(q) = arccot
(
− 1

qa

)
, (3)

where q = q′ is the momentum in the center of mass frame,
i.e., q = (p1 − p2)/2 and q′ = (p′

1 − p′
2)/2, if in- and outgo-

ing momenta of the two particles are denoted p1,2 and p′
1,2,

respectively.
We want to describe the system with a Hamiltonian written

in second quantization as

Ĥ =
∑
pσ

p2

2m
a†

σpaσp

+
∑

p1p2p′
1p′

2

Vp1p2p′
1p′

2
a†

p1↑a†
p2↓ap′

2↓ap′
1↑. (4)

This form is written for a finite volume V , but as usual, in the
limit of a large system, the summations over momenta will be
replaced by integrals:∑

p

· · · → V
(2π )3

∫
d3 p · · · . (5)

Since a contact interaction acts only in the s wave (l = 0), we
write it in the conventions that are common if one works in a
partial-wave basis as

Vp1p2p′
1p′

2
= 1

V 4πV0(q, q′) δQ,Q′ , (6)

where Q = p1 + p2 and Q′ = p′
1 + p′

2 are the incoming and
outgoing total momenta. The factor 1/V in Eq. (6) ensures
that V0(q, q′) (having dimension energy times volume) is in-
dependent of V .

Our aim is to construct a separable interaction of the form

V0(q, q′) = g0F (q)F (q′), (7)

which reproduces the phase shifts (3) below some cutoff �

but tends toward zero above this cutoff. In Eq. (7), g0 denotes
the coupling constant and F (q) is the form factor [normalized
to F (0) = 1]. If the interaction tends to zero at high momenta,
this implies that the phase shifts also tend to zero.

Rather than determining F (q) from the RG evolution as is
done for Vlow-k , we find it easier to impose the behavior of the
phase shifts as follows:

δ(q) = R

(
q

�

)
arccot

(
− 1

qa

)
, (8)

where R(x) is a regulator function. This approach was also
followed in Refs. [13–16], where the authors used a sharp reg-
ulator θ (1 − x). However, for better numerical convergence
near q = �, we prefer an exponential regulator of the form
R(x) = exp(−x2n), where n is a parameter that determines
how smoothly R(x) drops from 1 to 0 near x = 1. The phase
shifts of a contact interaction (black solid line) and examples
of phase shifts cut off at different � (dashed lines) are dis-
played in the upper panel of Fig. 1 for the case n = 10. One
sees that in practice the regulator can be set to zero beyond
some momentum �′, where the ratio �′/� > 1 depends on
the smoothness parameter n. In our calculations, we choose
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FIG. 1. Momentum dependence of the phase shifts multiplied by
the regulator, and of the corresponding diagonal matrix elements of
the potential, for different cutoffs (quantities made dimensionless by
multiplication with the appropriate powers of |a| and m).

�′ such that R(�′/�) = 10−10 which in the case n = 10 gives
�′ ≈ 1.17 �.

The problem of finding the separable interaction corre-
sponding to given phase shifts δ(q) was solved long ago by
Tabakin [17]: The diagonal elements of the interaction, for
particles of mass m, can be computed with a principal-value
integral as

V0(q, q) = − sin δ(q)

mq
exp

(
2

π
P
∫ ∞

0
dq′ q′δ(q′)

q2 − q′ 2

)
, (9)

from which follow the coupling constant and form factor

g0 = V0(0, 0), F (q) =
√

V0(q, q)/g0. (10)

In the case a > 0, when the potential has a bound state with
binding energy 1/(ma2), the right-hand side of Eq. (9) gets an
additional factor 1 + 1/(qa)2 [17,18]. Equation (9) was used
in Refs. [13] and [16] to derive an analytical expression for the
separable interaction in the unitary limit with a sharp cutoff.

As an illustration, we display in the lower panel of Fig. 1
the diagonal matrix elements of the potential corresponding
to the phase shifts with different cutoffs shown in the up-
per panel. The coupling constant increases when the cutoff
is lowered, thereby compensating the missing contribution
from intermediate states which are cut off by the regulator.
Nevertheless, the procedure explained here is not equivalent
to the simpler prescription (1), corresponding to g0 = g/(4π )
and F (q) = θ (� − q), preserving only the scattering length
a but not the momentum dependence of the phase shifts up
to the cutoff. In the present case, the form factor F (q) is a
nontrivial function of momentum, which ensures that not only
the scattering length a but the entire momentum dependence
of the phase shifts remains cutoff independent, as is the case

with Vlow-k . Actually, Vlow-k for the neutron-neutron interaction
in the s wave resembles very much our separable interaction
if � � 1/reff, as shown in Fig. 11 of Ref. [8].

III. HARTREE-FOCK-BOGOLIUBOV

It is well known that BCS mean-field theory can quali-
tatively describe the BCS-BEC crossover. In the cold-atom
literature, this theory is usually defined by the gap and number
equations [Eqs. (21) and (25) below] with a contact interac-
tion regularized according to Eq. (1) in the limit � → ∞.
However, in the weak-coupling regime (i.e., 1/(kFa) � −1,
where kF is the Fermi momentum), the gap is exponentially
suppressed and the dominant energy correction compared to
the ideal gas comes from the normal part of the self-energy
(i.e., the diagonal part in Nambu-Gorkov formalism). In the
limit � → ∞, the calculation of this self-energy requires the
resummation of ladder diagrams as done, e.g., in Ref. [4],
whereas in the present framework, we obtain it already at
the HF level. The mean-field theory including both the HF
self-energy and the pairing gap is called HFB theory.

Following Ref. [19], we start by defining the quasiparticle
operators2

βk↑ = ukak↑ − vka†
−k↓, βk↓ = ukak↓ + vka†

−k↑ (11)

with u2
k + v2

k = 1. This Bogoliubov transformation can be in-
verted to rewrite the creation and annihilation operators a†

kσ

and akσ in terms of the quasiparticle creation and annihilation
operators β

†
kσ and βkσ . For example, the annihilation opera-

tors can be expressed as

ak↑ = ukβk↑ + vkβ
†
−k↓, ak↓ = ukβk↓ − vkβ

†
−k↑. (12)

Let us now consider the operator

K̂ = Ĥ − μN̂ (13)

with Ĥ being the Hamiltonian defined in Eq. (4), N̂ being the
particle-number operator

N̂ =
∑
kσ

a†
kσ akσ , (14)

and μ being the chemical potential. Following the usual pro-
cedure [19], one obtains the expressions for the u and v

factors:

uk =
√

1

2
+ ξk

2Ek
, vk =

√
1

2
− ξk

2Ek
, (15)

where

ξk = k2

2m
+ Uk − μ, Ek =

√
ξ 2

k + 
2
k, (16)

with a HF-like mean field Uk and the gap 
k .
The gap equation reads


k = − 2

π

∫ �′

0
d p p2 V0(k, p)


p

2Ep
. (17)

2In the notation of Ref. [19], our operators βk↑ and βk↓ correspond
to the operators αk and βk, respectively.

063306-3



M. URBAN AND S. RAMANAN PHYSICAL REVIEW A 103, 063306 (2021)

Because of the separable form of the interaction, it is evident
that the momentum dependence of the gap 
k is given by


k = 
0F (k), (18)

and solving the gap equation amounts to simply finding the
number 
0 for which the following equation is satisfied:

1

g0
= − 2

π

∫ �′

0
d p p2 [F (p)]2

2Ep
, (19)

with Ep =
√

ξ 2
p + [
0F (p)]2. Using the relationship between

g0 and the scattering length a in free space,

1

a
= 1

mg0
+ 2

π

∫ �′

0
d p [F (p)]2, (20)

one can rewrite Eq. (19) in the form

1

a
= − 2

π

∫ �′

0
d p [F (p)]2

(
p2

2mEp
− 1

)
, (21)

which has the advantage that the integrand tends toward zero
more smoothly, already before p approaches the cutoff �′, and
one can see that the gap equation remains well defined in the
limit � → ∞.

So far, we have only discussed the gap but not the mean
field Uk . In the literature on ultracold atoms, the latter is
usually not taken into account, because it vanishes in the limit
� → ∞ [4]. It is given by

Uk =
∫

d3 p

(2π )3

(
1

2
− ξp

2Ep

)
4πV0

(p − k
2

,
p − k

2

)
. (22)

For the numerical calculation of Uk , it is useful to define an
interaction that is averaged over the angle θ between k and p
as follows:

V̄0(k, p) = 1

2

∫ 1

−1
d cos θ V0

(p − k
2

,
p − k

2

)
. (23)

In terms of this angle-averaged interaction, the mean field can
now be written as

Uk = 1

π

∫ �′

0
d p p2

(
1 − ξp

Ep

)
V̄0(k, p). (24)

It turns out that Uk = 0 for k > 3�′.
For a given chemical potential μ, the HFB density reads

nHFB = NHFB

V = 1

2π2

∫ �′

0
dk k2

(
1 − ξk

Ek

)
. (25)

Therefore, if one wants to obtain results for a given density n
and not for a given chemical potential μ, one has to determine
μ by solving the equation n = nHFB(μ) simultaneously with
the gap equation.

Finally, the ground-state energy density is given by

EHFB

V = 1

4π2

∫ �′

0
dk k2

[(
1 − ξk

Ek

)(
k2

m
+ Uk

)
− 
2

k

Ek

]
.

(26)

IV. BOGOLIUBOV MANY-BODY
PERTURBATION THEORY

A. Perturbative corrections to the HFB ground-state energy

The HFB theory may be a good starting point, but generally
corrections to it are needed. In particular, the energy shift
due to the HF field that we have just discussed is roughly
proportional to the coupling constant g0 and hence strongly
dependent on the choice of the cutoff �, whereas physical
results should be of course cutoff independent. We therefore
expect that, by including higher order corrections, if these
converge to the exact value of the ground-state energy, the
cutoff dependence should cancel out.

Expressing in K̂ the operators a† and a in terms of quasi-
particle operators β† and β , and normal ordering with respect
to these (i.e., putting all β† operators to the left of the β

operators), one can write K̂ in the form

K̂ = K00 + K̂11 + K̂40 + K̂31 + K̂22 + K̂13 + K̂04, (27)

where K̂i j represents the terms having products of i quasi-
particle creation operators β† followed by j quasiparticle
annihilation operators β . Notice that there are no terms K̂20

and K̂02 with two β† or two β operators, because these terms
vanish if the u and v factors are determined according to
Eq. (15). The first term, K00, is just a c-number and obviously
it corresponds to the expectation value of K̂ in the state that
has no quasiparticles, i.e., in the HFB ground state:

K00 = EHFB − μ NHFB. (28)

The second term, K̂11, has the simple form

K̂11 =
∑
kσ

Ekβ
†
kσ βkσ

. (29)

Hence, the eigenstates and eigenvalues of

K̂0 = K00 + K̂11 (30)

are simple and known: Its ground state is the HFB
state |0(0)〉 = |HFB〉 with eigenvalue �

(0)
0 = K00,

the lowest excited states are one-quasiparticle (1qp)
states |(kσ )(0)〉 = β

†
kσ |HFB〉 with eigenvalues �

(0)
kσ =

K00 + Ek , followed by the two-quasiparticle (2qp) states
|(k1σ1k2σ2)(0)〉 = β

†
k1σ1

β
†
k2σ2

|HFB〉 with eigenvalues

�
(0)
k1σ1k2σ2

= K00 + Ek1 + Ek2 , and so on.
We will denote the remaining terms of K̂ as

Ŵ = K̂40 + K̂31 + K̂22 + K̂13 + K̂04 (31)

and introduce a formal parameter λ (where the physical situa-
tion corresponds to λ = 1) to write

K̂ = K̂0 + λŴ . (32)

Following, e.g., the book by Sakurai [20], we can now apply
time-independent perturbation theory, i.e., an expansion of
the eigenstates and eigenvalues of K̂ in powers of λ, where
K̂0, Ŵ , and �(0)

μ play the roles of the unperturbed Hamil-
tonian H0, the perturbation V , and the unperturbed energies
E (0)

μ , respectively. This is exactly what was done in Ref. [7]
and called there Bogoliubov many-body perturbation theory
(BMBPT), generalizing the usual many-body perturbation
theory (MBPT) on top of HF to the case with pairing. To
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fix our notations, which are slightly different from those of
Ref. [7], we write the expansion of the ground state |0〉 up to
some order n and the corresponding eigenvalue �0 as

|0〉 ≈
n∑

i=0

λi|0(i)〉, �0 ≈
n+1∑
i=0

λi�
(i)
0 . (33)

The leading (i = 0) contributions correspond to the HFB re-
sult. The first corrections to the ground state are given by

|0(1)〉 =
∑
μ 
=0

|μ(0)〉 〈μ
(0)|Ŵ |0(0)〉

�
(0)
0 − �

(0)
μ

, (34)

|0(2)〉 =
∑
μν 
=0

|ν (0)〉 〈ν (0)|Ŵ |μ(0)〉〈μ(0)|Ŵ |0(0)〉
(�(0)

0 − �
(0)
ν )(�(0)

0 − �
(0)
μ )

, (35)

where we have used the fact that �
(1)
0 = 〈0(0)|Ŵ |0(0)〉 = 0.

The corresponding corrections to �0 are

�
(2)
0 =

∑
μ 
=0

〈0(0)|Ŵ |μ(0)〉〈μ(0)|Ŵ |0(0)〉
�

(0)
0 − �

(0)
μ

, (36)

�
(3)
0 =

∑
μν 
=0

〈0(0)|Ŵ |ν (0)〉〈ν (0)|Ŵ |μ(0)〉〈μ(0)|Ŵ |0(0)〉
(�(0)

0 − �
(0)
ν )(�(0)

0 − �
(0)
μ )

. (37)

At higher orders, there are “disconnected diagrams,” which
have to be discarded [21], but this does not yet happen at the
second and third orders considered here. In practice, since the
only part of Ŵ that gives a nonvanishing result when acting
on |0(0)〉 is K̂40, the index μ runs only over 4qp states with
two ↑ and two ↓ quasiparticles. The same is true for the index
ν in Eq. (37) for �

(3)
0 , where the operator that acts on 〈0(0)|

to the left must be K̂04. Consequently, in this equation, the
Ŵ operator in the middle must not change the number of
quasiparticles, and therefore it must be K̂22. The situation is
more difficult in Eq. (35) for the state |0(2)〉, where the sum
over ν has to include also 2qp and 6qp states, which are
generated when K̂13 and K̂31 act on the 4qp state |μ(0)〉.

From now on, since we are only interested in the ground
state, we will simply write � instead of �0 for the lowest
eigenvalue.

The question arises of how one can compute, e.g., the
energy E as a function of the density n = N/V . The problem
is that N̂ does not commute with K̂0, although it commutes of
course with K̂ . Therefore, as it is well known in HFB theory,
the eigenstates of K̂0 are not eigenstates of N̂ , and one may
wonder what value one should use for N . Interestingly, one
can show that up to order λ3, the energy E as a function of
the density n = N/V can be immediately obtained from the
expansion of the grand potential � as follows:

E (nHFB(μ)) = EHFB(μ) + λ2�(2)(μ) + λ3�(3)(μ) + O(λ4).

(38)

where �(2) and �(3) are second- and third-order correc-
tions. These are explicitly computed in the following two
subsections.

B. Second-order BMBPT correction

As mentioned before, the second-order correction (36)
requires us to sum over 4qp states having two ↑ and two
↓ quasiparticles and zero total momentum (k1 + k2 + k3 +
k4 = 0)

|μ(0)〉 = β
†
k1↑β

†
k2↓β

†
k3↑β

†
k4↓|0(0)〉 (39)

with energies

�(0)
μ = �

(0)
0 + Ek1 + Ek2 + Ek3 + Ek4 . (40)

Notice that permutations of k1 and k3 or of k2 and k4 do
not generate a different state, so when integrating over all
momenta one has to divide by 4. Therefore, Eq. (36) becomes

�(2) = −1

4

∑
k1k2k3

|〈0(0)|K̂04β
†
k1↑β

†
k2↓β

†
k3↑β

†
k4↓|0(0)〉|2

Ek1 + Ek2 + Ek3 + Ek4

, (41)

with k4 = −k1 − k2 − k3. The explicit form of K̂04 is ob-
tained by inserting Eq. (12) into Eq. (4) with Eq. (6) and
keeping only the term with four β operators

K̂04 = − 4π

V
∑

p1...p4

V0
(
q12, q34

)
δp1+p2+p3+p4,0

× up1 up2vp3vp4βp4↓βp3↑βp2↓βp1↑, (42)

where qi j = |ki − k j |/2. For convenience, we have renamed
the original momentum labels p1, p2, p′

1, p′
2 of Eq. (4) into

−p4,−p3, p1, p2 and we have used V0(q, q′) = V0(q′, q). It is
straightforward to work out the matrix element in the numer-
ator of Eq. (41):

〈0(0)|K̂04β
†
k1↑β

†
k2↓β

†
k3↑β

†
k4↓|0(0)〉

= − 4π

V [V0(q12, q34)(u1u2v3v4 + v1v2u3u4)

−V0(q14, q32)(v1u2u3v4 + u1v2v3u4)], (43)

where uki and vki are denoted as ui and vi for better readability.
The square of this expression gives 10 terms, which after a
suitable relabeling of the momenta [leaving the denominator
of Eq. (41) unchanged] can be grouped together into three
terms. The final expression reads

�(2) = − (4π )2

V2

∑
k1k2k3

A + B + C

E1 + E2 + E3 + E4
, (44)

A = v2
1 v2

2 u2
3 u2

4 [V0(q12, q34)]2, (45)

B = u1v1 u2v2 u3v3 u4v4 [V0(q12, q34)]2, (46)

C = −2 u1v1 v2
2 u3v3 u2

4 V0(q12, q34)V0(q14, q23), (47)

where Ei = Eki . These three terms can be interpreted dia-
grammatically as the three Goldstone-like diagrams shown
in Fig. 2.

Notice that, in the limit of no pairing (
k = 0), where
u2

k = θ (k − kF), v2
k = θ (kF − k), and ukvk = 0, only the term

A contributes while the terms B and C vanish. Then the energy
denominator becomes ξ3 + ξ4 − ξ1 − ξ2, and we recover the
usual second-order correction to the HF energy.

In practice, the sums over the ki are replaced by integrals
according to Eq. (5), so that �(2) becomes proportional to the
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FIG. 2. Goldstone-like diagrams corresponding to the three
terms in the second-order BMBPT contribution to the ground-state
energy. Lines with upward-pointing arrows represent particles (factor
u2), lines with downward-pointing arrows represent holes (factor v2),
and lines with two opposite arrows represent anomalous propagators
(factor uv). The dashed lines represent the interaction. Diagram (a) is
the only one that exists in the limit of no pairing.

volume V as it should be, since � is related to the pressure P
by � = −PV .

The integrations are done with Monte Carlo sampling.
Notice that for each integration variable ki, the integral can be
written in the form

∫
d3ki w(ki ) f (ki, θi, φi ), where w(k) is one

of the functions v2
k , ukvk , or u2

k , and all the angle dependence
is in the remaining function f . If the integrand contains a
factor of v2

k or ukvk , the integration region is automatically
limited to k < �′, because vk = 0 for k > �′. However, if
the integrand contains a factor of u2

k , as it is the case for
the k3 integration in term A, it is only cut off through the
interaction term [V0(q12, q34)]2 contained in the function f ,
which vanishes for q34 > �′. In this case, combining the con-
straints k1, k2, q34 < �′ and momentum conservation k3 =
(2q34 − k1 − k2)/2, one sees that k3 is limited to the region
k3 < 2�′. We implement importance sampling to efficiently
distribute the integration points along ki, according to the
weights k2

i w(ki ) by introducing three transformations of vari-
ables. For each function w(k), we define a function

xw(p) =
∫ p

0
dk k2 w(k). (48)

We also define the corresponding inverse functions pw(x) such
that pw(xw(p)) = p. Hence, we can write∫

d3ki w(ki ) f (ki, θi, φi )

=
∫ xw (ki max )

0
dxi

∫ 1

−1
d cos θi

∫ 2π

0
dφi f (pw(xi ), θi, φi ),

(49)

with ki max = �′ or 2�′, respectively, as discussed above. The
advantage of these transformations is that now uniformly
distributed random variables xi correspond to momenta ki =
pw(xi ) whose distributions automatically account for the fac-
tors k2

i w(ki ) in the integrand.
Finally, because of rotational invariance, the integrand de-

pends only on relative angles. Therefore, we may choose
without any loss of generality k1 in z direction and k2 in the xz
plane, so that the integrations over cos θ1, φ1, and φ2 become
trivial.

C. Third-order BMBPT correction

According to Eq. (37) and the discussion below that equa-
tion, the third-order correction is given by

�
(3)
0 = 1

16

∑
k1...k8

1

E1,2,3,4E5,6,7,8

×〈0(0)|K̂04β
†
k1↑β

†
k2↓β

†
k3↑β

†
k4↓|0(0)〉

× 〈0(0)|βk4↓βk3↑βk2↓βk1↑K̂22β
†
k5↑β

†
k6↓β

†
k7↑β

†
k8↓|0(0)〉

× 〈0(0)|βk8↓βk7↑βk6↓βk5↑K̂40|0(0)〉, (50)

with the abbreviations

E1,2,3,4 = Ek1 + Ek2 + Ek3 + Ek4 (51)

and so on. Analogous to the factor 1/4 in Eq. (41), the factor
1/16 in Eq. (50) takes into account that permutations k1 ↔
k3, k2 ↔ k4, etc., describe the same state and therefore must
be counted only once. Momentum conservation in K̂04 and
K̂40 require that k1 + k2 + k3 + k4 = k5 + k6 + k7 + k8 =
0. The explicit expression of K̂22 reads

K̂22 = 4π

V
∑

p1...p4

δp1+p2,p3+p4

{[
V0

( |p1 − p2|
2

,
|p3 − p4|

2

)
(up1 up2 up3 up4 + vp1vp2vp3vp4 )

+V0

( |p1 + p3|
2

,
|p2 + p4|

2

)
(up1vp2vp3 up4 + vp1 up2 up3vp4 )

]
β

†
p1↑β

†
p2↓βp4↓βp3↑

−V0

( |p1 + p4|
2

,
|p2 + p3|

2

)
[up1vp2 up3vp4β

†
p1↑β

†
p2↑βp4↑βp3↑ + vp1 up2vp3 up4β

†
p1↓β

†
p2↓βp4↓βp3↓]

}
. (52)

One can easily see that K̂22 changes only two out of
the four quasiparticle momenta in Eq. (50). So, finally,
there are only four independent momenta over which we
have to integrate. Like the second-order correction, the
third-order correction can again be interpreted in terms
of Goldstone-like diagrams. Some examples for such di-
agrams are shown in Fig. 3. By relabeling the momenta
and combining terms with the same weight functions, one

obtains finally an expression which is suitable for nu-
merical integration using the importance-sampling method
given in Eq. (49). The explicit formula is given in
Appendix B.

As was the case for the second-order correction, the third-
order correlation energy without pairing can be obtained
by setting in this expression 
k = 0, v2

k = θ (kF − k), u2
k =

θ (k − kF), and ukvk = 0.
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FIG. 3. Three examples out of the 27 distinct Goldstone-like
diagrams for the third-order BMBPT correction to the ground-state
energy.

V. RESULTS

For a given interaction, the equation of state is given by
the energy density E/V as a function of the density n = N/V .
In the case of a contact interaction, which is determined by
the scattering length a, it can be reduced to a dimensionless
function E/E0, depending on one dimensionless parameter
1/(kFa), where kF = (3π2n)1/3 is the Fermi momentum and
E0/V = k5

F/(10π2m) is the energy density of the ideal Fermi
gas.

In our case, a complication arises from the cutoff �,
leading to an additional dependence on the dimensionless
parameter �/kF . Ideally, the results should be independent of
this unphysical parameter, but of course the cutoff must be al-
ways large enough to include all relevant degrees of freedom,
i.e., at least � > kF. Figure 4 shows the cutoff dependence of
the ground-state energy E in units of E0, obtained according

to Eq. (38), for different values of the parameter 1/(kFa). The
thick lines are the HFB (+ BMBPT) results, while the thin
lines are HF (+ MBPT) results.

Let us start our discussion with the first two panels,
1/(kFa) = −5 and −2, corresponding to the weak-coupling
regime. In this regime, the pairing gap is so small that the
thick and thin lines practically coincide, and the dominant
contribution comes from the HF self-energy. Since the HF
contribution is proportional to the coupling constant g0, which
tends toward zero for � → ∞, it is not surprising that the
HF(B) result (short blue dashes) shows a strong cutoff depen-
dence. However, the situation improves once the perturbative
corrections are included (green long dashes and red solid
lines). In some range of not too large cutoffs (�/kF � 2.5),
the cutoff dependence of the HF(B) energy is compensated
by the cutoff dependence of the perturbative corrections al-
ready at third order. Furthermore, in this range of cutoffs, the
perturbation expansion of the energy converges to the energy
obtained in Ref. [23] from an expansion in powers of kFa up
to fourth order (purple dots).

When the interaction strength increases, the pairing gaps
get bigger. Therefore, in the range −1 � 1/(kFa) � 0, where
the gas is strongly correlated, the HFB + BMBPT results
markedly differ from the HF + MBPT ones. In particular, only
when starting from HFB, one obtains a finite correction to the
energy in the limit � → ∞. As 1/(kFa) approaches 0, which
is the unitary limit, the results are always cutoff dependent.
However, it is worth noting that with the HFB + BMBPT, the
cutoff dependence between the different orders of the pertur-
bation theory is less compared to the HF + MBPT results. In
the HFB + BMBPT case, we observe that, as a function of the
cutoff, the energy has a minimum around �/kF ≈ 1.5.

ε /
 ε 0

Λ / kF

 0.92

 0.94

 0.96

 0.98

 1

 1  10  100

1/(kFa) = −5

thin lines: Δ = 0

experiment

kFa expansion
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BMBPT2

BMBPT3

 0.8

 0.85

 0.9

 0.95

 1

 1  10  100
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 1  10  100
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 1
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 0.8
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1/(kFa) = 0

FIG. 4. Cutoff dependence of the computed ground-state energy E in units of the energy of an ideal Fermi gas, E0, for seven values of
the interaction parameter 1/(kFa) at different levels of approximation. Thick lines start from the HFB ground state, EHFB (blue short dashes),
EBMBPT2 = EHFB + �(2) (green long dashes), and EBMBPT3 = EHFB + �(2) + �(3) (red solid line), while the corresponding thin lines are obtained
without pairing, i.e., starting from HF instead of HFB. For comparison, the light blue areas are the experimental results of Ref. [22] and the
purple dots in the first two panels are obtained from the kFa expansion up to order (kFa)4 of Ref. [23].
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Various thermodynamic quantities for the homogenous
one-component Fermi gas from the BCS regime to the unitary
limit were recently determined in Ref. [22] using 6Li atoms in
a hybrid trap. The results for the energy with their error bands
are shown in Fig. 4 by the light blue regions. Our minimum
energies agree rather well with these experimental results.
Although we do not see true convergence as in the weakly
interacting case, one may argue that these minimum energies
can be considered our best estimates because the third-order
change is much smaller than the second-order one, and also
there is at least local cutoff independence. However, as one
approaches the unitary limit, the best estimate from HFB +
BMBPT is still somewhat higher than the experimentally
determined value of the energy. The ratio of E/E0 in the
unitary limit is called the Bertsch parameter ξ . At the respec-
tive minima, we find ξHFB = 0.442, ξBMBPT2 = 0.414, and
ξBMBPT3 = 0.407, while the most precise experimental value
is ξ = 0.370 ± 0.005 [24], which lies inside the error band of
Ref. [22] shown in our figure and agrees also very well with
the quantum Monte Carlo results ξ = 0.372 ± 0.005 [25] and
ξ = 0.366+0.016

−0.011 [26]. Comparing the HFB and BMBPT ener-
gies, we observe that the minima get broader at higher orders
of perturbation theory. This might indicate the onset of conver-
gence, which should eventually lead to cutoff independence
at least in some range of cutoffs, as discussed above for the
weakly interacting case.

VI. CONCLUSION AND OPEN QUESTIONS

Inspired by the Vlow-k interactions used in nuclear physics,
we have constructed effective interactions which tend to zero
above some momentum cutoff � but preserve exactly the scat-
tering phase shifts of the contact interaction below that cutoff.
Since the phase shifts do not change sign, one can obtain
rank-1 separable interactions with these properties using the
inverse-scattering formula of Tabakin [17], without solving
explicitly the RG evolution equation.

Using these separable interactions, we have calculated the
equation of state of the zero-temperature Fermi gas within the
HFB + BMBPT approach. In the weak-coupling BCS regime,
where the HF term is much more important than pairing, we
find that, for �/kF � 2.5, the BMBPT converges quickly to
the correct result. At stronger coupling, we do not yet find
convergence but nevertheless the results are encouraging and
our best estimate for the Bertsch parameter in the unitary limit,
ξ = 0.407, is not very far from the experimental value ξ =
0.370 ± 0.005 [24].

An obvious problem of the approach is the cutoff depen-
dence of the results. For observables that are insensitive to
the short-range scales, the fact that the interaction gives by
construction cutoff independent results in the two-body sec-
tor (phase shifts) at low momentum implies that any cutoff
dependence in the many-body sector is indicative of missing
contributions. These missing contributions can be higher order
corrections in the perturbative expansion or missing three- and
higher body interactions.

Even if the simplest three-body interaction of the form
(ψ†ψ )3 is absent in the limit � → ∞ because it is forbidden
by the Pauli principle for a two-component Fermi system,
more complicated terms involving derivatives, i.e., momenta,

would be generated in the RG evolution when the cutoff
is lowered [10–12]. These terms should be either included
explicitly or, in an approximate way, in the form of a density-
dependent two-body interaction.

Concerning the perturbation expansion in BMBPT, it is
well known from nuclear structure theory that this can only
work if the interactions are soft enough. This means that,
while the cutoff must be larger than kF to describe the in-
teractions among the particles in the Fermi sea, it should not
be too large compared to kF. If the cutoff is too large, e.g.,
in the limit � → ∞, nonperturbative resummations (ladder
diagrams) are necessary even in the weakly coupled regime. In
order to see in which range of �/kF and 1/(kFa) the BMBPT
expansion converges, it would be desirable to push it to higher
orders. This necessitates, however, the development of tools
that can compute these corrections automatically, as was done
for nuclear-structure theory [27]. Once the equations have
been derived, their numerical computation using Monte Carlo
integration would not be any more difficult than the third
order that we have done here. As usual with Monte Carlo
integration, the computation time depends on the precision
that one asks for. Let us mention that a completely different
strategy to sum the perturbative corrections to much higher
orders is the diagrammatic Monte Carlo method [28].

In the strongly coupled regime, it may be necessary to
resum ladder-like diagrams even in the case of small cutoffs,
for the following reason. The BMBPT expansion as explained
in Sec. IV is based on excited states built out of fermionic
quasiparticle excitations. But on the BEC (a > 0) side of the
crossover, it is clear that the most relevant excitations are
bosonic ones. Therefore, it is possible that bosonic excitations,
namely, the Bogoliubov-Anderson (BA) phonon, play also
some role at unitarity and for a < 0 [4]. This collective mode
is described in the superfluid version of the random-phase
approximation (RPA) [29] (called quasiparticle RPA in the
nuclear-physics literature), corresponding to particle-particle
and particle-hole ladder diagrams which are coupled to one
another due to the anomalous propagators. For a regularized
contact interaction in the limit � → ∞, the effect of the BA
mode on the ground state was included in Ref. [4]. Recently,
it was also studied in Ref. [30] for the case of dilute neutron
matter with a separable interaction, but without the HF field.

In such T -matrix approaches, the use of a finite cutoff
would have some advantages compared to the limit � → ∞.
At weak coupling, one gets the right result almost for free
(at the HF level) with low-momentum interactions, whereas
for � → ∞ one has to use at least partially self-consistent
versions of the T -matrix theory [31] such as the extended
T -matrix approximation [32] or fully self-consistent Green’s
functions [33]. In addition, low-momentum interactions may
simplify the numerical implementation of these approaches
because a smaller grid in momentum space is required. The
price to pay are uncertainties due to the unknown many-body
interactions that are in principle induced when one lowers the
cutoff.

Furthermore, one might wonder whether the HFB ground
state is the best starting point for the perturbative expansion,
although it is known that the gap is reduced due to “screening”
of the interaction by the surrounding medium [9]. We leave all
these open questions for future work.
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APPENDIX A: DETAILS OF THE COMPUTATION
OF THE SEPARABLE INTERACTION

Let us first consider the case a < 0. When solving the
inverse scattering problem, Eqs. (9) and (10), it is helpful to
determine the coupling constant g0 by considering Eq. (9) in
the limit q → 0:

g0 = a

m
exp

(
− 2

π

∫ �′

0
dq′ δ(q′)

q′

)
. (A1)

Then the form factor is given by

F (q) =
√

V0(q, q)

g0
=

√
sin δ(q)

−qa
exp

(
−x(q)

2π

)
, (A2)

with

x(q) = 2q
∫ �′

0
dq′ qδ(q′) − q′δ(q)

q′(q′ 2 − q2)
+ δ(q) ln

�′ − q

�′ + q

(A3)

for 0 < q < �′. Furthermore, F (0) = 1 and we set F (q �
�′) = 0 since it is negligible by the definition of �′.

Let us now consider the unitary limit, a → ∞. In this case,
the coupling constant can be written as

g0 = − 1

m�′ exp

(
− 2

π

∫ �′

0
dq′ δ̃(q′)

q′

)
, (A4)

with

δ̃(q′) = δ(q′) − δ(0), (A5)

and the form factor for 0 < q < �′ is given by

F (q) =
√

sin δ(q)√
1 − q2/�′2 exp

(
− x̃(q)

2π

)
, (A6)

where x̃(q) is defined analogously to Eq. (A3) with δ(q′)
replaced by δ̃(q′) = δ(q′) − π/2.

Finally, let us consider the case a > 0. Then the potential
has a bound state with binding energy 1/(ma2) and the phase
shift fulfils δ(0) = π . In this case, the coupling constant can
be written as

g0 = − 1

m�′2a
exp

(
− 2

π

∫ �′

0
dq′ δ̃(q′)

q′

)
, (A7)

and the form factor for 0 < q < �′ is given by

F (q) =
√

1 + q2a2

1 − q2/�′2
sin δ(q)

qa
exp

(
− x̃(q)

2π

)
, (A8)

where x̃(q) is defined analogously to Eq. (A3) with δ(q′)
replaced by δ̃(q′) = δ(q′) − π .

APPENDIX B: EXPLICIT EXPRESSION OF THE
THIRD-ORDER BMBPT CORRECTION

As explained in Sec. IV C, in each term of �(3), we must
integrate over four independent momentum vectors. We rela-
bel in each term the indices in such a way that the independent
integration variables are called k1 . . . k4. The remaining four
momentum vectors are then given by various combinations of
these integration variables, and we denote these combinations
as

k5 = − k1 − k2 − k3, k6 = −k1 − k2 − k4,

k7 = − k1 − k3 − k4, k8 = −k2 − k3 − k4,

k9 = k1 + k2 − k3, k10 = k1 + k3 − k2,

k11 = k1 + k2 − k4, k12 = k1 + k4 − k2,

k13 = k2 + k3 − k4. (B1)

The interaction potential appears with various differences or
sums of momenta and we define the notation

F±
i, j = F (|ki ± k j |/2). (B2)

Combining terms having the same weight functions, the third-
order correction can be finally written as

�(3) = (4πg0)3

V3

∑
k1...k4

(
u1v1 u2v2 u3v3 u4v4 A1

+ u1v1 u2v2 u3v3 v2
4 A2 + u1v1 u2v2 u3v3 u2

4 A3

+ u1v1 u2v2 v2
3 v2

4 A4 + u1v1 u2v2 v2
3 u2

4 A5

+ v2
1 v2

2 v2
3 u2

4 A6 + v2
1 v2

2 u2
3 u2

4 A7
)
, (B3)

with

A1 = −4
(
u2

13u2
5 + v2

13v
2
5

)
F−

2,3F−
4,13F−

2,3F−
1,5F−

1,4F−
5,13

E1,13,4,5E1,2,3,5

+ 4u5v5u6v6F−
1,3F−

2,5F−
1,4F−

2,6F+
3,4F+

5,6

E1,2,3,5E1,2,4,6

+ 2u2
5u2

6F−
2,3F−

1,5F−
1,4F−

2,6F−
3,5F−

4,6

E1,2,3,5E1,2,4,6

− 4
(
u2

5v
2
13 + u2

13v
2
5

)
F−

1,3F−
2,5F+

3,13F+
2,4F−

4,13F−
1,5

E1,13,4,5E1,2,3,5

+ 4u2
6v

2
5F−

1,2F−
3,5F−

1,2F−
4,6F+

3,4F+
5,6

E1,2,3,5E1,2,4,6

+ 2v2
5v

2
6F−

1,3F−
2,5F−

2,4F−
1,6F−

3,5F−
4,6

E1,2,3,5E1,2,4,6
, (B4)

A2 = −2u2
6u9v9F+

1,3F+
2,9F−

2,4F−
1,6F−

3,4F−
6,9

E1,2,4,6E3,4,6,9

− 4u2
6u5v5F−

1,3F−
2,5F−

2,4F−
1,6F+

3,4F+
5,6

E1,2,3,5E1,2,4,6
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+ 2u5v5v
2
6F−

1,2F−
3,5F−

1,2F−
4,6F−

3,5F−
4,6

E1,2,3,5E1,2,4,6

+ u9v9v
2
6F−

1,2F−
4,6F−

1,2F−
3,9F−

4,6F−
3,9

E1,2,4,6E3,4,6,9
, (B5)

A3 = 2u2
6u5v5F−

1,2F−
3,5F−

1,2F−
4,6F−

3,5F−
4,6

E1,2,3,5E1,2,4,6

+ u2
6u9v9F−

1,2F−
4,6F−

1,2F−
3,9F−

4,6F−
3,9

E1,2,4,6E3,4,6,9
, (B6)

A4 = −4u2
13u2

5F−
2,3F−

1,5F+
3,13F+

2,4F−
1,4F−

5,13

E1,13,4,5E1,2,3,5

+ 8u2
11u2

5F+
2,11F+

1,4F−
1,3F−

2,5F−
3,4F−

5,11

E1,2,3,5E11,3,4,5

+ 4u2
5u2

6F−
2,3F−

1,5F−
1,4F−

2,6F+
4,5F+

3,6

E1,2,3,5E1,2,4,6

− 4u2
5u2

7F−
1,3F−

2,5F−
3,4F−

1,7F+
4,5F+

2,7

E1,2,3,5E1,3,4,7

+ 2u2
7u2

8F−
3,4F−

1,7F−
3,4F−

2,8F+
2,7F+

1,8

E1,3,4,7E2,3,4,8

+ 2u2
7v

2
12F−

2,12F−
1,4F−

3,12F−
2,7F−

3,4F−
1,7

E1,3,4,7E12,2,3,7

− 4u2
5v

2
13F−

1,3F−
2,5F−

2,3F−
4,13F−

4,13F−
1,5

E1,13,4,5E1,2,3,5
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